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1 Introduction

The geometric construction of error correcting codes goes back to Reed-Solomon and Goppa for curves and to
Reed-Muller for affine or projective spaces. In this work, we focus on evaluation codes from algebraic surfaces
whose construction works as follows. Given X an algebraic surface over Fq and D a (Cartier) divisor on X, we
denote by X(Fq) the set of rational points of X and by H0(X,D) the space of global sections of the divisor D. The
associated evaluation code is the code whose codewords are the evaluations of the functions of H0(X,D) at the
points of X(Fq) (see definition 3.1). The length of such a code is thus #X(Fq), the dimension is dim

(
H0(X,D)

)
(at least if the evaluation map is injective) and the third invariant, the minimum distance, is more difficult
to control. It is related to the maximum of rational points that can contain a curve in the linear system |D|
(proposition 3.2). The lower this maximum, the better is the minimum distance.

The well known Reed-Muller code of degree d for the projective plane P2 over Fq is a nice example. Its
codewords are the evaluations of the homogeneous polynomials of degree d at the rational points of P2(Fq). In
the geometric setting above, this is the evaluation code associated to the algebraic surface P2, the divisor d`
where ` denotes any line, and the whole set of rational points P2(Fq). Its parameters are well known when q > d:
the length is the number of rational points #P2(Fq) = q2 + q+ 1, the dimension is the dimension of the space of

global section dim
(
H0(P2, d`)

)
=
(
d+2

2

)
, and the minimum distance is q(q − d+ 1). This minimum distance can

be written (q2 + q + 1) − (1 + dq) and (1 + dq) is nothing else than the maximal number of rational points of a
curve lying in the linear system |d`| (i.e. the set of plane curves of degree d). In fact, this is the number of points
of the union of d lines of P2 meeting at one point. The existence of this kind of extremely reducible curve over Fq
impacts negatively the minimum distance, since they contain too many rational points. Among other things, this
is why evaluation codes associated to more general algebraic surfaces have been considered.
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One can distinguish several strategies in the literature to get rid of reducible curves with many components in
the linear system. The idea of Couvreur [Cou11] is to work with sublinear systems of P2 by adding constraints
that remove the very reducible sections. In fact by choosing carefully the sublinear system, this kind of sections
is no longer defined over the base field, but only over an extension. The number of rational points of irreducible
curves that are not absolutely irreducible may fail drastically. In the preceding example of the d intersecting lines,
if they are not defined over Fq but only conjugate over Fq, then one can easily convince ourselves that their union
only contains one rational point, their meeting point. Some other examples can be found in Edoukou [Edo08] or
Couvreur & Duursma [CD13].

Following Zarzar [Zar07], another fairly repeated strategy is to concentrate on surfaces whose (arithmetic)
Cartier class group is free of rank 1. Indeed, this is a natural way to overcome the difficulty of the existence of
(very) reducible sections in the linear system |D|. Little and Schenck [LS18] have studied anticanonical codes on
degree 3 and 4 del Pezzo surfaces having rank 1. In our previous work [BCH+20], we could say that we fill a
gap in the study of algebraic geometric codes constructed from del Pezzo surfaces of rank 1. Let us remark that,
even if the elements of the linear system |D| are all irreducible, some of them may be absolutely reducible. As in
the example of conjugate lines, it is expected that these configurations do not contain too many points but this
requires a proof.

In this work, we continue the investigation of codes constructed from del Pezzo surfaces. We do not restrict
ourselves to rank one surfaces but above all we consider more general surfaces, that is non ordinary weak del Pezzo
surfaces. As ordinary del Pezzo surfaces, non ordinary weak del Pezzo surfaces admit a blowing-up description; in
the ordinary case, the points that are blown up are in general position but in the non ordinary case, they are only
in almost general position (three points can be colinear and six points can be conconic). The main consequences
of these weaker hypotheses on the configuration of points are twofold. First, the surface contains −2-curves (and
not only −1-curves). Secondly, the anticanonical divisor is not ample anymore but only big and nef and the
anticanonical model is singular with rational double points.

In a concomitant work [BH22], we have computed explicit models for all the arithmetic types of weak del
Pezzo surfaces of degree at least 3 over a finite field (these types lead to a classification that is coarser than the
isomorphism one but that permits to distinguish the main arithmetic properties of the weak del Pezzo surfaces).
Taking advantage of this knowledge, we select eight types of (non ordinary) weak del Pezzo that are well suited
for coding applications. More precisely, we consider X a (smooth) weak del Pezzo surface of degree d over Fq
and we denote by Xs its (singular) anticanonical model; this is the image of the surface X by the morphism ϕ
associated to −KX the anticanonical divisor of X. Since −KX is not ample, the surface Xs is singular with a
finite number of rational double points. We study the evaluation code associated to the (singular) surface Xs,
the Cartier divisor −KXs = ϕ∗(−KX) and the whole set of rational points of Xs (definition 4.1). Except for
small values of q, this code has length n = #Xs(Fq), dimension k = d + 1. The last invariant, the minimum
distance dmin, is much more subtle to control and requires preparatory calculations.

Before going into details, let us discuss the advantages and disadvantages of considering such weak Del Pezzo
surfaces. In the process of construction of a del Pezzo surface, there are blowing-up and blowing-down. The
blowing-up may add rational points and thus may increase the length. The blowing-down permits to contract
some lines and thus decreases the types of reducible configurations. Since the anticanonical model is no longer
smooth, besides the exceptional curves some other curves, in fact the effective roots, can be contracted. If these
curves are components of the most reducible sections of the anticanonical divisor on the weak del Pezzo, the
parameters of the code could be improved. This is the positive aspect of considering anticanonical model of weak
Del Pezzo surfaces. But we should also mention a negative one: because of the singularity of Xs, the notions of
Cartier and Weil divisors are not equivalent and this makes it difficult to calculate the minimum distance dmin as
we will see below.

The computation of dmin reduces to compute the number:

Nq (−KXs) = max {#C(Fq) | C ∈ |−KXs |} .

Since every curve of the linear system |−KXs
| is of arithmetic genus 1 (adjunction formula), all its absolutely

irreducible curves have a number of rational points which is bounded above by the classic:

Nq(1) = max {#C(Fq) | C absolutely irreducible, smooth, genus 1, curves over Fq} .

By the Weil-Serre bound, we know that Nq(1) ≤ q + 1 + b2√qc; in fact, except for very special values of q, the
Weil-Serre bound turns to be sharp:

Nq(1) =

{
q + b2√qc if q = pe, e ≥ 5, e odd and p | b2√qc,
q + 1 + b2√qc otherwise

([Ser20, Chap 2, Th 6.3]). Anyway, this bound does not permit to control the number of rational points of
reducible or absolutely reducible curves of |−KXs

|. Due to the singularities of Xs or more specifically to the
difference between the Cartier or Weil divisors or class groups, the expectation that irreducible, but absolutely
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reducible curves in the linear system do not contain too many points is more difficult to verify. Even if the Cartier
class group CaCl(Xs) is free of rank 1, generated by −KXs

, this does not mean that the curves of the linear
system |−KXs

| are all irreducible since they can decompose in the Weil class group Cl(Xs), that is into a sum of
Weil irreducible divisors that are not Cartier divisors. To overcome this difficulty, we took fall advantage of the
fact that in the context of weak del Pezzo surfaces, explicit models of all the class groups can be computed. This
permits us to accurately measure the difference between the Cartier and the Weil divisors. This step uses some
basic methods on lattices computations. Then to explicitly compute the maximum Nq (−KXs

), we list all the
kinds of decompositions into irreducible components that may appear in the linear system |−KXs

|. In general,
this can be a difficult issue but in our context this task is greatly facilitated by the fact that all the considered
surfaces are blowing-up and down of the projective plane: as explained in Hartshorne’s classic [Har77, Chap V,
beginning of §4 & Remark 4.8.1], we are brought back to the study of some sub-linear systems of plane curves.

We choose examples that illustrate the variety of situations that may occur. In the column CaCl(Xs) ↪→ Cl(X)
in the tabular below, we see that the Cartier class group CaCl(Xs) always embeds in the Weil class group Cl(Xs),
and via this embedding CaCl(Xs) may be equal to Cl(Xs), or of finite index into Cl(Xs), or of positive co-rank
into Cl(Xs). Note also that the lattice CaCl(Xs) is always free, whereas Cl(Xs) may have a torsion subgroup. In
the column Nq (−KXs), one can see that this is not always the absolutely irreducible curves of the linear system
that contains the maximum of rational points. Only a case-by-case proof and a carefully study of all the geometric
properties permits to estimate the three invariants [n, k, dmin] that are contained in the last column.

