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Local wind forecasting

ADEME

Project supported by the French Agency for the
. Environment and Energy Management (ADEME).

Aim : propose a numerical method to improve the wind
forecasting at small scales.

Joint work with
e F. Bernardin, J.F. Jabir, A. Rousseau (INRIA)

e P. Drobinski, T. Salameh (Laboratoire de Météorologie Dynamique) E

e E. Peirano (ADEME)
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Context and Objectives

Development of the wind power resources in France :

in Marsh 2006, the production was around 1 GW.
France plans to produce 10 GW in 2010.

Our objective :

To develop and evaluate a stochastic downscaling method to
compute the wind field at small scale, near the surface, from
a meteorological field of large scale (> 10-50 km), simulated
by a meteorological model.

M. Bossy (INRIA) A PDF method for local wind simulation Marsh 16 2007 3 /47



Geographical framework

The French part of the Mediterranean basin :
(Languedoc-Roussillon, Provence-Alpes-Cétes d'Azur, Rhone-Alpes) :

@ First region in terms of production,
with a high potential to develop.

o Mediterranean climate, mainly
forced by the large scale climatic
conditions, during the winter
(November to Marsh).

@ Complex association between large
scale and regional scale (10 — 100
km). Important role of orography,
the ground and sea contrast.
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Meteorological forcing of the Downscaling Stochastic

ethod

We used the numerical model MM5 (mesoscale meteorological solver
developed at the Pennsylvania State University/National Center for
Atmospheric Research, USA)

Three computational model domains interactively imbricate:

Longitude ("E)

: 41.8
12345678910 3439444954
Longitude (°E) Longitude (°E)
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Meteorological forcing of the

MMS5 solves the non-hydrostatic equations of motion in a terrain-following
sigma coordinates.

Three computational model domains
interactively imbricate are used. the
horizontal mesh size is 27 km, 9 km and
3 km, respectively.

12345678910

Longitude (E)
442

Coarse domain, medium domain and
fine domain are centered at 43.7°N,
4.6°E and cover an area of 1350

° kmx1350 km, 738 kmx738 km and 120
L kmx174 km, respectively.

Latitude (°N)
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Meteorological forcing of (DSM)

The March 24, 1998 Mistral event :

MMS5 Initial condition and boundary condition : taken from the
ECMWEF (European Centre for Medium Range Weather Forecast)
reanalyses ERA-40. These reanalysis data are available every six hours on
a 1° x 17 latitude-longitude grid.

Validation of MM5 on this event (radiosoundings launched from Nimes,
on March 24, 1998) see Salameh, Drobinski et all Atmos. Chem. Phys.
Discuss 2006

Forecasting solvers like MM5 have a computational limit in both
horizontal and vertical ranges. Difficult (hopeless) to run MM5 with an
horizontal resolution finer than 1km.
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Our down-scaling approach

@ Improve the resolution in a given sub-domain (local computations),

@ by introducing a local model (compatible with the Navier Stokes
equation),

@ solved by a particle method which does not require any stability
(CFL) condition.
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@ The local model : Lagrangian modeling of turbulent flows.
@ The numerical algorithm and related issues.

e Mathematical analysis of the (simplified) generalized (confined)
Langevin model.

@ Go back to the meteorological context.
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Modeling of turbulent flows

Statistical approach of turbulent flows :

The properties of the fluid are all random fields.
The Reynolds averages (or ensemble averages) are expectations:

W)t %) ::/Q%(t,x,w)d]P’(w).

The corresponding Reynolds decomposition of the velocity is
U(t,x,w) = {(%)(t,x)+u(t, x,w).

The random field u(t, x,w) is the turbulent part of the velocity.

