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Abstract. We address the problem of parameters identification and dssamilation for river
flows modeled by the 2D St-Venant equations. In practiceljala observations are very
sparse especially during flood events (very few measursnoéelevation at gauging stations
in the main channel). We assume we have in addition eithéasgitrajectories extracted from
video images (lagrangian data) or space distributed waésels extracted from one satellite
image. Then we identify parameters such as the inflow digeharrthe topography and/or the
initial state (depending on the configuration and the obaBons available). Numerical twin
experiments demonstrate the efficiency of the present chéahtoy test cases.

1 Introduction

A major difficulty in numerical simulation of river hydragh is to calibrate the models.
Variational data assimilation (VDA) combines, in an optimanse, model and observations
allowing to identify some parameters values. However\arrhydraulics, observation data are
available only in very small quantities. Water level measuents can be available at gauging
stations, but it is the main channel only and they are verysepim space. Velocity measure-
ments are even rarer and uncertain, since they require earhpiman interventions. Conse-
guently, in practice these observations are usually ndicgerit to take full advantage of data
assimilation. This lack of data becomes even more problenmatase of floods. Thus, remote
sensed data such as videos and spatial images offer a latgatipbwhich is not exploited
guantitatively yet. We address the assimilation of theofelhg two types of data (in addition
to classical ones) : 1) trajectories of particles flowinghegt surface which could be extracted
from video images; 2) spatial distributed water level whecluld be extracted from a satellite
image of the flood plain.

In case 1), we extend the method of VDA to extra lagrangiaa.dBte trajectories of particles
convected by the flow bring information on the surface veéjogsing an extra transport model.
In case 2), we define an extra cost function term.

Numerical twin experiments done for toy test cases showdhatimproves the identification
of model parameters.
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Theforward model and VDA process The forward model relies on the 2D St-Venant model
(shallow water equations SWE) (s the water elevationy = hu the dischargeu the depth-
averaged velocity):

Oy h+div(q) = 0 in Qx]0, 7]
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o q+div(za®q) + 39Vh? + ghVz, + g h7/‘§”q =0 inQx]0,T] (1)

with initial conditions(hg, qo) given, g the gravity,z, the bed elevatiom; the Manning rough-
ness coefficient. Boundary conditions are: at inflow, thelthsgeg is prescribed; at outflow,
either the water elevatiofy, is prescribed or incoming characteristics are prescriaed;walls
conditions. We refer td [3] for more details.

Given the control vectat = (ho, qo, 1, 23, G, 25 ), the state variablgh, q) is determined by solv-
ing the forward model.

The full VDA process based on the optimal control methad ig]mplemented into our soft-
ware DassFlow,[]3]. The forward code is a HLLC Riemann soliffft The cost functions
are minimized using a Quasi-Newton algorithm, which impliee computation of its gradient
using an adjoint model. The latter is created with the helfhefautomatic differentiation tool
Tapenade/]2].

2 Assimilation of lagrangian data

Lagrangian DA consists in using observations describedagyahgian coordinates in the
VDA process. Here, we consider observations of particlaessiorted by the flow (e.g. ex-
tracted from video images). The link between the lagrandeata made of N particle trajecto-
ries denoted byX;(¢) and the classical eulerian variables of the shallow watetehis made
by the following equations, seel[4]:

{%X@ = qu(Xi0),t) Vel d
Xi(t}) =

7

for i=1,...,N ()

wheret? andt/ are the time when the particle enter and leave the obsenvdtimain,y is a
multiplicative constant. We consider two kinds of obsernvat (classical eulerian observations
h**(t) and trajectories of particles transported by the flo# (¢)). Then, we build the following
composite cost function:

j(c) = %/O | Ch(t) — h™(t) szt+%2/t; | X (t) — X (t) | dt 3)

whereq, is a scaling parametef; the observation operator (restriction)c) is the cost func-
tion we minimize with respect to.

Numerical results. Particle trajectories associated with local water depthsueements are
used for the joint identification of local bed elevatignand initial conditiong2°, u°), Fig.[.

Twin DA experiments are carried out. Observations are: @fewdepth recorded continuously

in time at the abscissag = 15m andxz, = 70m, for the whole width of the domain; (2)
virtual particles dropped in the flow (640 in total) and tramded by a turbulent surface velocity

u’ = yu + u?, wherey = 1 andur is a Gauss-Markov process. Then these observations are
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filtered by averaging, seel[4].

We identify jointly the reference topography and the rafieeeinitial conditions by minimizing
@). (Thea priori value of the control variable was a constant slope bed ane#udting steady-
state flow as initial conditions. The identified topograplheyabtain is close to the reference one,
Fig.d(b); while the identified initial conditions reprodescwell the reference one.
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Figure 1: Joint identification of the topography and theid@hitonditions using water depth measurements and
particle trajectories witly, = 1 x 1074,

3 Assimilation of spatial distributed water levels

We consider the toy flood event described in Big 2 Bnd 3. Thigdst case contains all
important features of the real case studiedin [5] (Mos&ler). We seek to identify the inflow
discharge only (other parameters are given). Availableagions are, see Fifl 2 (b): (ObsA)
the water level measured at the gauge station (partiallime)t (ObsB) the water levels ex-
tracted from a virtual image and available in three blocky.o8oncerning the cost function,
in addition of the classical term related to th@bservations (ObsA) and a regularization term
(/19:c||?), we introduce the following extra term (where informatisravailable):

Tale) = 5 [ 1Ca(t) - a0l at @

whereq is the computed discharge (net mass flux) §fftl is a "mix” net mass flux since it is
computed using the observed elevatioh®* and the computed velocity, q°** = h°*u. We
refer to [6] for more detalils.

Numerical results. Fig. [3 (b) shows that this extra tertfy,,, improves the minimization
process since it quantifies a discrepancy related to thendezmmponent of the state variable.
Also, Fig.[3 (b) shows that if we assimilate both (ObsA) ant¢B) then one obtains a quite
good identification of inflow discharge. At contrary, withidhe contribution of the "partial
image” ((ObsA) only is available), the identification presdails.
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Figure 2: Spatial distributed water levels, the toy tesecéa): topography; (b): mesh,

areas at image time.
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Figure 3: (a) Measures in-situ (gauge station) partiallgilable in time and image time. (b) Identified inflow
discharge: comparison if the image is available or not; Hisonsidering the extra termiy;,,, or not.
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