Deg. Sing. CaCl(Xs) ↪→ Cl(X) Nq (−KXs
) [n, k, dmin]

§4.2 6 A1 2Z ↪→ Z 2q + 1
[
q2 + 1, 7, q2 − 2q

]
§4.3 5 2A1 Z⊕ 2Z ↪→ Z⊕ Z 2q + 2

[
q2 + q + 1, 6, q2 − q − 1

]
§4.4 4 A1 Z ' Z ≤ Nq(1)

[
q2 − q + 1, 5,≥ q2 − q + 1−Nq(1)

]
§4.5 4 4A1 Z ↪→ Z⊕ Z/2Z ≤ Nq(1)

[
q2 + 1, 5,≥ q2 + 1−Nq(1)

]
§4.6 4 A2 Z ' Z ≤ Nq(1)

[
q2 + 1, 5,≥ q2 + 1−Nq(1)

]
§4.7 4 D5 4Z ↪→ Z 2q + 1

[
q2 + q + 1, 5, q2 − q

]
§4.8 3 A1 Z ' Z ≤ Nq(1)

[
q2 + 1, 4,≥ q2 + 1−Nq(1)

]
§4.9 3 3A2 Z ↪→ Z⊕ Z/3Z ≤ Nq(1)

[
q2 + q + 1, 4,≥ q2 + q + 1−Nq(1)

]
In the tabular above, the inequality Nq (−KXs) ≤ Nq(1) means that the curves of the linear system |−KXs | that
contain the maximum number of points are the absolutely irreducible ones. They are all of arithmetic genus 1,
but it may happen that none of these curves is maximal (i.e. has a number of rational points equal to Nq(1)).
This is why in these cases, one can only give an upper bound for Nq (−KXs

) and thus a lower bound for dmin.
It turns out that we recover two examples of Koshelev [Kos20] (§4.5 and 4.9), where he proved that the linear
systems cannot contain a maximal genus one curve for certain finite fields. This permits to increase the lower
bound of the minimum distance by one over these fields.

All the presented codes can be easily constructed using a mathematics software system. On the second author’s
webpage, we put a magma program that permits to construct all our codes.

2 Generalities on weak del Pezzo surfaces

Let k be a finite field (most of the results remain true on any field), k its algebraic closure, Γ = Gal(k/k) its
absolute Galois group and let σ be the Frobenius automorphism.

In this section, we recall the classical properties of del Pezzo surfaces. In particular, we focus on the specificities
of non ordinary weak del Pezzo surfaces compared to the ordinary ones. The essential references for the content
of this section are the book of Manin [Man74] or the more recent one of Dolgachev [Dol12, §8].

2.1 Ordinary versus non ordinary weak del Pezzo surfaces

There are several definitions of a del Pezzo surfaces, even in the Dolgachev’s classic [Dol12]; let us start with the
definition 8.1.18 of this book.

Definition 2.1. A smooth projective surface X is a weak del Pezzo surface if its anticanonical divisor −KX

is:

(i) big, which means that K ·2X > 0,

(ii) and nef, which means that (−KX) ·D ≥ 0 for any effective divisor D on X.
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The self-intersection K ·2X is the degree of the del Pezzo surface X.

Thanks to the Nakai-Moishezon criterion [Har77, Chap V, Theorem 1.10], these kinds of surfaces are divided
into two cases:

(i) either the inequalities in (ii) are all strict ((−KX) ·D > 0): the anticanonical divisor is thus ample and we
say that the del Pezzo surface is an ordinary one;

(ii) or there exists an effective divisor D such that (−KX) ·D = 0: the anticanonical divisor is not ample and
we say that the del Pezzo surface is a non ordinary one.

These properties have consequences on the negative curves on X, those whose self-intersection is negative.
Indeed, let C be an absolutely irreducible curve on X of arithmetic genus γ(C). By adjunction formula, we know
that C ·2 = 2γ(C)−2+C ·(−KX) and since γ(C) ≥ 0 and C ·(−KX) ≥ 0, we deduce that C ·2 ≥ −2. Thus, negative
curves on X have self-intersection −2 or −1. Moreover C ·2 = −2 if and only if γ(C) = 0 and C · (−KX) = 0;
this means that only non ordinary del Pezzo surfaces can contain (−2)-curves. We also prove the same way that
(−1)-curves on weak del Pezzo surfaces must have arithmetic genus equal to 0. This motivates the following
definition which deals with negative curves but also divisor classes of curves.

Definition 2.2. Let X be a weak del Pezzo surface over a field k, let X = X ⊗ k be its extension to the algebraic
closure k and let Cl(X) denote the divisor class group of X.

(i) A divisor class D ∈ Cl(X) is an exceptional class if D·2 = D ·KX = −1; an absolutely irreducible curve C
on X whose class is exceptional is an exceptional curve.

(ii) A divisor class D ∈ Cl(X) is a root if D·2 = −2 and D ·KX = 0; a curve C on X whose class is a root is
an effective root and if such a curve is absolutely irreducible then C is called a (−2)-curve.

It is well known that the geometry of weak del Pezzo surfaces depends to a large extent of these negative
curves. For example, if X is a weak ordinary del Pezzo surface then all the exceptional classes are the classes
of a (unique) exceptional curve and no root is effective. On the contrary, if X is weak non ordinary del Pezzo
surface then some exceptional classes may be represented by reducible curves and some roots are effective. These
differences of behaviours appear naturally in the blowup description of the generalized del Pezzo surfaces.

2.2 The blow-up model

Over k, every del Pezzo surface can be obtained by a sequence of blowing ups starting from the projective plane P2.
This description makes most of the invariants of the surface very explicit.

Recall that if π : Y → X is the blowing up of a smooth surface X at a point p, with exceptional divisor E,
then Cl(Y ) = π∗ Cl(X)⊕ZE, the intersection pairing on Y satisfying E2 = −1, π∗D·E = 0 and π∗D·π∗D′ = D·D′
for all divisors D and D′ of X (the blowing up is an isometry for the intersections pairings). Moreover KY =
π∗KX + E.

We recall that r ≤ 8 points in P2(k) are said to be

� in general position if and only if no three lie on a line, no six lie on a conic, and there is no cubic through
seven of them having a singular point at the eighth;

� in almost general position if and only if no four lie on a line and no seven lie on a conic.

Del Pezzo surfaces can always be described as follows [Dol12, Th 8.1.15].

Theorem 2.3. Let X be a generalized del Pezzo surface over k and let X = X ⊗k k its extension to k. If X is of
degree d, with 3 ≤ d ≤ 6, then X is the blowing up of P2 at r = 9− d points p1, . . . , pr in almost general position;
more precisely X results in r successive blowups π1, . . . , πr:

X
πr−→ Xr −→ · · · −→ X2

π1−→ X1 := P2
k

where pi ∈ Xi are in almost general position.

Let E0 be the class of a line in P2 and let E1, . . . , Er be the exceptional curves at each stage. Then the divisor
class group of X with its intersection pairing can be easily described:

Cl(X) = ZE0 ⊕ ZE1 ⊕ · · · ⊕ ZEr Mat ( · , (Ei)0≤i≤r) = Diag(1,−1, . . . ,−1),

where Diag denotes the diagonal matrix. This also gives explicitly the canonical class:

KX = −3E0 +

r∑
i=1

Ei. (1)

The negative classes can be expressed in terms of the basis E0, E1, . . . , Er [Dol12, §8.2].
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Name Exceptional classes E Roots R
Conditions E·2 = −1 and E · (−KX) = 1 R·2 = −2 and R ·KX = 0
Expression Ei, i ∈ {1, . . . , r} Rij = Ei − Ej , {i, j} ⊂ {1, . . . , r}
in terms of the Ei Eij = E0 − Ei − Ej , {i, j} ⊂ {1, . . . , r} Rijk = E0 − Ei − Ej − Ek, −Rijk

Ei1···i5 = 2E0 −
∑5
j=1Eij {i, j, k} ⊂ {1, . . . , r}

{i1, i2, i3, i4, i5} ⊂ {1, . . . , r} Ri1···i6 = 2E0 −
∑6
j=1Eij , −Ri1···i6

{i1, i2, i3, i4, i5, i6} ⊂ {1, . . . , r}

We note that, in the notation Eij , the indices are unordered (which leads to
(
r
2

)
possibilities), whereas they

are ordered in the notation Rij since Rji = −Rij (which leads to 2
(
r
2

)
possibilities).