Incompressible Navier Stokes equation in R3, for the velocity field
U = (%D, %@ 2/(3)) and the pressure P :

1
WU + (U -N)YU = vAU — ;VL@, t>0, x=(x1,x,x3) € R,
V-U=0,% =0, t>0, xe R3, constant mass density p

U (0,x) = %(x), x € R3,
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The Reynolds averaged equation for the mean velocity

Assuming Reynolds decomposition, we obtain the unclosed equation

O 1y +Z wNo, (D) +Za —uA(?/”)—f@X,(:@),
j=1

VA%)=0, t >0, x € R®, constant mass density

(%)(0,x) = (%)(x), x € R®. (uDul) = (2 Oy ) — (7 D) VD).

One needs to model the equation of the Reynolds stress ((u(Du®)), i, j).
Direct modeling of the Reynolds stress :
the so-called k-¢ turbulence models,
where

L a2, )

,Eﬁw

kinetic turbulent energy k(t,x) :=
i=1

3 3
pseudo-dissipation (¢, x) := IJZ Z u( )8 DY (t, x).
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An alternative approach to compute the Reynolds stress

Let fe(V/; t, x) be the probability density function (PDF) of the random
field % (t,x), then

(@D (t,x) = / VO E(V; £, x)dV,
R3

@OUD)(tx) = [ VOVOR(VitaV.
R3

The closure problem is reported on the PDE satisfied by the probability
density function fg.

In a series of papers (see e.g. Pope 85), Stephen B. Pope propose to
model the p.d.f. fg with a Lagrangian description of the flow.
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The Lagrangian approach to compute the Reynolds stresses

Main ideas
@ Describe the Lagrangian properties thought a stochastic model with a
state vector (X, U, ) which include

- particle location,
- particle velocity
- scalar variables standing for any particles properties,

and use a diffusion process to simulate its time rate of change.
@ Those models are referred to as Langevin models.

@ The associated SDE must be consistent with the macroscopic
evolution of the fluid (in particular the averaged Navier-Stokes
equation).
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The Simplified Langevin model (Pope 94)

( dXt: Utdt,
M _ [ 10(2)
dUt - |: P 8X,' (t7Xt)
e(t,X i i
- (3360 {EX (o - () o) a
\ +/Coz(t, X0)dW ), v i e {1,2,3}

-+ boundary conditions + wall boundary functions.
where (t, x) and k(t, x) are supposed to be known. () (t,x) must be
recovered by the Poisson equation

9?2 <ag/(i)az/(j)>

v? (2)=- Ox;0x;
iOXj

which guarantees that the averaged Eulerian velocity is divergence free.
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Compute the Reynolds averages (") (t,x) and (zO# 0) (t,x)

We call f(V, x; t) the probability density function of (U, X¢).

Contrary to fg, fr satisfies a closed (nonlinear) PDE : the Fokker-Planck
equation a associated to the Langevin SDE.

In the case of incompressible flow with a constant mass density,
fE(V;X, t): fL(V7X; t) ,
/ fLl(V,x;t)dV
R3
and for any bounded measurable function g(v),

(g(2))(t,x) =E (g(Us)/Xe = x).

In particular,

() (t,%) /v(/fLV“) dv =T (U /X = x)

U, x;t)d
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The Basic model (Dreeben Pope 98)

Include the instantaneous turbulence frequency w, satisfying

( dXt = Utdta
o _ [ 10(2)
dUy) = [ > o (t,X¢) |
_ (% + %Co) (w)(t,X¢) (Ug') _ <%(i)> (t,Xr)>] dt
1/ Cok (£, Xe) @) (&, Xe)dW), ¥ i € {1,2,3}
dwe = —Gw)(t, Xe) (we — (W) (t, X¢)) dt = So(w)(t, Xe)wedt
+\/2C3 Calw)2(t, Xe)wrdW Y.
where
- uDuD)(t, x) (2 D)
Sw = sz + Cw]_ E(t,X) 8)(1 (t,X)
e(t, x)

e(t, x) is recovered by the closure relation (w)(t,x) = K(tx)
, X
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Application to meteorology

Use the same parametrisation than MM5 :

