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Introduction

Simulated Annealing

Simulated Annealing (1/2)

Let U denote the objective function one wants to minimize.

min
x∈X

U(x)⇐⇒ max
x∈X

exp(−U(x))⇐⇒ max
x∈X

exp

(
−U(x)

T

)
∀T > 0

In order to sample from πT? where

πT (x) = exp

(
−U(x)

T

)
sample successively from a sequence of tempered distributions πT1 , πT2 ,
· · · with T1 > T2 > · · · > T?.
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Simulated Annealing (1/2)

Let U denote the objective function one wants to minimize.

min
x∈X

U(x)⇐⇒ max
x∈X

exp(−U(x))⇐⇒ max
x∈X

exp

(
−U(x)

T

)
∀T > 0

In order to sample from πT? where

πT (x) = exp

(
−U(x)

T

)
sample successively from a sequence of tempered distributions πT1 , πT2 ,
· · · with T1 > T2 > · · · > T?.

or sample successively from a sequence of (nt-iterated) kernels (PTt(x, ·))t
such that πTPT = πT .
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Simulated Annealing

Simulated Annealing (2/2)

Under conditions on X, on the cooling schedule (Tt)t, on the kernels
(Pt)t, on the dominating measure and the set of minima, · · ·

Kirkpatrick, Gelatt and Vecchi. Optimization via Simulated Annealing. Science (1983)
Geman and Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. on
PAMI. (1984).
Van Laarhoven and Aarts, Simulated Annealing : theory and applications. Mathematics and its Applications, Reidel,
Dordrecht (1987).
Chiang and Chow. On the convergence rate of annealing processes. SIAM J. Control Optim. (1988)
Hajek, B. Cooling schedule for optimal annealing. Math. Operat. Res. (1988).
Haario and Saksman. Simulated Annealing process in general state space. Adv. Appl. Probab. (1991)

Xt converges to the minima of U
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Sampling a density

Sampling a density

Monte Carlo methods are numerical tools to solve some computational
problems

in bayesian statistics, for the exploration of the a posteriori distribution π

computation of integrals (w.r.t. π)

stochastic optimization (of U , π ∝ exp(U))

· · ·
Monte Carlo methods draw points (Xt)t approximating π

π ≈ 1

T

T∑
t=1

δXt

even in difficult situations when perfect sampling under π is not possible

π known up to a normalization constant

complex expression of π if explicit

large dimension of the state space

· · ·



Monte Carlo methods for sampling-based Stochastic Optimization

Introduction

Sampling a density

Two main strategies : Importance Sampling & MCMC (1/2)

1. Importance Sampling :

Choose an auxiliary distribution π?

Draw points approximating π?

Reweight these draws to approximate π

Ex. (Xt)t i.i.d. under π?,

π ≈ 1

T

T∑
t=1

π(Xt)

π?(Xt)
δXt

Main drawback in large dimension :

not robust at all when the dimension is large : degeneracy of the weights,
large and even infinite variance if π? is not selected in accordance with π.
MCMC far more robust to the dimension
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Sampling a density

Two main strategies : Importance Sampling & MCMC (2/2)

2. Markov Chain Monte Carlo (MCMC) : Sample a Markov chain, with unique
invariant distribution π

Ex. Hastings-Metropolis type algorithms :
Choose an auxiliary transition kernel q(x, y)
Starting from the current point Xt, propose a candidate
Y ∼ q(Xt, ·)
Accept or Reject the candidate

Xt+1 =

{
Y with probability α(Xt, Y )
Xt with probability 1− α(Xt, Y )

where

α(x, y) = 1 ∧ π(y)q(y, x)

π(x)q(x, y)
.

Main drawback of classical MCMC samplers for multimodal densities on large
dimensional space

have to scale the size of the proposed moves as a function of the dimension
remain trapped in some modes, unable to jump and visit the sampling
space in a “correct” time.
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Sampling a density

Example 1

Ex. MCMC - Size of the proposed moves w.r.t. the dimension.
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and σ is of the form c/
√
d (bottom)
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Sampling a density

Example 2

The target density π is a mixture of Gaussian in R2

π ∝
20∑
i=1

N2(µi,Σi)

We compare N i.i.d. points (left) to N points from a Hastings-Metropolis
chain (right)
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Classical adaptive MCMC are not robust to the multimodality problem
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How to tackle multimodality in large dimension ?