Not all these divisor classes are effective and the effectiveness of certain of these classes differentiate some
types of Del Pezzo surface.
• In the ordinary case, each exceptional class of divisor is represented by a unique irreducible curve. Either it

is one exceptional curve Ei for some 1 ≤ i ≤ r or the strict transform of the line of P2 passing through pi and pj
for the class Eij or the strict transform of the (unique) conic of P2 passing through the pi1 , . . . , pi5 for Ei1i2i3i4i5 .
Their intersection graph is an important invariant of the ordinary Del Pezzo surfaces; figures of these graphs
for 3 ≤ r ≤ 5 can be found in Manin [Man74, §26.9] or in Dolgachev [Dol12, §8.6.3, Figure 8.5]. As for the root
classes, no one is effective.
• In the non ordinary cases, where the points are no longer in general position but only in almost general

position, the exceptional divisors are still effective but not necessarily represented by irreducible curves anymore.
For example, if p1, p2, p3 are collinear then the root R123 becomes effective since it is the class of the strict

transform of the line passing through p1, p2, p3 and the four exceptional classes E12, E13, E23, E12345 are represented
by reducible curves since

E12 = R123 + E3, E13 = R123 + E2, E23 = R123 + E1, E12345 = R123 + E45.

In this case, all other exceptional divisors are still represented by irreducible curves.
Another simple example: if p2 is chosen to be on E1, p2 � p1, then the root E1−E2 becomes effective since it

is the strict transform of E1. The exceptional classes E1 and E1j j 6= 1, 2 are no longer represented by irreducible
curves.

In general, a result of Demazure states that exceptional divisors that are represented by irreducible curves are
characterized by the fact that they intersect non negatively (≥ 0) all the irreducible roots [CT88, Proposition 5.5].

Another general result states that the set of irreducible roots (the effective classes represented by an irreducible
curve) is necessarily a free family in Cl(X⊗Fq) (see loc. cit.). In particular, there are at most r effective irreducible
roots. The lattice generated by the effective roots plays a crucial role.

Definition 2.4. Let X be a generalized del Pezzo surface over k and let X = X ⊗k k be its extension to k.
We denote by R the sub-lattice of Cl(X) generated by the effective roots and by R sub-lattice of Cl(X) defined

by R = R
Γ

.

Following Coray and Tsfasman (see loc. cit.), an important invariant of a weak Del Pezzo surface is the graph
of negative curves, which is an analog of the intersection graph of the exceptional divisors/curves introduced above
in the ordinary case. To take into account the fact that the surface may be non ordinary, the set of vertices is
modified: the vertices corresponding to reducible exceptional divisors are cancelled, while vertices corresponding
to effective and irreducible roots are added.

2.3 The anticanonical model Xs

2.3.1 The morphism induced by the anticanonical divisor −KX

Let X be a del Pezzo surface of degree d, with 3 ≤ d ≤ 6 and whose canonical divisor is denoted by KX . In the
ordinary case, the anticanonical divisor −KX is known to be very ample and it induces a projective embedding
of X into Pd = P(H0(X,−KX)) (see §3.1 for a review about the space of global sections of a divisor) In the non
ordinary case, the anticanonical class −KX is no longer ample but its linear system remains base point free and
gives a morphism from X to a projective space:

Definition 2.5. Let X be a weak del Pezzo surface of degree d, with 3 ≤ d ≤ 6. The image ϕ(X), where ϕ :
X → P

(
H0(X,−KX)

)
= Pd is the projective morphism associated to the anticanonical divisor −KX is called

the anticanonical model of X and is denoted by Xs. We put KXs
= ϕ∗(KX).

This kind of del Pezzo surface corresponds to the definition 8.1.5 in Dolgachev [Dol12]. The fifth talk of
Demazure [Dem80, Exposé V] on del Pezzo surfaces contains all the main properties of this anticanonical model.

Proposition 2.6. The morphism ϕ satisfies:
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(i) it is not a projective embedding (since −KX is not ample) but the image Xs is a normal surface whose
singularities are rational double points;

(ii) it is the minimal desingularization of Xs, it contracts all the irreducible effective roots on X into the singular
points and nothing else;

(iii) the Weil divisor KXs = ϕ∗(KX) is a Cartier divisor of Xs which satisfies ϕ∗(KXs) = KX ;

For each singularity, the exceptional divisor of its minimal resolution is a sum of irreducible effective roots (Ri)
with Ri ·Rj ∈ {0, 1} for any i 6= j. As usual in the ADE classification of rational double points, we describe the
type of a singularity by its dual graph: its vertices correspond to the above roots, and there is an edge between
the two vertices when the corresponding roots meet. In the examples below, the types of rational double points
that appear correspond to the graphs:

•
A1

• •
A2

• •
D5

• •

•

As mentioned in the last item, since the anticanonical model of a non ordinary weak del Pezzo surface is not
smooth but only normal, a Weil divisor may not be Cartier and the class groups of Cartier or Weil divisor may
differ.

2.3.2 Cartier versus Weil divisors and class groups

Let X be a normal surface; let k(X) be its field of rational functions and OX its structural sheaf. We need to
review some general facts about divisors in such surfaces (see Liu [Liu02, §7.1 & 7.2] for more details).
• A prime Weil divisor X is a prime closed sub-variety of codimension 1 and the group of Weil divi-

sors WDiv(X) is the free abelian group generated by prime Weil divisors. A Weil divisor D can be written
∑
i niCi

where the Ci’s are irreducible curves on X and where the ni are integers of which only a finite number are non
zero. Such a divisor is said effective if ni ≥ 0 for all i. Since X is normal, it is regular in codimension 1 and
to each rational function f ∈ k(X), one can associate a Weil divisor (f) which is called principal. The set of
principal divisors is a sub-group of WDiv(X).
• A Cartier divisor, or a locally principal divisor D is a global section of the sheaf k(X)×/O×X ; it consists

in a collection (Ui, fi)i∈I where (Ui)i∈I is an open covering of X and where the fi’s are rational functions such
that the quotients fi/fj have neither zeroes nor poles on Ui ∩ Uj , i.e. such that fi/fj ∈ O×X(Ui ∩ Uj). Two
collections (Ui, fi)i∈I and (Vj , gj)j∈I represent the same Cartier divisor if on Ui ∩ Vj , the functions fi and gj
differ by a multiplicative factor in O×X(Ui ∩ Vj) for every i, j. The set of Cartier divisors can be turned into an
abelian group which we denote by CDiv(X). A Cartier divisor is called effective if it can be represented by a
collection (Ui, fi) with fi ∈ OX(Ui) for every i. A principal Cartier divisor is represented by a collection (X, f),
where f ∈ k(X)×. The set of principal divisors is also a sub-group of CDiv(X).
• To each Cartier divisor D one can associate a Weil divisor and this correspondence induces a group ho-

morphism CDiv(X) → WDiv(X); since X is supposed to be normal, this morphism is injective [Liu02, Chap 7,
Prop 2.14] and it sends an effective Cartier divisor to an effective Weil one.
• The quotients of the divisor groups CDiv(X) and WDiv(X) by the principal divisors are denoted CaCl(X)

and Cl(X). The previous correspondence induces an injective homorphism CaCl(X)→ Cl(X).

These are general facts, but in the context of weak del Pezzo surfaces, we are able to be much more explicit.
In particular, one can relate the two groups CaCl(Xs) and Cl(Xs) to the group Cl(X) = CaCl(X).

Proposition 2.7. Let X be a weak del Pezzo surface over k and let Xs be its anticanonical model. Over k, one
has the two exact sequences:

0 −→ R −→ Cl(X) −→ Cl(Xs) −→ 0 =⇒ Cl(Xs) = Cl(X)/R, (2)

0 −→ CaCl(Xs) −→ Cl(X) −→ Hom
(
R,Z

)
=⇒ CaCl(Xs) = R

⊥
, (3)

where the arrow Cl(X) → Hom
(
R,Z

)
is given by D 7→ [R 7→ D · R], and where R

⊥
= {D ∈ Cl(X) | D · R =

0, ∀R ∈ R}. Over k, one has Cl(X) = CaCl(X) = CaCl(X)Γ = Cl(X)Γ for X, and for its anticanonical model:

0 −→ R −→ Cl(X) −→ Cl(Xs) −→ 0 =⇒ Cl(Xs) = Cl(X)/R, (4)

0 −→ CaCl(Xs) −→ Cl(X) −→ Hom
(
R,Z

)Γ
=⇒ CaCl(Xs) = R⊥ (5)

Moreover we have an isomorphism Cl(Xs) ' Cl(Xs)
Γ.
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Proof. Let R be the union of effective roots in X and let U = X \R be the open complementary. By a result of
Hartshorne [Har77, Chap II, Prop 6.5], we have the exact sequence:

0 −→ R −→ Cl(X) −→ Cl(U) −→ 0.

Let Us be the smooth locus of Xs. This open set is of codimension 2 in Xs and thus Cl(Xs) ' Cl(Us) (see loc.
cit.). Since the anticanonical map ϕ−KX

induces an isomorphism from U to Us one has Cl(Us) ' Cl(U) and the
sequence (4) follows. Sequence (2) also follows by extending scalars to k.