( dXt: Utdt,
i _ [_19(2)
dU;’ = [ > 0% (t,X¢)
e(t,X i i
-+ 360) X (00 - (0) (.0
+/Coe(t, X0)dW), v i e {1,2,3}

1
e The kinetic turbulent energy k(t,x) = §<u(’)u(’)>(t,x) is computed

inside the model.

o =(t,x) is recovered by the closure relation £(t, x) = £ k3/2(¢, x).
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Application to meteorology, with the MM5 forcing

Let D our local (space) computational domain
dXt - Utdt,
1

~(3+360) B - @) (1x) | o

++/ Coe(t, X¢)dW,
— > 2(Us- - n(Xs)) n(Xs) 1 (x,eom)

0<s<t
= > 2(Us (X)) nH(X) T xeom)
0<s<t
+ Z Viums(s, Xs) 1 x,comy-
0<s<t

\
The three last terms should guarantee

(%) (t,x) :=E[Us/X; = x| = Vmms(t, x), Vx € 9D.
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The numerical framework :

M. Bossy (INRIA)

Our computational domain D (for
example, a given cell of the MM5 solver.

Boundary condition :

Vx € 8D, (%)(t,x) = Viws(t, x)

(MM5 guideline.)
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The numerical framework : particle method

e e The computational space is divided in
A A cells of given size.

Particle in cell (P.I.C.) technique to
approximate the Eulerian fields like

<%(i)> (£, x).

We compute the Eulerian fields (mean
fields) at the center of each sub-cell
only.
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The numerical framework : particle method

P v v K bt g e Introduce N.

P : - e Constant mass density constraint =
constant number of particles in each
cell.

e Approximation of the conditional
expectation :

if V, denotes the cell centered in x then
the approximation of <%(i)> (t,x) is
given by

N
. C 1 .
(/) ~ 7 (’)JaN
<% >(t’X) ~ Volume(Vy) (N EUt H{X';Nevx}> '
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Particle discretization

<%(’)> (t,x) =E (U&’)/xt - s)
E[U{)o:(x, X,)]

E [9-(x, X0)]
R U e (x x0d ™)
AT el xi™)]

~

When ¢.(x,y) =1 {x and y are in the same sub-cell of size ¢}

N
. C 1 .
(I) ~ _ (I)J’N
<02/ >(t’X) ~ Volume(Vy) (N ;Ut 1 {X’t’Nevx}> '
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The numerical algorithm

The N-Particles dynamic : for j=1,..., N

7

dxiN =i at,

Y 19(2),
dUIN — - gx,- ) (¢, x3M)de

+Dy(t, XY dt + By(t, XNy aw N
+MMS5 guideline terms at the boundary, V i € {1,2,3}

dutN = D, (t, XY dt + B, (t, X2V )dw )N,

The coefficients Dy, D,,, By and B, depend on the particles

approximations of (%), (% N2/ U)) and its derivatives, (w).
19 (9”)
p ox;

density constant.

“Z (¢, X4MNY ensures that V- (%) = 0 and maintains the mass
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A fractional step method : nAt — (n+ 1)At (Pope 85)

The N-Particles dynamic : for j =1,..., N, for nAt < t < (n+ 1)At,

(aXpN = TN dt,
dUIN — _19(2) (t,X5M)dt
p Ox; ~ _ o
+Dg(t, XIN)dt + By (¢, XMy aw SN
+MM5 guideline terms at the boundary, Vi € {1,2,3}
dudN = D, (t, XY dt + B, (t, X[V )dw BN,

J,N (NJ,N N .
Xoar Unat %At given.

@ Correction of the position of the particles )N(J("nl\il)m — XJ(-’n,\_IH)At, in
order to maintain the (discrete) uniform distribution.

@ Correction of the particles velocity
r,N JsN
Ulinar = Ulsar

such that V.(7 ("+1)) = 0.
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Correction of the positions of the particles

Move the particles, such that the corresponding distribution becomes
uniform.

