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Adaptive Equi-Energy samplers

A talk in two steps:

1 Equi-Energy sampler by Kou, Zhou, Wong (2006), an example of
interacting MCMC sampler.

2 Adaptive Equi-Energy sampler: algorithm and convergence results.

Algorithms designed to:

obtain samples from a chain with target ∝ π when π is multimodal.



Adaptive Equi-Energy samplers

Equi-Energy sampler

MCMC with a multimodal target density fails:

Ex. target density : π =
∑20
i=1N2(µi,Σi)

0 1 2 3 4 5 6 7 8 9 10
−2

0

2

4

6

8

10
Target density : mixture of 2−dim Gaussian

 

 

draws
means of the components

1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

10
Hastings−Metropolis

 

 

draws
means of the components

[left] i.i.d. samples under π [right] Symmetric Random Walk HM
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Equi-Energy sampler

The Equi-Energy sampler Kou et al (2006) is an example of Interacting Tempering
algorithm:

”interacting”: many chains are run in parallel and interactions between
these chains are allowed.

”tempering”: each parallel chain designed so that its target is ∝ π1/Tk ,
(T1 > T2 > · · · > TK = 1)
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Equi-Energy sampler

The algorithm

Equi-Energy sampler Kou et al (2006)

Will define X(t) = {X(t)
n ,n ≥ 0} with

X(1) - high temperature, target : π1/T1

· · ·
X(K) - coolest one, target : π1/TK = π

Algorithm: given

points of the previous level X
(k−1)
1:n

and the current point X
(k)
n−1

define X
(k)
n as follows:

with probability 1− ε, (MCMC step)

X
(k)
n ∼ P (k)(X

(k)
n−1,·) with P (k) s.t. π1/TkP (k) = π1/Tk

with probability ε, (Interaction step): interaction with X
(k−1)
1:n
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Equi-Energy sampler

Equi-Energy jumps

Equi-energy jumps: the interaction step

Interaction ≡ choose a point among X
(k−1)
1:n as the next value for X(k).

The interaction with the previous level will favor jumps to other modes since

the previous process has a high-tempered target distribution

But X(k−1) and X(k) do not have the same target distribution:
introduction of an acceptance rejection step The acceptance-rejection ratio is given by

α(x,y) = 1 ∧
π1/Tk (y)

π1/Tk (x)

π
1/Tk−1 (x)

π
1/Tk−1 (y)

= 1 ∧
(
π(y)

π(x)

) 1
Tk
− 1
Tk−1

To make this ratio close to 1, select a point among X
(k−1)
1:n , with density

close to π(X
(k)
n−1)

or equivalently, with an energy H close enough to the energy of X
(k)
n−1

H(x) = − log π(x).

In the Kou et al. algorithm, before running the algorithm, fix a partition of
the energy space

Energy Ring #i = {x,H(x) ∈ [Hi−1,Hi]}

and choose a point in the same energy level.
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Equi-Energy sampler

Example

EE on an example
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target density : π =
∑20
i=1N2(µi,Σi)

K processes with target distribution π1/Tk

(TK = 1)
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Equi-Energy sampler

Design parameters

Design parameters

Before running the algorithm, fix

the number of parallel processes and the set of temperatures .

the number of strata in the energy space and the boundaries of the strata

the probability of interaction ε.

Despite many convergence analysis (on EE with no selection)

ergodicity: limn E[h(X
(K)
n )] = π(h)

law of large numbers: 1
n

∑n
j=1 h(X

(K)
j )→ π(h) in P or a.s.

CLT:
√
n
−1∑n

j=1{h(X
(K)
j )− π(h)} →D N (0,σ2)

see e.g. Kou, Zhou, Wong (2006); Atchadé (2010); Andrieu, Jasra, Doucet, Del Moral (2011); Fort, Moulines, Priouret (2012); Fort,

Moulines, Priouret, Vandekerkhove (2012) how to fix these design parameters is an open
question.

Our contribution: tune adaptively the boundaries of the strata
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Adaptive Equi-Energy sampler

II. Adaptive Equi-Energy sampler

Algorithm and Convergence results



Adaptive Equi-Energy samplers

Adaptive Equi-Energy sampler

Example of adaptive boundaries

Adaptive tuning of the boundaries of the energy rings

↪→ How to define the boundaries H1, · · · ,HL of the energy rings?

Our approach: the energy rings used in the mecanism “X(k−1) → X(k)” are
defined by using the samples of level X(k−1).

Algorithm

Level 1 (Hot level)

Draw X(1) with target π1/T1 (MCMC).

at each time n, update the boundaries H
(1)
n,1, · · · ,H

(1)
n,L computed from X

(1)
1:n

Level 2
Draw X(2) with target π1/T2 . For the interaction step, use the boundaries

H
(1)
• .

at each time n, update the boundaries H
(2)
n,1, · · · ,H

(2)
n,L computed from X

(2)
1:n

Repeat until Level K.
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Adaptive Equi-Energy sampler

Example of adaptive boundaries

Example of adaptive boundaries (1/2)

We are able to prove convergence properties for A-EE when, w.p.1

the proportion of points of the auxiliary process in each stratum, is
uniformly for all large n lower bounded.