On the other hand, we note that the module R being induced [Man74, Chap IV,§29], we know that H1(Γ,R) =
0; thus taking the Galois invariants of (2) leads to:

0 −→ R −→ Cl(X)Γ −→ Cl(Xs)
Γ −→ 0

Now X is smooth and we have Cl(X) = Cl(X)Γ [Sta18, Tag 0CDS]; we deduce the last isomorphism Cl(Xs) '
Cl(Xs)

Γ.

The exact sequence (3) comes from Bright [Bri13, Prop 1]. We deduce the equality CaCl(Xs) = R
⊥

, and

from [Sta18, Tag 0CDS], we deduce that CaCl(Xs) = CaCl(Xs)
Γ = (R

⊥
)Γ.

Finally, taking the Galois invariants in the sequence (3) gives the exact sequence in (5). Now since the
intersection product is invariant under the Galois action, a divisor in Cl(X) is orthogonal to R if and only if it is
orthogonal to R, and we get the isomorphism in (5).

2.3.3 Lattice computations

One of the key step of the study of codes from weak del Pezzo surfaces is the explicit computation of the divisor
class groups as in (2) and (3). Such computations take place in the group Cl(X), which is known to be a free Z-
module of finite type endowed with the (non degenerate) intersection bilinear form and involve the root lattices R,

which is given by some explicit generators and which satisfies R ∩R
⊥

= {0} (the orthogonal is relative to the
intersection pairing).

This is a general issue and let us consider C (for the “class group”) a free Z-module of finite rank with a non
degenerate symmetric bilinear form (x, y) 7→ x · y (for the intersection product). Recall that a submodule M of C
is a direct summand (or is complemented) if there exists a submodule N of C such that C = M ⊕N ; in this case,
the submodules M and N are called complementary submodules of C [AW92, §3.8,§6.1]. Let R be a submodule
of C such that R ∩R⊥ = {0} (for the root lattice).

In the context of modules over a principal ideal domain, contrary to what is happening in vector spaces over
a field, even if R ∩R⊥ = {0}, the orthogonal submodules R and R⊥ may not be complementary submodules.
There are at least two different kinds of obstructions for this. Either the submodule R is not a direct summand
or both submodules R and R⊥ are direct summands but they are not complementary submodules.

In any case the smallest submodule containing R which is a direct summand is called the hull of R and is
denoted R]. As for the submodule R⊥, since it is the kernel of a morphism of free modules, it is always a direct
summand. In the same way, even though R] and R⊥ are direct summand, they may or may not be complementary
submodules. These phenomenes make the description of the exact sequence:

0 −→ R⊥ −→ C/R −→ C/R ⊕R⊥ −→ 0

a little bit tricky (ie the comparison between the groups of Weil classes and Cartier classes). The main tool for
the explicit computation of this sequence is the Invariant factor theorem for submodules that will be used twice
(see [AW92, Theorem 6.23]).
• First, we apply this result to the submodule R ⊂ C: there exists a Z-basis e1, . . . , en of C and α1 | · · · | αr

(r ≤ n) a sequence of positive integers, called invariant factors, such that R = Zα1e1 ⊕ · · · ⊕ Zαrer and R] =
Ze1 ⊕ · · · ⊕ Zer. The submodule R is a direct summand of C if and only if R] = R, if and only if the invariant
factors α1, . . . , αr are all equal to 1.

Put M = Zer+1 ⊕ · · · ⊕ Zen then R] and M are complementary submodules, C = R] ⊕M , and the projec-
tions ιtors and ι onto each factors lead to an isomorphism

C/R
'−→ R]/R ⊕ M

x mod R 7−→ ιtors(x) mod R + ι(x)

In other words, the projection ιtors gives an isomorphism from the torsion submodule of C/R to the quotient
module R]/R which is isomorphic to Z/α1Z × · · · × Z/αrZ; the projection ι gives an isomorphism from the
torsion-free submodule of C/R to the submodule M of C.
• Since R ∩R⊥ = {0}, we know that R⊥ canonically embeds in the quotient C/R; being free of torsion it

is a submodule of the torsion-free submodule of C/R. Via ι it thus embeds in M . Using the Invariant factor
theorem again, one can choose the basis er+1, . . . , en of M , in such a way that there exists βr+1 | · · · | βn such
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that ι(R⊥) = Zβr+1er+1 ⊕ · · · ⊕Zβnen. The cokernel C/R ⊕R⊥ is then isomorphic to Z/βr+1Z× · · · ×Z/βnZ.
In particular, the canonical embedding of R⊥ inside M induces an isomorphism if and only if βr+1, . . . , βn are
all equal to 1.

In the sequel, we do not give names to the projection morphisms ιtors, ι.

3 Codes from surfaces: construction and tools for their study

In this section k is a finite field Fq.

3.1 Evaluation codes from surfaces

Cartier divisors, their spaces of global sections, and the associated complete linear systems are the main ingredients
to define and to characterize the parameters of the evaluation codes from an algebraic surfaces. Let us recall the
definitions and the basic facts concerning these objects. We consider X a (not necessarily smooth, but in fact
at least normal here) irreducible surface over k. We denote by k(X) its function field and by OX its structural
sheaf. Let D = (Ui, fi)i∈I be a Cartier divisor on this surface X.

A global section of D is a function s ∈ k(X) such that for every i ∈ I, the product sfi is regular on Ui, that
is sfi ∈ OX(Ui) for all i ∈ I. We denote by H0(X,D) the set of these sections; this is a vector space which is
known to have finite dimension.

By definition, if s ∈ H0(X,D) is a global section of D then the Cartier divisor (Ui, sfi)i∈I is effective. It can
be shown that two global sections of D lead to the same effective Cartier divisor if and only if they differ by a non
zero constant. This means that there is a one-to-one correspondence between the projective space P(H0(X,D))
and the set of effective Cartier divisors linearly equivalent to D. This last set is called the complete linear system
associated to the divisor D and is currently denoted by |D|, so we have |D| = P(H0(X,D)). An important
invariant of the divisor (or linear system) for our purpose is the maximum of rational points that can contain a
curve of |D|; we put:

Nq(D) = max{#C(Fq) | C ∈ |D|}. (6)

Definition 3.1. Let X be a (not necessarily smooth) irreducible surface over k, let D be a Cartier divisor of X
and let P = {p1, . . . , pn} be a set of rational points of X. The evaluation code CX(D,P) is the image of the
evaluation map

H0(X,D) −→ kn

s 7−→ (sfip)(p)

where for each point p, the index ip is chosen in such a way that p ∈ Uip .

In the preceding definition, the choice of ip may be not unique but different choices ip, jp of these indices lead
to homothetic codes since the quotients fip/fjp are non vanishing regular functions on Uip ∩ Ujp .

The usual parameters of the evaluation code are related with some invariants of the surface.

Proposition 3.2. If the evaluation map is injective, a CX(D,X(Fq)) has

(i) length equal to #X(Fq) the number of rational points of X,

(ii) dimension equal to the dimension of the space H0(X,D) of global sections,

(iii) minimum distance bounded below by n−Nq(D), where Nq(D) is defined in (6).

Thanks to this proposition, it is worth noticing that bounding below the minimum distance of an evaluation
code CX(D,X(k)) from a surface X reduces to bounding above Nq(D) the number of points of the curves of the
linear system |D| associated to the divisor D. The fewer the number of rational points of the curves in the linear
system |D|, the higher the minimum distance.

3.2 Blowing up, divisors and (non) complete linear systems

One of the key tools of the construction of the codes from Del Pezzo surfaces are the blowing-up or the blowing
down depending on the sense of the arrows.

Let π : Y → X be a sequence of blowing ups where all the surfaces involved are supposed to be smooth,
except the last one X which is only supposed to be normal. Such a morphism leads to two natural maps involving
different kinds of divisors and divisor class groups.
• First, starting from a Cartier divisor of X, the pullback π∗D is the Cartier divisor on Y defined locally

by (π−1Ui, fi ◦ π). This lead to a morphism π∗ : CDiv(X) −→ CDiv(Y ).
• Secondly, it can be shown that if C irreducible effective Weil divisor of Y , then π(C) is either a point or an

irreducible effective Weil divisor of X. Then the map π∗ : WDiv(Y ) −→WDiv(X) defined by π∗(C) = 0 if π(C)
is a point and π∗(C) = π(C) otherwise extends to a group homorphism [Liu02, Chap 9, Lem 2.10].
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• Moreover, for every Cartier divisor D of X, one has π∗ (π∗D) = D [Liu02, Chap 9, Prop 2.11] where π∗ is
applied to the Weil divisor of Y associated to the Cartier divisor π∗D.
• These two maps induce two homomorphisms π∗ : CaCl(X) → CaCl(Y ) [Liu02, Chap 7, Def 1.34] and π∗ :

Cl(Y )→ Cl(X) [Ful98, Chap 1, Th 1.4].
• At the level of global sections and linear systems, the map π∗ also induces isomorphisms:

H0(X,D)
'−→ H0(Y, π∗D)

s 7−→ s ◦ π
|D|X

'−→ |π∗D|Y
C 7−→ π∗C

where D is a Cartier divisor on X ([Dem80, Exposé V, Cor 2]). Since π∗ (π∗C) = C, the inverse of the right
isomorphism is nothing else than π∗ |π∗D|Y −→ |D|X .