Minimize the global amount of displacement.

The density p(x) is an Eulerian quantity approximated thanks to the
nearest grid point formula

#{particles in C;}

ppc
Can be viewed as a discretization of an optimal continuous transport
problem (Brenier) :

Find a transport map ¢ : D — D, satisfying VA C D

/¢ P = | ol

minimizing the L%-cost

K@) = [ b= oo
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Correction of the positions of the particles

Well-known problem, having a well-know solution (see Benamou Brenier
2000 and ref. herein) : ¢ is unique and given by the Monge Ampeére

equation

¢=1p—Vy
_9y 0y 0%y
axf Ox10x2 Ox10x3
. e 2 82 52
with v satisfying p(x) = det [ — 57 — ¢ owdn |0
_ 0y 9y 1 _ 0%y
Ox0x3 Ox20x3 0x3

Numerical discretization : difficult
Pope 85 : neglect the nonlinear terms

Av(x) =1-p(x), x €D,
o _
onlop

Eventually iterate the process until convergence.
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Correction of the positions of the particles : alternative

strategy

Suppose D = (0,1). The optimal transport is then entirely determined by
the transfer condition :

VxeD, ¢(x)= /Oxp(y)dy,

We can solve directly the 1D oo
discrete optimal transport S oo T OURUORN AUO
problem. . ;.:

The 3D case is a collection of 3
1D cases in the three § R
directions. .
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Correction of the positions of the particles : alternative
strategy

Positon des particules Positon des paricules

“Test data data” using 123+ “Test_data.data” using 123+

Sub-optimal transport procedure.
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Correction of the positions of the particles : second

alternative strategy

Birth-Death procedure in each cell, under the conservation of momentum
constraint.
o If #{particles in C;} < Nppc, add particles with the Eulerian
characteristics at x; .

o If #{particles in C;} > Nppc, destroy #{particles in Ci} — Nppc + 1
particles and add a new one whose characteristics are their averages.
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Correction of the particles veIocity . Divergence free velocity

The field U("tDA computed from the SDEs does not match the following
conservation law:
v . <I"J(n+1)At> -0
We hence solve the following equation:
{ AP = -2V - (UDAL)  x e D,

oP
on

i

oD
and update the velocity field thanks to:

U(n+1)At _ 'O'(!‘H-l)At — AtVP.

This insures the free divergence of (U("T1DAL),
Compatibility condition for the Poisson problem :

/ (OlrHAL gs — / Vimsds ~ 0,
oD oD

as MM5 is a divergence free solver.
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The fractional step method : nAt — (n+ 1)At

The N-Particles dynamic : for j =1,..., N, for nAt <t < (n+ 1)At,

SN FN

dXy" = U4 c11t3)< .
~ (1).] o (&

dOUIN —
p Ox ~ _ o

+Dg(t, X2 )dt + By (t, XMy aw 9N

' +MM5 guideline terms at the boundary, Vi € {1,2,3}
duwtN = D, (t, XY dt + B, (t, XN )dw SN

Xl U gven

(¢, XN dt

@ Correction of the particles position : Optimal Transport Problem.

@ Correction of the particles velocity : Poisson Equation.
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Mathematical study of a very simplified Langevin model

dXt - Utdt,
dU, = E [b(U;)/X;] dt + dW,, t € [0, T]

Nonlinear but smooth drift term b : R — R, bounded continuous.
No divergence free condition.
Related works

Sznitman 86 : PoC for the Burgers' equation :

t
Xt = XO + Wt + 2/ U(S,Xs)ds
0
u(t, x)dx is the law of X;.

Dermoune 03 : PoC and conditional PoC for pressurless gas equations
t
Xe = Xo+ W; +/ E[V(Xg)/Xs]dS.
0
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Propagation of chaos property, formal definition

Definition (Sznitman 89)

Let E be a separable metric space and v a probability measure on E. A
sequence of symmetric probabilities vV on EN is v-chaotic if for any
¢1,---, 0k € G(E;R), k > 1,

k

lim <1/N,q§1®...®q§k®l...®l>:H<V,¢)/>.

