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Adaptive Equi-Energy samplers

A talk in two steps:

Q@ Equi-Energy sampler by Kou, Zhou, Wong (2006), an example of
interacting MCMC sampler.

@ Adaptive Equi-Energy sampler: algorithm and convergence results.

Algorithms designed to:

obtain samples from a chain with target o< m when 7 is multimodal.
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MCMC with a multimodal target density fails:

Lo 20
Ex. target density : m= i Mo(ps, %)
Target density : mixture of 2-dim Gaussian Hastings-Metropolis
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Equi-Energy sampler

The Equi-Energy sampler «ou et al (2006) is an example of Interacting Tempering
algorithm:

@ "interacting”: many chains are run in parallel and interactions between
these chains are allowed.

o "tempering”: each parallel chain designed so that its target is oc 7/ 7*,

(Ty > Ty >+ > T =1)
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The algorithm

Equi-Energy sampler «ou et ai (200)

o Will define X® = {X{" n > 0} with

o XM . high temperature, target: l/T1

o .-
o X(X) _ coolest one, target : Tk = ¢
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Equi-Energy sampler «ou et ai (200)

o Will define X® = {X{" n > 0} with

o X1 _ high temperature, target: 71/71

o .-
o X(X) _ coolest one, target : Tk = ¢

o Algorithm: given
(k—1)
1

m

points of the previous level X
and the current point Xflk_)l

define X,(Lk) as follows:
o with probability 1 — ¢, (MCMC step)

x$ o P®(x®) Ly with PR st xl/Tep() = 11/ Tk

o with probability €, (Interaction step): interaction with Xﬂ:l)
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Equi-energy jumps: the interaction step

@ Interaction = choose a point among Xff“n_l) as the next value for X*),

@ The interaction with the previous level will favor jumps to other modes since

the previous process has a high-tempered target distribution

o But X*~1 and X® do not have the same target distribution:
introduction of an acceptance rejection step The acceptance-rejection ratio is given by

a(z,y) = 1A

T TR @) (w(y))ﬁ‘ﬁ

7/ T (@) 2/ Th—1(y) ()
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Equi-energy jumps: the interaction step

@ Interaction = choose a point among X(k Y as the next value for X*).

@ The interaction with the previous level will favor jumps to other modes since

the previous process has a high-tempered target distribution

o But X*~V and X do not have the same target distribution:
introduction of an acceptance rejection step

@ To make this ratio close to 1, select a point among X“C 2 , with density

close to m(XF),)

or equivalently, with an energy H close enough to the energy of X" )

n—

H(z) = —logm(z).

In the Kou et al. algorithm, before running the algorithm, fix a partition of
the energy space

Energy Ring #i = {a,H(z) € [Hi-1,H;]}

and choose a point in the same energy level.
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Example

EE on an example

Targer densiy atemperatre 1

o target density: m = 370 Na(ui,2:)

@ K processes with target distribution m

(Tk =1)

Targtdensty attemperatre 2
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Targetdensy atemperaure 3

Targetdensiy atmporatre 4
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Design parameters

Design parameters

Before running the algorithm, fix
@ the number of parallel processes and the set of temperatures .
@ the number of strata in the energy space and the boundaries of the strata

o the probability of interaction e.

Despite many convergence analysis (on EE with no selection)
e ergodicity: lim,, E[h(XS)] = x(h)
o law of large numbers: Dy h(X](-K)) — m(h) inPor as.
o CLT: VATt (X)) = w(h)} = N(0,0%)

see e.g. Kou, Zhou, Wong (2006); Atchadé (2010); Andrieu, Jasra, Doucet, Del Moral (2011); Fort, Moulines, Priouret (2012); Fort,
Moulines, Priouret, Vandekerkhove (2012) how to fix these design parameters is an open
question.

Our contribution: tune adaptively the boundaries of the strata
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Adaptive Equi-Energy sampler

Il. Adaptive Equi-Energy sampler

Algorithm and Convergence results



Adaptive Equi-Energy samplers
Adaptive Equi-Energy sampler

Example of adaptive boundaries

Adaptive tuning of the boundaries of the energy rings
— How to define the boundaries Hi,--- ,H;, of the energy rings?
Our approach: the energy rings used in the mecanism “X =1 — X ()" 5re

defined by using the samples of level X (k=)

Algorithm
o Level 1 (Hot level)
o Draw X(1) with target 71/71 (MCMC).

o at each time n, update the boundaries Hf:i, e ,Hfbl)L computed from XflT)L
o Level 2
o Draw X () with target 71/T2 . For the interaction step, use the boundaries
HY.
e at each time n, update the boundaries Hy(fi, s ,Hflz)L computed from Xfi{

@ Repeat until Level K.
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Example of adaptive boundaries

Example of adaptive boundaries (1/2)

@ We are able to prove convergence properties for A-EE when, w.p.1

the proportion of points of the auxiliary process in each stratum, is
uniformly for all large . lower bounded.