We will need to describe the one-to-one correspondence |D|X −→ |π∗D|Y , when the right divisor is replaced
by a divisor of the form π∗D − E. Some natural sublinear systems appear. Let us go step by step.
• Let π : Y → X be the blowing-up of a smooth surface X at a point p ∈ X and let E be its exceptional divisor

on Y . Since the surfaces are supposed to be smooth, we do not have to distinguish Cartier and Weil divisors.
We mainly focus on effective divisors and we call them curves. Given C a curve on X, then the pullback π∗C is
called the total transform of C, the closure in Y of π−1(C \ {p}), denoted C̃, is called the strict transform of C.
These two curves on Y are related by the relation:

π∗C = C̃ +mp(C)E,

where mp(C) denote the multiplicity of C at the point p. In particular, for any n ≥ 0, the divisor π∗C − nE is
effective if and only if mp(C) ≥ n.

This permits to relate the complete linear system |π∗D−nE| on Y to an uncomplete one on X, that is |D−np|
the space of curves of |D| which pass through p with multiplicity at least n. In fact this shows that the map C 7→
π∗C − nE leads to a one-to-one correspondence from |D− np| to |π∗D− nE| (the other way around, it says that
the blowing-up permits to turn uncomplete linear systems into complete ones).
• The same is true if we blow up several points. Let π : Y → X be the blowing-up of a smooth sur-

face X at some points p1, . . . , pr, and let E1, . . . , Er be the exceptional divisors. For D a divisor on X.
Let |D − n1p1 − · · · − nrpr| denotes the sub-linear system of the complete linear system |D| consisting of curves
of |D| which pass through p1, . . . , pr with multiplicities at least n1, . . . , nr. The blowing-up permits to turn this
incomplete linear system into a complete one: there is a one-to-one correspondence between ([Har77, loc. cit.],
[CA00]),

|D − n1p1 − · · · − nrpr| −→ |π∗D − n1E1 − · · · − nrEr|
C 7−→ C]

where C]
def.
= π∗C − n1E1 − · · · − nrEr. (7)

This curve C] is sometime called the virtual transform of C. The total, strict and virtual transforms are thus
related by:

π∗C = C̃ +

r∑
i=1

mpi(C)Ei = C] +

r∑
i=1

niEi =⇒ C] = C̃ +

r∑
i=1

(mpi(C)− ni)Ei.

In particular the virtual and the strict transforms coincide when mpi(C) = ni for all i.
• This one-to-one correspondence is still true if some points in the sequence of blowing ups are infinitely near

points, that is when some pj lies on the exceptional divisor of the blow up of another point pi. In order to describe
this, we need to carefully define the sub-linear system associated to a family of infinitely near points. Let us start
with only two points: if p1 ≺ p2, that is if p2 lies on the exceptional curve E1 above p1, then for n1, n2 > 0, the
sub-linear system of curves passing through p1 and p2 with multiplicities at least n1 and n2 is defined by:

|D − n1p1 − n2p2|
def.
= {C ∈ |D − n1p1| ,mp2(π∗(C)− n1E1) ≥ n2} =

{
C ∈ |D − n1p1| ,mp2(C]) ≥ n2

}
.

In particular the sub-system |D − p1 − p2| contains all the curves of |D| that pass through p1 with tangent line at p1

equal to p2 union all the curves of |D| singular at p1; indeed, in the last case C] = π∗(C)−E1 = C̃+(mp1(C)− 1)E1

has E1 as a component and thus passes through p2 (one can check that the conditions p1 ∈ C and p2 ∈ C̃ are not
linear, which is why we choose p2 ∈ C] instead).

In the same way, if p1 ≺ p2 ≺ · · · ≺ pr, one can define recursively, the sub-linear system |D − n1p1 − · · · − nrpr|.
With this definition, the one-to-one correspondence (7) is still true.

Let us end by an example: the case X = P2. If ` denotes the class a line, and if E0 is the pullback of ` in Y , then
the curves of the complete linear |dE0−n1E1−· · ·−nrEr|Y on Y corresponds bijectively to |d`−n1p1−· · ·−nrpr|
the (projective) vector space consisting of plane curves of degree d passing through p1, . . . , pr with multiplicities
at least n1, . . . , nr. For small degrees, it turns out that the irreducible decompositions of such curves can be easily
described.
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3.3 Blowing up and evaluation codes

Let us return to codes and compare the evaluation codes CX(D,X(k)) and CY (π∗D,Y (k)).

Proposition 3.3. Let X be a normal surface, let p be a point of X and let π : Y → X be the blowing-up of X
at p. We denote by E the divisor sum of the exceptional curves.

(i) If p is of degree > 1, then the codes CX(D,X(k)) and CY (π∗D,Y (k)) are equivalent; moreover the code CY (π∗D−
nE , Y (k)) can be identified with the sub-code of CX(D,X(k)) where only the global section having multiplicity
at least n at p are evaluated.

(ii) If p is rational, then the code CY (π∗D − nE , Y (k)) can be identified with the sub-code of CX(D,X(k) \ {p})
where only the global sections having multiplicity at least n at p are evaluated and to which we add the
following (q + 1) coordinates: the evaluations at rational points of P1 of the homogeneous component of
degree n of the local equation at p of the section.

Proof. (i) The map s 7→ s◦π is a one-to-one correspondence from the spaces of functions H0(X,D) to H0(Y, π∗D).
Since the blown points are not rational, the map π induces a one-to-one correspondence from Y (k) to X(k). Thus
the codes CX(D,X(k)) and CY (π∗D,Y (k)) must be equivalent. By the previous correspondence the global sections
of H0(Y, π∗D − nE) are in bijection with the global sections of H0(X,D) that pass through p with multiplicity
at least n and the last statement follows.

(ii) The set Y (k) is in one-to-one correspondence with (X(k) \ {p}) ∪ E(k) and we only have to compute
the evaluations at the points of E(k). We choose an open neighbourhood U ⊂ A2

(x,y) of p in which p = (0, 0)

and D has local equation f(x, y) = 0. Then π−1(U) ⊂ U × P1
(u:v) with equation xv = yu; there are two affine

charts, π−1(U) = V1 ∪ V2, with V1 ⊂ A2
(y,u) (resp. V2 ⊂ A2

(x,v)) with π(y, u) = (yu, y) (resp. π(x, v) = (x, xv)).

On V1, the divisor π∗D−nE has local equation f◦π
yn = f(yu,y)

yn . Let s◦π ∈ H0(Y, π∗D−nE) then sf ∈ OX(U) has

multiplicity at least n at p, that is sf(x, y) = pn(x, y) + pn+1(x, y) + · · · , where pn is homogeneous of degree n.

Thus sf◦π
yn = pn(yu,y)+pn+1(yu,y)+···

yn = pn(u, 1) + yq(u, y). Evaluating at the point (0, u) ∈ E ∩ V1, the section- has

value pn(u, 1). The same is true on V2.

The examples below provide many examples of this blowing-up operation, especially the one in section 4.7.

4 Anticanonical codes from weak del Pezzo surfaces

In this section we describe some evaluation codes from weak del Pezzo surfaces, we compute their parameters
and for some of them a generator matrix. The base field is a finite field Fq without any other hypothesis excepts
sporadically not being too small (F2 or F3).

In the first subsection, the general construction is given. We also fix many notations that will be used until
the end of the paper.

4.1 General description of the codes and of the main steps of their studies

The evaluation codes (definition 3.1) studied in the sequel are the ones corresponding to the following choices.

Definition 4.1. Let X be a weak del Pezzo surface over Fq. We call anticanonical code associated to X
the evaluation code CXs (−KXs , Xs(Fq)), where Xs is the anticanonical model of X, −KXs is the anticanonical
(Cartier) divisor on Xs, and where Xs(Fq) denotes the set of rational points of Xs.

Note that we could have considered the evaluation codes CX(−KX , X(Fq)) with the same del Pezzo surfaces,
but this leads to worth codes.

In a concomitant work [BH22], we have computed explicit models for all the arithmetic types of del Pezzo
surfaces over a finite field (these types lead to a classification that is coarser than the isomorphism one but that
permit to distinguish the main arithmetic properties of the weak del Pezzo surfaces). Taking advantage of this
knowledge, we select eight types of weak del Pezzo that are well suited for coding applications. For each example,
our starting point is a blowing-up model of the weak del Pezzo surface, then we study the parameters length,
dimension, minimum distance ([n, k, dmin]q) of the associated anticanonical code and last we give a generator
matrix (or a program to compute it).