How to tackle the multimodality question ?

Here are some directions recently proposed in the Statistic literature :

1. Biasing potential approach

Identify (few) “directions of metastability” ξ(x) and a biasing potential
A(ξ(x)) such that π?(x) ∝ π(x) exp(−A(ξ(x))) has better
mixing properties

Sample under π? and add a reweighting mecanism to approximate π.

Ex. the Wang-Landau sampler

2. Tempering methods and Interactions

Choose a set of inverse temperature 0 < β1 < · · · < βK−1 < 1

Sample points approximating the tempered densities πβi by allowing
interactions between these points.

Ex. the Equi-Energy sampler
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The Wang-Landau algorithm

The Wang-Landau algorithm

The algorithm was proposed by Wang and Landau in 2001, in the molecular
dynamics field.

F.G. Wang and D.P. Landau, Determining the density of states for classical statistical models : A random walk algorithm to
produce a flat histogram, Phys. Rev. E 64 (2001).
G. Fort, B. Jourdain, E. Kuhn, T. Lelièvre and G. Stoltz. Convergence of the Wang-Landau algorithm. Accepted for publication in
Mathematics of Computation, March 2014.
G. Fort, B. Jourdain, E. Kuhn, T. Lelièvre and G. Stoltz. Efficiency of the Wang-Landau algorithm. Accepted for publication in
Applied Mathematics Research Express, February 2014.
L. Bornn, P. Jacob, P. Del Moral and A. Doucet. An Adaptive Wang-Landau Algorithm for Automatic Density Exploration.
Journal of Computational and Graphical Statistics (2013).
P. Jacob and R. Ryder. The Wang-Landau algorithm reaches the flat histogram criterion in finite time. Ann. Appl. Probab. (2013).

Approximate the target π

Definition of the proposal distribution

− Sample points approximating the proposal distribution

− Compute the associated weights
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The Wang-Landau algorithm

The proposal distribution

The proposal distribution (1/3)

Wang-Landau is an importance sampling algorithm with proposal π?

π?(x) ∝
∑d

i=1
π(x)
π(Xi) 1IXi(x)

where X1, · · · ,Xd is a partition of the sampling space.

The proposal distribution π? consists in reweighting locally π so that

∀i, π?(Xi) =
1

d

↪→ This last property will force the sampler π? to visit all the strata, with the
same frequency.



Monte Carlo methods for sampling-based Stochastic Optimization

The Wang-Landau algorithm

The proposal distribution

The proposal distribution (2/3)

Unfortunately, π(Xi) is unknown and we can not sample from π? (even with
MCMC)

The algorithm will use a family of biased distributions

πθ(x) ∝
d∑
i=1

π(x)

θ(i)
1IXi(x)

where θ = (θ(1), · · · , θ(d)) is a weight vector.

Key property : π? is among this family

π?(x) = πθ?(x) with θ? =

(
π(X1)

Zπ
, · · · , π(Xd)

Zπ

)

The algorithm will simultaneously (a) learn the target weight θ? and (b)
produce points approximating π?.
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The Wang-Landau algorithm

The proposal distribution

The proposal distribution (3/3)

The algorithm (step 1) Given the current biasing weight θt and the current
sample Xt

sample the new point :
Xt+1 ∼ Pθt(Xt, ·)

where Pθ is a Markov kernel s.t. πθPθ = πθ

Update the biasing weight : if Xt+1 ∈ Xi, penalize the stratum i in order
to favor the visits to the other stratum. Since πθ(x) ∝ π(x)/θ(`) when x ∈ X` ,

θt+1(i) > θt(i) θt+1(k) < θ(k)

Ex. of updating strategy :

θt+1(i) = θt(i) + γt+1 θt(i)(1− θt(i))
θt+1(k) = θt(k)− γt+1 θt(i)θt(k)

based on a Stochastic Approximation algorithm, with deterministic (non
increasing) stepsize sequence (γt)t
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The Wang-Landau algorithm

A toy example

A toy example (1/3)

Target density : π(x1, x2) ∝ exp(−βH(x1, x2))1I[−R,R](x1)
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Figure: [left] Level curves of the potentialH. [center, right] Density π up to a normalizing constant.
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The Wang-Landau algorithm

A toy example

A toy example (2/3)
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Pθ are Hastings-Metropolis kernels with proposal distribution N (0, (2R/d)2I)
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The stepsize sequence is γt ∼ c/t0.8.
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The Wang-Landau algorithm