Idea: when n is large, L(X
(k)
n ) ≈ π1/Tk . Therefore, choose H

(k)
i for

1 ≤ i ≤ L as the quantiles of order i/(L+ 1) of the distribution of

H(Z) = − log π(Z) when Z ∼ π1/Tk

In practice: choose H
(k)
n,i for 1 ≤ i ≤ L as an estimator of the quantiles of

order i/(L+ 1) of the distribution of

H(Z) = − log π(Z) when Z ∼ π1/Tk

computed from X
(k)
1:n.
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Adaptive Equi-Energy sampler

Example of adaptive boundaries

Example of adaptive boundaries (2/2)

1) A first estimator, is based on the inversion of the empirical cdf

F (k)
n (h) =

1

n

n∑
j=1

1
π(X

(k)
j )≤h

2) A second one is based on Stochastic Approximation procedures

H
(k)
n+1,• = H(k)

n,• + γn+1 Ξ
(
X

(k)
n+1,H

(k)
n,•

)
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Adaptive Equi-Energy sampler

Numerical Application

Num. Appl.: fixed boundaries vs adapted boundaries

Target distribution on R6

π =
1

2
N6 (µ,0.3 Id) +

1

2
N6 (−µ,0.2 Id) µ = [2, · · · ,2]

We compare Hastings-Metropolis (HM); and the EE sampler and the
Adaptive EE sampler when applied with 3 temperatures and 11 strata.

The last plot is for the 2-d projection
(
uTX; vTX

)
with uT ∝ [1,1, · · · ,1]

vT ∝ [1,1,1,− 1,− 1,− 1]
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Adaptive Equi-Energy sampler

Numerical Application

Behavior along one path: HM EE A-EE
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Adaptive Equi-Energy sampler

Numerical Application

Behavior on 50 ind. run HM EE A-EE
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Adaptive Equi-Energy sampler

Numerical Application

Num. Appl.: Adaptive EE
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Adaptive Equi-Energy sampler

Convergence results for A-EE

Convergence results for A-EE (1/3)

It is known that adaptation can destroy convergence !

The successive processes X(k) are NOT markovian except the first one X(1) but
are controlled Markov chains.

Sufficient conditions for convergence of such processes are Roberts & Rosenthal

(2007); Atchadé, F. (2011, 2012), Atchadé, F., Moulines, Priouret (2011), F., Moulines, Priouret (2012)

- (geometric) ergodicity of each transition kernel P
(k)
θ .

- containment condition
- diminishing adaptation
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Adaptive Equi-Energy sampler

Convergence results for A-EE

Convergence results for A-EE (2/3)

We prove ergodicity and law of large numbers under the assumptions:

1 π is continuous, positive on the measurable Polish space (X,B(X)) and∫
πs(x)dx <∞ for any s ∈ (0,1).

2 a set of conditions on each MCMC kernel P (k), implying P (k) is
Wk-Geometrically ergodic

3
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Convergence results for A-EE (2/3)

We prove ergodicity and law of large numbers under the assumptions:

1 π is continuous, positive on the measurable Polish space (X,B(X)) and∫
πs(x)dx <∞ for any s ∈ (0,1).

2 a set of conditions on each MCMC kernel P (k), implying P (k) is
Wk-Geometrically ergodic

3 Condition on the adapted boundaries: for any k ∈ {1, . . . ,K − 1},
(a) There exists γ? > 0 such that for any ` ∈ {1, · · · ,S − 1} and any

γ ∈ (0,γ?),

lim sup
n

nγ
∣∣∣H(k)
n+1,` −H

(k)
n,`

∣∣∣ <∞ w.p.1

(b) for any ` ∈ {1, · · · ,S − 1},

lim
n→∞

∣∣∣H(k)
n,` −H

(k)
∞,`

∣∣∣ = 0 w.p.1

(c)

inf
`∈{1,··· ,S−1}

∫
1I
{x,H(k)

∞,`−1
≤H(x)≤H(k)

∞,`}
π1/Tk (dx) > 0.
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Adaptive Equi-Energy sampler

Convergence results for A-EE

Convergence results for A-EE (3/3)

Theorem: Under

the previous assumptions,

and E[Wk(X
(k)
0 )] <∞ for all k ∈ {1, · · · ,K},

it holds for any k ∈ {1, · · · ,K}
(Ergodicity) and for all bounded continuous function f : X→ R,

lim
n→∞

E[f(X(k)
n )] =

π1/Tk (f)

π1/Tk (1)
.

(strong LLN) Let a ∈ (0, 1+γ?
2
∧ 1). For all continuous function f s.t.

supx |f |/W a
k <∞,

lim
n→∞

1

n

n∑
m=1

f(X(k)
m ) =

π1/Tk (f)

π1/Tk (1)
P− a.s..
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Conclusion

1 A new adaptive interacting algorithm: methodology and convergence
results. First results on convergence of Equi-Energy sampler with selection
mecanism.

2 Convergence results for interacting Monte Carlo algorithms.

3 Application to a non trivial example (motif discovery in DNA sequences)
not shown here, but available in the paper

Paper available:
Adaptive Equi-Energy Sampler : Convergence and Illustration, A. Schreck, G.F.
and E. Moulines. ACM : Transactions on Modeling and Computer Simulation,
2012.
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