Configuration to blow-up. — The explicit description of the surfaces X and Xs always starts from the
projective plane P2: we first blow up a family of (possibly infinitely near) points p1, . . . , pr to obtain a smooth
surface Y ; then we may blow down a family of (non intersecting) exceptional curves on Y to obtain the smooth

10



surface X. Last X is mapped to a projective space corresponding to the anticanoncial divisor to lead to the
singular surface Xs. To sum up, we have the following diagram:

Y

X

P2 Xs ⊂ Pdeg(X)

π

χ

ϕ

ε

π is a sequence of blowing ups at points p1, . . . , pr,
χ is a sequence of contractions of

(−1)-curves F1, . . . , Fs,
ϕ is the morphism ϕ−KX

associated to
the anticanonical divisor −KX of X,

deg(X) is the degree of the del Pezzo surface X, i.e. K ·2X .

(8)

All the surfaces and maps are defined over the base field Fq. The solid arrows π, χ, ϕ denote maps that are
morphisms whereas the dashed arrow ε denotes a map which is a rational one. The need to introduce the
auxiliary surface Y is due to the fact that some times, the surface X we want to work with cannot be constructed
directly by blowing up the plane at some points. Some contractions may be necessary in order to work with
applications that are defined over Fq (and not only over Fq); however this detour is not always useful and in some
examples, one has X = Y and the map χ is only the identity.

Two of the parameters [n, k, dmin]q of the associated anticanonical code are easy to compute.

� The length is nothing else than #Xs(Fq). Following the process of blowing ups and down above, it is not
difficult to compute this number since blowing up a point adds q rational points or does not change the
number of rational points depending on whether the point is rational or not.

� The dimension is nothing else than d + 1, where d is the degree of the del Pezzo surface X, unless the
evaluation map is not injective. This can only occur if #Xs(Fq) ≤ Nq (−KXs) and we compute last number
to estimate the minimum distance. It turns out that the evaluation map is always injective except if the
base field is F2 or F3 in some cases that are excluded.

As usual, the last parameter, the minimum distance, requires much more preparatory works.

Computation of the divisor class groups. — For these computations, the general ambient space is the
geometric divisor class group of Y , which is known to be equal to Cl(Y ) = ZE0 ⊕ ZE1 ⊕ · · · ⊕ ZEr, where, as
usual, Ei denotes the exceptional curve above pi in the sequence of blowing ups π. In this lattice, one can easily
identify the effective roots in Y , but also in X and we are able to give a basis of the sub-lattice R generated by
the effective roots of X over Fq. The other (geometric) Cartier and Weil divisor class groups are then given by:

Cl(X) = (ZF1 ⊕ · · · ⊕ ZFr)
⊥
, CaCl(Xs) = R

⊥
, Cl(Xs) = Cl(X)/R.

(the left orthogonal is computed in the whole Cl(Y ), the middle one in the sub-lattice Cl(X)). Using tools of
section 2.3.3, explicit bases and canonical embeddings of these geometric divisor class groups can be computed.
Taking into account the Galois action, one can also give bases and explicit canonical embedding bases of all the
arithmetic divisor class groups. Depending on the examples, the computations are carried out in the geometric
groups Cl(X) and the Galois invariants are taken in the last step to return in Cl(X) or we start to compute the
Galois invariants and then perform all the computations in Cl(X). Thanks to Proposition 2.7, these two ways
lead to the same results.

Types of decomposition into irreducible components in |−KXs
|. — The minimum distance is related

to the maximum number of rational points that can contain a (effective) curve in the linear system |−KXs
|. To

bound above this number of rational points, one way is to study how the curves in this linear system decompose
into irreducible components and use the exact number of points if known or the Weil bound if not on each
components. Thanks to section 3.2, and since ϕ∗KXs = KX , we have the following one-to-one correspondences:

|−χ∗KX |Y
'−→ |−KX |X

'−→ |−KXs |Xs

C 7−→ χ∗(C) 7−→ ϕ∗ (χ∗(C))

The first arrow consists in contracting the family of non-meeting exceptional curves Fi, 1 ≤ i ≤ s, the second in
contracting the effective roots of X. Thus we are reduced to study the types of decompositions into irreducible
components on the smooth surface Y , which is easier. Indeed, we know that −χ∗KX = dE0 −

∑r
i=1 niEi for

some explicit d and ni’s; in fact, in all examples, d ∈ {3, 4} and ni ∈ {1, 2}. Since Y is the blowing up of P2 at a
family of points, thanks to section 3.2, curves of |−KY | are in one-to-one correspondence to the plane curves of
a well specified (non complete) linear system of P2:

|d`− n1p1 − · · · − nrpr|
'−→ |−χ∗KX |

C 7−→ C]
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We are thus reduced to list all the types of decompositions into irreducible components of the plane curves of
degree d passing through pi with multiplicity ni. Since d ≤ 4, these absolutely irreducible components must be
plane lines, conics, cubics or quartics and an enumeration case by case can be done. More specifically, we follow
the steps:

� degree by degree, we list all the possible absolutely irreducible curves that pass through some of the points pi;

� we compute their Galois-orbits since if an absolutely irreducible component not defined over Fq appears in
the decomposition with multiplicity m, then the same holds for all its conjugates (this permits to get rid of
many curves because of their too high degree);

� we combine all these irreducible curves to obtain plane curves in the expected sub-linear system.

In order to make easier this step, we adopt the following notations and conventions. The letters `, q, c, t respectively
denote plane lines, quadrics (or conics), cubics and quartics. The indices below these letters are the numbers
of the points through which the curve passes. For example, `1 denotes a line that passes through p1 (but not
through any other point), `123 a line that passes through p1, p2, p3 (if it exists), q123456 a conic passing through
the six points p1, . . . , p6 and ` or q a line or quadric that do not pass through any pi. The goal is then to combine
all these irreducible plane curves to obtain a curve in the expected linear system.

At the end of this step, we are able to compute the maximum Nq (−KXs) to which the minimum distance is
related (proposition 3.2). Comparing with the number #Xs(Fq), this also permits us to exclude some too small
values of q for which the evaluation map may fail to be injective.

Computation of the global sections from P2. — Last, if we want to explicitly compute a generator matrix
of the code, we need to exhibit a basis of the sub linear system |d`− n1p1 − · · · − nrpr|. Then, by construction
we know to which points of P2 these functions have to be evaluated; in some cases we also need to add some
extra evaluation points corresponding to points on some exceptional curves. In any cases, one can compute a
generator matrix. This last (concrete) description turns the code into a code close to a Reed-Muller one: the
space of polynomials to be evaluated has been restricted, some of the evaluation points have been deleted, some
others have been added.

If some readers want to use our code, we put on the second author’s webpage, a magma program that permits
to construct all the codes presented below.

4.2 Degree 6, singularity of type A1

This example corresponds to the type number 3 in degree 6 [BH22].

Configuration to blow-up. — We blow up P2 at three collinear points that are conjugate over Fq.

`123 •
p1

•
p2

•
p3

p2 = pσ1 , p3 = pσ
2

1

The resulting surface is a weak del Pezzo surface X whose anticanonical model is denoted Xs. It has a unique
singular point of type A1 which is necessarily rational.

Computation of the divisor class groups. — Over Fq, one has

Cl(X) = ZE0 ⊕ ZE1 ⊕ ZE2 ⊕ ZE3 and −KX = 3E0 − E1 − E2 − E3.

There is a unique effective root, the strict transform of the line `123 passing through the three points p1, p2, p3,
and its class is E0 − E1 − E2 − E3. Then

R = Z(E0 − E1 − E2 − E3) R
⊥

= {a0E0 + a1E1 + a2E2 + a3E3 | a0 + a1 + a2 + a3 = 0}
= Z(E0 − E1)⊕ Z(E0 − E2)⊕ Z(E0 − E3)

Both R and R
⊥

are direct summand but R and R
⊥

are not complementary submodules since R ⊕ R
⊥

is of
index 2 in Cl(X). For a submodule complement to R, one can choose:

Cl(X) = R ⊕ (ZE1 ⊕ ZE2 ⊕ ZE3)
a0E0 + a1E1 + a2E2 + a3E3 = a0(E0 − E1 − E2 − E3) + (a1 + a0)E1 + (a2 + a0)E2 + (a3 + a0)E3

This leads to the following isomorphism:

Cl(X)/R
'−→ ZE1 ⊕ ZE2 ⊕ ZE3

a0E0 + a1E1 + a2E2 + a3E3 mod R 7−→ (a0 + a1)E1 + (a0 + a2)E2 + (a0 + a3)E3.
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Via this isomorphism, the submodule CaCl(Xs) = R
⊥

identifies with Z(E1 +E2)⊕Z(E2 +E3)⊕Z(E1 +E3) of
invariant factors 1, 1, 2 in ZE1 ⊕ ZE2 ⊕ ZE3.