A toy example

A toy example (3/3)

Path of the x1-component of (Xt)t, when Xt is the WL chain (left) and the
Hastings-Metropolis chain (right).
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The Wang-Landau algorithm

Approximation of π

Approximation of π (1/2)

Definition of the proposal distribution

− Sample points approximating the proposal distribution

− Compute the associated weights

Approximate the target π
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The Wang-Landau algorithm

Approximation of π

Approximation of π (2/2)

It is expected

π? ≈
1

T

T∑
t=1

δXt lim
t
θt =

(
π(X1)

Zπ
, · · · , π(Xd)

Zπ

)
In addition, by definition of π?

x ∈ Xi =⇒ π(x)

Zπ π?(x)
= d lim

t
θt(i)

Theis yields the algorithm (step 2)∫
f
dπ

Zπ
≈ d

T

T∑
t=1

f(Xt)

(
d∑
i=1

θt(i)1IXi(Xt)

)
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Efficiency of the Wang-Landau algorithm

Efficiency of Wang-Landau (1/3)

We compare the efficiency of the algorithm based on their ability to jump
from one mode to another mode in a short time.

Not possible to explicitly compute this time for general problems. We
therefore considered toy examples.
We report the results for a very simple example, for which explicit
computations of the hitting-time is possible.
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The Wang-Landau algorithm

Efficiency of the Wang-Landau algorithm

Efficiency of Wang-Landau (2/3)

State space : X = {1, 2, 3}
Target distribution : π(1) ∝ 1 π(2) ∝ ε π(3) ∝ 1

Let us compare
1 Hastings-Metropolis P with proposal kernel Q and target π

Q =

2/3 1/3 0
1/3 1/3 1/3
0 1/3 2/3


2 Wang-Landau where the kernels Pθ are Hastings-Metropolis kernels with

proposal Q and target πθ

1 2 3

 ε/3ε/3

 ε/31/3

1/3

1/3
1 - ε/3 1-ε/3

1 2 3

 o(ε)

 o(ε)1/3

1/3

1/3
1 - o(ε) 1-o(ε)

(left) Transition matrix P ; (right) Behavior of the transition matrix Pθ when ε→ 0 (θ

fixed)
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The Wang-Landau algorithm

Efficiency of the Wang-Landau algorithm

Efficiency of Wang-Landau (3/3)

Comparison based on the hitting time

T1→3 : hitting-time of state 3, given the chain started from state 1

and how it behaves when ε→ 0.

When ε→ 0, we obtain T1→3 scales like

For Hastings-Metropolis : 6/ε

lim
ε→0

ε

6
E [T1→3] = 1

ε

6
T1→3 → E(1) in distribution

For Wang-Landau applied with γt = γ?/t
a and 1/2 < a < 1 :

C(a, γ?) | ln ε|1/(1−a)

For Wang-Landau applied with γt = γ?/t

ε−1/(1+γ?)
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Convergence issues

Adaptive and Interacting MCMC

Adaptive and Interacting MCMC (1/2)

In the two previous examples, the conditional distribution of the points
(Xt)t satisfies

E [h(Xt+1)|pastt] =

∫
h(y)Pθt(Xt, dy)

where

Pθ is a Markov transition kernel
(θt)t is a random process.

Even in the simple situation when

there exists π such that πPθ = π for any θ and

lim
n
‖Pnθ (x, ·)− π‖ = 0

Is π the stationary distribution of the process (Xt)t ?
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Convergence issues

Adaptive and Interacting MCMC

Adaptive and Interacting MCMC (2/2)

Consider the following adapted chain :

Fix t0, t1 ∈ (0, 1). Define an adapted chain as follows :

Xk+1|pastk ∼
{
Pt0(Xk, ·) if Xk = 0
Pt1(Xk, ·) if Xk = 1

where

Pt` =

(
1− t` t`
t` 1− t`

)
Pt0 and Pt1 both converge to the stationary distribution π =

(
1/2
1/2

)
.

Then, (Xk)k is a Markov chain, with transition matrix(
1− t0 t0
t1 1− t1

)

and it converges to the distribution π̃∝
(
t1
t0

)
6= π.