@ ldea: when n is large, E(XT(L’“)) ~ n'/Tk Therefore, choose Hi(k) for
1< i< L asthe quantiles of order i/(L + 1) of the distribution of

H(Z) = —logn(Z) when Z ~ 7'/Tk

@ In practice: choose Hgi) for 1 <14 < L as an estimator of the quantiles of
order i/(L + 1) of the distribution of

H(Z) = —logn(Z) when Z ~ m'/Tk

computed from XYQ
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Example of adaptive boundaries

Example of adaptive boundaries (2/2)

1) A first estimator, is based on the inversion of the empirical cdf

RO (h) = Z L x)n

2) A second one is based on Stochastic Approximation procedures

B, = Y = (30, 582
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Numerical Application

Num. Appl.: fixed boundaries vs adapted boundaries

o Target distribution on R®

S %Nﬁ (1,0.3 1d) + %Nﬁ (—p021d)  p=12,--- 2]

@ We compare Hastings-Metropolis (HM); and the EE sampler and the
Adaptive EE sampler when applied with 3 temperatures and 11 strata.

o The last plot is for the 2-d projection (u” X;v" X) with u” o [1,1,- -+ ,1]
vl [1,1,1, -1, -1, — 1]
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Numerical Application

Behavior along one path:  HM

EE A-EE

[Top] Error when estimating the means
- x5
Z — Ex[X;]

[Bottom L] Time spent in one of the mode where the
path is initialized.

[Bottom R] Probability ~ of  being  in
some ellipsoids, for the first mode

(line) and the second one (dashed line)
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Numerical Application

Behavior on 50 ind. run
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[Top] Error when estimating the means

[Bottom L] Time spent in one of the mode where the
path is initialized.

[Bottom R] Probability ~ of  being in

some ellipsoid, for the first mode
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Numerical Application

Num. Appl.: Adaptive EE
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[left] True density (mixture of Gaussian, same
weights);
[right] Adaptive EE
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ponent of the mixture. Boxplot with 50
ind. run
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Convergence results for A-EE (1/3)

@ It is known that adaptation can destroy convergence !
o The successive processes X *) are NOT markovian eccept the fist one x (1) but
are controlled Markov chains.

o Sufficient conditions for convergence of such processes are Roberts & Rosenthal
(2007); Atchadé, F. (2011, 2012), Atchadé, F., Moulines, Priouret (2011), F., Moulines, Priouret (2012)
- (geometric) ergodicity of each transition kernel Pa(k).
- containment condition
- diminishing adaptation
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Convergence results for A-EE

Convergence results for A-EE (2/3)

We prove ergodicity and law of large numbers under the assumptions:

@ 7 is continuous, positive on the measurable Polish space (X,B8(X)) and
J 7 (z)dx < oo for any s € (0,1).

@ a set of conditions on each MCMC kernel P®*) implying P is
Wi.-Geometrically ergodic
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Convergence results for A-EE

Convergence results for A-EE (2/3)

We prove ergodicity and law of large numbers under the assumptions:

@ 7 is continuous, positive on the measurable Polish space (X,B(X)) and
J 7 (z)dx < oo for any s € (0,1).

Q@ a set of conditions on each MCMC kernel P implying P is
Wy.-Geometrically ergodic

@ Condition on the adapted boundaries: for any k € {1,...,K — 1},

(a) There exists v4 > 0 such that for any £ € {1,--- ,S — 1} and any
7 € (0,7),

. k k
hrnnsup n” ‘waglngT(LZ‘ < o0 w.p.1
(b) forany £€{1,---,5—1},
: (k) (k) | _
Jim [HY) - [ =0 w1

(c)

inf I , 1/ Tk (g 0.
26{1,41{1,371}/ (w1, <n@<a®y " (dz) >
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Convergence results for A-EE

Convergence results for A-EE (3/3)

Theorem: Under
@ the previous assumptions,
o and E[Wi (X)) < oo for all k € {1,--- ,K},
it holds for any k € {1,--- ,K}
o (Ergodicity) and for all bounded continuous function f : X — R,

tim B{F(x)) = T )

n—oo 7'('1/Tlc (1) '

o (strong LLN) Let a € (0,252 A 1). For all continuous function f s.t.
sup, | f|/Wii < o0,

ol Wy _ T
nll)n;o . Z (X)) = 7177 (1), P—as.

m=1
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I11. Conclusion



Adaptive Equi-Energy samplers

Conclusion

Conclusion

@ A new adaptive interacting algorithm: methodology and convergence
results. First results on convergence of Equi-Energy sampler with selection
mecanism.

@ Convergence results for interacting Monte Carlo algorithms.

@ Application to a non trivial example (motif discovery in DNA sequences)

not shown here, but available in the paper

Paper available:

Adaptive Equi-Energy Sampler: Convergence and lllustration, A. Schreck, G.F.
and E. Moulines. ACM : Transactions on Modeling and Computer Simulation,
2012.
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