Over Fq, to recover the class groups Cl(Xs) and CaCl(Xs), we only need to take the invariants under the
Galois action (E0)(E1E2E3), what is easy here. One has

CaCl(Xs) = CaCl(Xs)
Γ =

(
R
⊥)Γ

' Z(3E0 − E1 − E2 − E3) = Z(−KX),

Cl(Xs) = Cl(Xs)
Γ =

(
Cl(X)/R

)Γ ' Z(E1 + E2 + E3).

With these identifications, the canonical embedding of CaCl(Xs) into Cl(Xs) becomes:

0 −→ CaCl(Xs) −→ Cl(Xs)
−KX 7−→ 2(E1 + E2 + E3)

Thus both CaCl(Xs) and Cl(Xs) are free of rank 1, but CaCl(Xs) is of index 2 into Cl(Xs). This index has the
following consequence: even if CaCl(Xs) is free of rank one generated by −KXs

, a Cartier divisor may decompose
into a sum of equivalent Weil irreducible divisors. This explains why we need to investigate how elements of |−KX |
can decompose into irreducible components and how the non ordinary weak del Pezzo surfaces we consider here
differ from ordinary ones (compare with [BCH+20]).

Types of decomposition into irreducible components in |−KXs
|. — In this example, there is no need

to introduce an auxiliary surface Y (one has Y = X and χ is the identity with the notation of the beginning of
this section). Since −KX = 3E0 − E1 − E2 − E3, the virtual transform composed with the push forward lead to
a one-to-one correspondence:

|3`− p1 − p2 − p3| −→ |3E0 − E1 − E2 − E3| −→ |−KXs
|

C 7−→ C] 7−→ ϕ∗(C
])

(the left linear system is on P2, the middle one on X and the right one on Xs). Then we are reduced to list all the
types of decompositions into irreducible components of the curves of |3`− p1 − p2 − p3|, the sub linear system of
cubics passing through the points p1, p2, p3. The orbits of lines, conics, cubics which have degree at most 3 and
pass through some of the points pi’s are

`1 ∪ `2 ∪ `3, `123, c123,

(of course, implicitly `2 = `σ1 , `3 = `σ
2

1 where σ is a generator of Gal(Fq/Fq)). Indeed an absolutely irreducible
conic qi or qij cannot be defined over Fq and they have at least three conjugates; combining these curves with their
conjugates lead to plane curves of degree greater than 6 and thus they cannot appear in our case. A conic q123

cannot be absolutely irreducible otherwise it would have three intersection points with the line `123. Let us
combine these rational irreducible decompositions in order to construct plane curves in the expected sub-linear
system.

First suppose that the decomposition contains a line.

� If this line is `1, then its conjugates `2, `3 must also be geometric components; the only possibility is `1∪`2∪`3
(line 1 in the tabular below) which is an element of |3`− p1 − p2 − p3|.

� A component ` cannot be completed by a conic passing through the three points and thus if there is a line
in the geometric decomposition, `123 must be one of them. Since `123 already passes through p1, p2, p3 it
can be completed by any conic (irreducible or not); this leads to the decompositions of the lines 3 to 7 in
the tabular below.

Last, if the decomposition does not contain any line, it must be an irreducible cubic which passes through the
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three points; this cubic can be smooth or not and we recover the two last lines of the tabular.

|3`− p1 − p2 − p3| |−KX | |−KXs | Max

on P2 on X on Xs nb. of pts

1 `1 ∪ `2 ∪ `3 ˜̀
1 ∪ ˜̀2 ∪ ˜̀3 ⋃3

i=1 ϕ∗(
˜̀
i) 1

2 `123 ∪ q, `123 ∩ q 6⊂ P2(Fq) ˜̀
123 ∪ q̃ ϕ∗(q̃) q + 2

3 `123 ∪ q, `123 ∩ q ⊂ P2(Fq) ˜̀
123 ∪ q̃ ϕ∗(q̃) q

4 `123 ∪ ` ∪ `′, `123 ∩ ` ∩ `′ 6= ∅ ˜̀
123 ∪ ˜̀∪ ˜̀′ ϕ∗(˜̀) ∪ ϕ∗(˜̀′) 2q + 1

5 `123 ∪ ` ∪ `′, `123 ∩ ` ∩ `′ = ∅ ˜̀
123 ∪ ˜̀∪ ˜̀′ ϕ∗(˜̀) ∪ ϕ∗(˜̀′) 2q

6 2`123 ∪ ` 2˜̀123 ∪ ˜̀∪⋃3
i=1Ei ϕ∗(˜̀) ∪⋃3

i=1 ϕ∗(Ei) q + 1

7 3`123 3˜̀123 ∪
⋃3
i=1 2Ei

⋃3
i=1 2ϕ∗(Ei) 1

8 c123, singular c̃123 ϕ∗(c̃123) q + 2

9 c123, smooth c̃123 ϕ∗(c̃123) Nq (1)

Some comments about the three first columns of the previous tabular. The unique irreducible effective root of X
is nothing else than the strict transform `123 and this explains why this curve disappears in the third column:
this line on X is mapped by ϕ∗ to the unique singular point s ∈ Xs. Note also that except in the cases 6 and 7,
all the curves have exactly multiplicities 1 at the pi and thus their strict or virtual transforms are equal. On
the contrary, in the remaining cases, the curves on X are the virtual transforms of the ones on P2. Last, in
the decomposition ϕ∗(˜̀) ∪ ϕ∗(˜̀′), it is worth noticing that irreducible components involves divisors that are not

Cartier divisors but only Weil ones on Xs. Indeed the class of ˜̀ in Cl(X) is E0, which is mapped to E1 +E2 +E3

in Cl(Xs), which is not an element of CaCl(Xs) (equivalently E0 6∈ R⊥).
Now we make some comments on the numbers of rational points.
Case 1. Since the lines `1, `2, `3 are conjugate a rational point on their union must be at their intersection

which contains at most one point. On X the strict transforms ˜̀1, ˜̀2, ˜̀3 do not meet the root `123 and the
contraction does not add any point.

Cases 2, 3, 4 & 5. If the two points of q ∩ `123 are not rational then they are still unrational on q̃ ∩ ˜̀123 and
they are contracted to the singular point s in Xs and thus the image ϕ∗(q̃) has one more rational point; otherwise,
if the two points of q∩ `123 are rational then they are contracted in Xs and thus the image ϕ∗(q̃) looses a rational
point. The same is true on lines 4 and 5.

Cases 6 & 7. The line ˜̀123 is contracted by ϕ∗ and there are no rational points on the lines Ei.
Cases 8 & 9. The starting cubic c123 has (q + 1) or less than Nq (1) rational points depending on whether it

is singular or smooth. On Xs the number of rational points of ϕ∗(c̃123) is increased by 1 since the line `123 meets
the cubic at three conjugate points. The multiplicity of intersection of c123 and `123 at each point pi is one (since
otherwise, these two curves would have too many intersection points counting with multiplicities). Therefore, the

blowing ups at p1, p2, p3 separate the strict transforms ˜̀123 and c̃123. Thus c̃123 and ϕ∗(c̃123) are isomorphic and
have the same number of rational points. Finally, we remark that for every q, one has q + 1 + b2√qc ≤ 2q + 1
(with equality if and only if q ∈ {2, 3, 4}) and thus:

Nq (−KXs
) = 2q + 1.

Last we note that, except for the cases 1 and 9, all the maximum numbers of points are in fact exact numbers of
points. Thus we are not far from having the distribution of weights if the code.

Since p1, p2, p3 are not rational, the three blowing ups do not add any rational point and #X(Fq) = q2 +q+1.

Then, the root ˜̀123 is contracted via the anticanonical morphism and thus #Xs(Fq) = q2 + 1. Except if q = 2,
one has #Xs(Fq) > Nq(−KXs

) and the evaluation map is injective. With this choice of weak del Pezzo surface,
the code of definition 4.1 satisfies the following proposition.

Proposition 4.2. Let p1, p2, p3 be conjugate collinear point in P2
Fq

, with q 6= 2. The anticanonical code associated

to the weak del Pezzo surface obtained by blowing up these points has parameters [q2 + 1, 7, q2 − 2q].