Adaption cas destroy the convergence !
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Sufficient conditions for the convergence

Sufficient conditions for the convergence (1/3)

The literature provides sufficient conditions so that

convergence in distribution of (Xt)t

Strong law of large numbers for (Xt)t

Central Limit Theorem for (Xt)t

G.O. Roberts, J.S. Rosenthal. Coupling and Ergodicity of Adaptive Markov chain Monte Carlo algorithms. J. Appl. Prob. (2007)

G. Fort, E. Moulines, P. Priouret. Convergence of adaptive MCMC algorithms : ergodicity and law of large numbers. Ann. Stat.
2012

G. Fort, E. Moulines, P. Priouret and P. Vandekerkhove. A Central Limit Theorem for Adaptive and Interacting Markov Chain.
Bernoulli, 2013.



Monte Carlo methods for sampling-based Stochastic Optimization

Convergence issues

Sufficient conditions for the convergence

Sufficient conditions for the convergence (2/3)

X
t-N

θ
t-N

X
t-N+1

θ
t-N+1

X
t

θ
t

Time t-N Time t-N+1 Time t

Kernel P
θt-N

 (X
t-N

, ) Kernel P
θt-1

 (X
t-1

, )

Adaptive 
MCMC

Frozen
chain

X
t-N

X
t

Kernel P
θt-N
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X
t

In the 
limit

Under π
θt-N
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Sufficient conditions for the convergence

Sufficient conditions for the convergence (3/3)

E
[
h(Xt)|pastt−N

]
−

∫
h(y) πθ? (dy) = E

[
h(Xt)|pastt−N

]
−

∫
h(y) P

N
θt−N

(Xt−N , dy)

+

∫
h(y) P

N
θt−N

(Xt−N , dy)−
∫
h(y) πθn−N (dy)

+

∫
h(y) πθn−N (dy)−

∫
h(y) πθ? (dy)

Diminishing adaption condition Roughly speaking :

dist(Pθ, Pθ′) ≤ dist(θ, θ′)

If θt − θt−1 are close, then the transition kernels Pθt and Pθt−1 are close
also.

Containment condition Roughly speaking :

lim
N→∞

dist(PNθ , πθ) = 0

at some rate depending smoothly on θ.

Regularity in θ of πθ so that

lim
t
θt = θ? =⇒ dist (πθt − πθ?)→ 0
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Convergence of Wang-Landau

Convergence of Wang-Landau

Fort et al. (2014) provide sufficient conditions on

the transition kernels Pθ

the target distribution π

the step size (γt)t controlling the adaption rate of the weight sequence

implying that almost-surely

lim
t
θt =

(
π(X1)

Zπ
, · · · , π(Xd)

Zπ

)
lim
T

1

T

T∑
t=1

f(Xt) =

∫
f dπ?

lim
T

d

T

T∑
t=1

f(Xt)

d∑
i=1

θt(i)1IXi(Xt) =

∫
f
dπ

Zπ

The rate of convergence of (θt)t is also established.
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Combining WL and simulated annealing

WL and simulated annealing (1/2)

Liang, Cheng and Lin. Simulated Stochastic Approximation Annealing for Global Optimization with a Square-Root-Cooling
Schedule. JASA (2014)

Let a cooling schedule (Tt)t such that limt ↓ Tt = T? > 0.

Choose Xi = {x : ui−1 < U(x) ≤ ui}.
Set

πT,θ(x) ∝
d∑
i=1

1

θ(i)
exp

(
−U(x)

T

)
1IXi(x)

Algorithm : repeat

- Given the past, draw Xt under a transition kernel PTt,θt with invariant
distribution πTt,θt .

- Update the weight parameter θt as in the WL algorithm.
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Combining WL and simulated annealing

WL and simulated annealing (2/2)

Results Liang et al. (2014)

1 Law of large numbers : a.s.

lim
N

1

N

N∑
t=1

f(Xt) =

∫
f(x)

πT?,θ?(x)

Z?
dλ

2 Let u? be the minimal value, necessarily reached in stratum X1

lim
t→∞

P (U(Xt) ≤ u? + ε|Xt ∈ X1) = P (U(Y ) ≤ u? + ε|Y ∈ X1)

where Y ∼ exp(−U(x)/T?).

3 “When T? → 0,
P (U(Y ) ≤ u? + ε|Y ∈ X1)→ 1,

thus showing the convergence of the algorithm to the minima of U(x).”

But we could imagine other methods to combine WL and Simulates
Annealing, or WL and stochastic optimization
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