N—oo
I=1
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Propagation of chaos property, prototypic example :

N

. . tq . . ) t1 N ) .
XM= [ Dot M+ [ b0 s, ¢ < (0.7)
=1

j=t

Suppose that b(-,-) and o(-,-) are Lipschitz continuous kernels on R?9.
Let PN be the joint law on (C([0, T]; RY))N of the particle system

(XN .., XNNY. The sequence (PN) is P-chaotic, where P is given by a
nonlinear martingale problem.

The P-chaoticity is equivalent to the convergence of the laws of the

N
. 1
empirical measures MN = N Z(SX,-,N to dp.
i=1

t t
X = Xo+ / / o(Xs, x)Ps(dx)dWs +/ / b(Xs,x)Ps(dx)ds, t € [0, T
0 JRA 0 JRA
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Well posedness of the simplified Langevin model

dXt = Utdt,
dU; =E [b(Ut)/X¢] dt + dW,, t € [0, T]

Let b:RY — R be a bounded continuous function and let (Xo, Ug) be
such that Ep [|| Xo|lgs + ||U0||H4§d] < 4o00. Then the system admits a
unique weak solution.
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Well posedness of the simplified Langevin model

dXt - Utdt,

The smoothed system in the space variable x:
for a given regularization ¢. of the Dirac mass in R?

dX: = Usdt,
E [b(Ug)¢e(x — X3)]

=X gt + dW,, t € [0, T]
Elp-(x-X)| o+

— €
x=X§

dUs =

Law(X5,U7) = p(t, x, u)dxdu.

dXs = U.dt,
dUs = G.[XZ, US, pildt + dW, t € [0, T].
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Uniqueness results for the laws of (X, U) and (X¢, U¢

Uniqueness result in L}(R9Y x RY) for the mild equations

pe(x, u)du

pt = St(po) Jr/ S't—s(ps(.)Bls, ])ds, where B[t,x] = fR}Rd pt(x, u)du

p: = Se(p) /s (p2B.Is, ])ds,

fRded (ul)¢e(X - X/)PE(X/, U/)dX/du/

here B =
where Bc[s, x| fRded Pe(x — x")pe(x’, u")dx'du'+=

X, U) = IEx,u[f(=%/-t‘a %f)]

S! x,u) =Ey y[Vy - (2%, %)

(
and H(F)(
t
U = Uy + W, %z%—i—/ Usds.
0
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Existence

dXi,i,N _ Ui,i,th’
1 e,i,N e.j,N ,i,N
) T > iz b(U X -X .
n LA SN
€,/ &1, -
N1 2oidj [ﬁba(xt"' Xy e

o Tightness result.
@ Propagation of Chaos result.

@ Convergence when ¢ tends to 0.
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Existence

dX5HN = SN,
_ 1S p sy (XEIN xS _
dup™ = N_1121¢J o 3¢/\1( : e,i,N : )dt+thl’ telo.7]
N-T 2i [@(de’ - X )} o

Let PN the joint law on (C([0, T]; R2¥))N of the particle system
(Xs,l,N Uz—:,l,N XE,N,N UE,N,N)'

The sequence (P="N) is P-chaotic, where P is the law on C([0, T]; R29)
of (X=,U9).

Equivalently the random measure ,uE’N = % Z,N:l (5{Xs,i,N’Ua,i,N} converges
in law to the deterministic value P*¢.

v
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Spatially Confined Langevin model D € R¢

Impact problem with stochastic forcing.
(Deterministic motions, see e.g. Schatzman 98 , Ballard 01).
A Dirichlet condition for the impact problem.

Given a velocity filed V on [0, T] x 0D, Vt[0, T]
Xe= Xo+ [y Usds,
Uy = U+ [y (b(Xs,Us)) ds + W,
- Z 2(Us- - n(Xs)) n(Xs) 1 {Xs€D}

0<s<t

- Z 2 (Us— : ”L(Xs)) ”L(XS) I (x,eom}
0<s<t
+ Z V(s,Xs) 1 x,comy-
\ 0<s<t

We have to show that, for any x € dD,
(%)(t,x) =E [Us/ X = x| = V(t,x).
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Confined Langevin model in D = R9~! x R

Averaged no-permeability condition

(X, U) valued on C([0, T]; D) x D([0, T]; RY) s.t.
Xe= Xo+ [y Usds,
Ue= Ug+ [y (b(%)) (s, Xs)ds + W,
- Z 2 (Us— - np(Xs)) np(Xs) 1 {X;€oD}

0<s<t

The joint law of (X, U;) has a density p(t, x, V'), satisfying
p(t,x, V) =p(t,x,V —2(V - np(x))np(x),Vx € OD. Then we have

Ep (Us/X: = x) - np(x) =0, Vx € OD.

Moreover p(t,x, V) is the unique weak solution of the following
Vlasov-Fokker-Planck Eq, with a specular boundary condition

v
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The Vlasov-Fokker-Planck Equation

ap Jg2 B(V)p(t,x, V)dV 1
ot = kP Vv < Tap(txvydv ) TaBvP
po(x, V) given,

p(t,0,V) = p(t,0,V —2(V - np(x))np(x)).
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Well posedness of the confined SDE in the half plane

Starting from (Xo, Ug) with tXé2) > 0, and a 2D-Brownian motion (B;)

%=m+/%¢ % = Uo + B..
0

() G0
with X = |2
U = 42 e, with #, = sign(#,?)

Lemma

< jump a countable many times and
UP =uP +w® -2 3 1?1 xO_gp Pas.

0<s<t

2) . . .
where Wt( ) is a Brownian motion.

McKean 63, Lachal 97.
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Euler scheme for confined models, D = R*

Xe= Xo+ [y Usds,
t
Ut = Uo + fO b(Us)dS + Wt — E 2U5_ 1 {Xs=0}

0<s<t

IEuIeE scheme : At >0and K € Ns.t. T = KAt; t, := kAt, 1< k<K,
Xo, Ug given.

if th + Atﬁtk 2 0 then ):(tk+1 = ):(tk + Atfjtk_
Ufk+1 = Ufk + Atb(Utk) + (Wtk+1 - Wfk)-

else 7% =ty + ka/Utk' _
Xten = —(tkt1 = 76)Us _
Utk+1 = _Utk - (Tk - tk)b(Utk)J"i_(tk-i—l - Tk)b(_Utk) =+ (Wtk+1 - Wtk)

-~
_U_rk
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Weak convergence of the Euler scheme

If b(u) = —cu then h(t, x, u) have bounded spatial derivatives up to the
order 4 and

‘Ef(XT) = Ef(XT)‘ < CAt.

h(t,x,u) = E (f(X3*")) solves

Oh 1

9 + uVh+ b(u)V,h+ §Auh =0,
h(t,0,u) = h(t,0, —u),

h(T,x,u) = f(x).
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Go back to MM5 and meteorology

e D is a MM5 cell of size 12 636m x 9 305m x 64 (x,y, z), located
near the coast or on the sea (z = o).

@ The wind is about 6 m/s in the dominant direction.

@ Time scale : for MM5, the time step is 50 s. The time step for DSM
must be smaller : we work with At = 1.

@ DSM Cell size near 500 m for the horizontal mesh. (1000 sub-cells,
with Nppe = 100)

o Parametrisation of the pseudo-dissipation (t, x) = $k%2(t, x).

With a stationary forcing (in time), we observe a stabilization of k(t, x),
w(t, x) around values compatible with the meteorology.
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Conclusion
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