Computation of the global sections from P2. — To construct this kind of codes, one can choose `123 to
be the line of equation Y = 0 in P2. For any ζ ∈ Fq3 \ Fq, the point p1 = (ζ : 0 : 1) ∈ P2 is a degree 3 point

whose conjugates p2 = (ζσ : 0 : 1) and p3 = (ζσ
2

: 0 : 1) are also in `123. Let X3 + a2X
2 + a1X + a0 ∈ Fq[X] be

the minimal polynomial of ζ over Fq. Then, we easily verify that

|3`− p1 − p2 − p3| =
〈
Y 3, Y 2X,Y 2Z, Y X2, Y Z2, Y XZ,X3 + a2X

2Z + a1XZ
2 + a0Z

3
〉
Fq
.
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Last, the evaluation points are nothing else than the points of P2(Fq) \ `123(Fq), plus one point of `123(Fq) since
the strict transform of `123 is contracted via the anticanonical morphism. Let us denote (xi : 1 : zi), 1 ≤ i ≤ q2,
the first q2 points, and let us choose (0 : 0 : 1) ∈ `123(Fq), then the corresponding generator matrix of the code is:

1 · · · 1 0
x1 · · · xq2 0
z1 · · · zq2 0
x2

1 · · · x2
q2 0

z2
1 · · · z2

q2 0

x1z1 · · · xq2zq2 0
P (x1, 1, z1) · · · P (xq2 , 1, zq2) a0


, P (X,Y, Z) = X3 + a2X

2Z + a1XZ
2 + a0Z

3.

We recover the classical Reed-Muller code on A2 of degree 2, augmented by one point.

4.3 Degree 5, singularity of type 2A1

This example corresponds to the type number 5 in degree 5 [BH22].

Configuration to blow-up. — We blow up p1 ≺ p2 and p3 ≺ p4, where p1, p3 and p2, p4 are conjugate points
of degree 2.

`12

p2

`34

p4

•
p1

•
p3

`13

p3 = pσ1
p4 = pσ2 .

Since the points p2, p4 are infinitely near the points p1, p3, they are represented by tangent lines or directions on
the picture above. The anticanonical model Xs has two singular points of type A1 that are conjugate points.

Computation of the divisor class groups. — Over Fq, one has:

Cl(X) = ZE0 ⊕ ZE1 ⊕ ZE3 ⊕ ZE2 ⊕ ZE4 and −KX = 3E0 − E1 − E2 − E3 − E4.

There are two conjugate effective roots, the strict transforms of E1 and E3 in the sequence of blowing ups; their
classes are E1 − E2 and E3 − E4 in such a way that:

R = Z(E1 − E2)⊕ Z(E3 − E4), R
⊥

= {a0E0 + a1E1 + a2E2 + a3E3 + a4E4 | a1 = a2, a3 = a4}
= ZE0 ⊕ Z(E1 + E2)⊕ Z(E3 + E4).

The sub-module R is a direct summand, and as a complementary sub-module one can choose:

Cl(X) = R ⊕ ZE0 ⊕ ZE2 ⊕ ZE4∑4
i=0 aiEi = a1(E1 − E2) + a3(E3 − E4) + a0E0 + (a1 + a2)E2 + (a3 + a4)E4.

We deduce the isomorphism:

Cl(Xs) ' Cl(X)/R
'−→ ZE0 ⊕ ZE2 ⊕ ZE4∑4

i=0 aiEi mod R 7−→ a0E0 + (a1 + a2)E2 + (a3 + a4)E4

.

Since CaCl(Xs) ' R
⊥

, this class group is a rank 3 free sub-group of Cl(X). Via the previous isomorphism it is
mapped to the sub-group ZE0 ⊕ Z2E2 ⊕ Z2E4, of invariant factors 1, 2, 2.

The arithmetic groups CaCl(Xs) and Cl(Xs) can be computed by taking the invariants under the Galois action
which is (E0)(E1E3)(E2E4). Via the previous isomorphism, if we set E := E2 +E4, the canonical embedding 0→
CaCl(Xs)→ Cl(Xs) is only:

ZE0 ⊕ Z2E︸ ︷︷ ︸
'CaCl(Xs)

⊂ ZE0 ⊕ ZE︸ ︷︷ ︸
'Cl(Xs)

.

In other terms, CaCl(Xs) and Cl(Xs) are both free of rank 2 and via the canonical embedding, the first one has
invariant factors 1, 2 inside the second one.
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Types of decomposition into irreducible components in |−KXs
|. — Since the two class groups are

not rank one, one expects to find a wide variety of possible decompositions into irreducible components for the
curves in the linear system |−KXs

|. In order to list all these types, we start form P2 and use the one-to-one
correspondences:

|3`− p1 − p3 − p2 − p4| −→ |3E0 − E1 − E3 − E2 − E4| −→ |−KXs |
C 7−→ C] 7−→ ϕ∗

(
C]
)
.

The curves of the left linear system are nothing else than the plane cubics over Fq passing through p1, p3 that are
either smooth at p1, p3 with tangent lines p2, p4 respectively or singular at these points.

Our notations are the same: `13 is the line (p1p3) which is rational, `12 and `34 are the lines (p1p2) respec-
tively (p3p4) (that is the lines of P2 passing through p1, respectively p3, whose strict transform pass through p2,
respectively p4); these last two lines are conjugate. The orbits of lines, conics, cubics having degree less than 3
and passing through some of the points pi’s are

`1 ∪ `3, `13, `12 ∪ `34, q13, q1234, c13, c1234

(of course, implicitly `3 = `σ1 , `34 = `σ12). We have just to combine these rational irreducible decompositions in
order to construct plane curves in the expected sub-linear system.

Suppose that there is at least one line in the absolute irreducible decomposition.

� If this line is `12, then by rationality, `34 is also an absolute irreducible component. Since `12 ∪ `34 already
passes through p1, p2, p3, p4, one can complete by any rational line ` or by the line `13 (see cases 1 and 2 in
the tabular below).

� If this line is `13, then the two incidence conditions at p1 and p3 are satisfied. The complement component
must be a (maybe reducible) conic whose strict transform passes through p2 and p4; this conic must neces-
sarily pass through p1, p3. This conditions suffice since the union of `13 with any conic passing through p1, p3

is singular. The complement can be the union `12 ∪ `34 (same as case 2), or `1 ∪ `3 = `σ1 , or `13 itself union
any other line, or twice `13, or q13, or q1234.

� If this line is ` a line that does not pass through the pi’s, then the complement conic must be either `12∪ `34

as in first case, or a conic passing through the four points.

Last, if there is not any line in the absolute irreducible decomposition, then the cubic must be absolutely irreducible
and it has to pass through the four points.

That being, the possible cubics are listed below. The irreducible effective roots of X are the (conjugate) strict

transforms Ẽ1 and Ẽ3; since they do not meet, their contraction lead to two (conjugate) singular points s and sσ

on Xs.∣∣∣3`−∑4
i1
pi

∣∣∣ |−KX | |−KXs
| Max

on P2 on X on Xs nb. of pts

1 `12 ∪ `34 ∪ ` ˜̀
12 ∪ ˜̀34 ∪ ˜̀ ϕ∗(˜̀12) ∪ ϕ∗(˜̀34) ∪ ϕ∗(˜̀) q + 2

2 `12 ∪ `34 ∪ `13
˜̀
12 ∪ ˜̀34 ∪ ˜̀13 ∪ Ẽ1 ∪ Ẽ3 ∪ E2 ∪ E4 ϕ∗(˜̀12) ∪ ϕ∗(˜̀34) ∪ ϕ∗(˜̀13) ∪ ϕ∗(E2) ∪ ϕ∗(E4) q + 2

3 `13 ∪ `1 ∪ `3 ˜̀
13 ∪ ˜̀1 ∪ ˜̀3 ∪ Ẽ1 ∪ Ẽ3 ϕ∗(˜̀13) ∪ ϕ∗(˜̀1) ∪ ϕ∗(˜̀3) q + 2

4 2`13 ∪ ` 2˜̀13 ∪ ˜̀∪ Ẽ1 ∪ Ẽ3 2ϕ∗(˜̀13) ∪ ϕ∗(˜̀) 2q + 1

5 3`13 3˜̀13 ∪ 2Ẽ1 ∪ 2Ẽ3 ∪ E2 ∪ E4 3ϕ∗(˜̀13) ∪ ϕ∗(E2) ∪ ϕ∗(Ẽ2) q + 1

6 `13 ∪ q13
˜̀
13 ∪ q̃13 ∪ Ẽ1 ∪ Ẽ3 ϕ∗(˜̀13) ∪ ϕ∗(q̃13) 2q + 2

7 `13 ∪ q1234
˜̀
13 ∪ q̃1234 ∪ Ẽ1 ∪ Ẽ3 ∪ E2 ∪ E4 ϕ∗(˜̀13) ∪ ϕ∗(q̃1234) ∪ ϕ∗(E2) ∪ ϕ∗(E4) 2q + 2

8 ` ∪ q1234
˜̀∪ q̃1234 ϕ∗(˜̀) ∪ ϕ∗(q̃1234) 2q + 2

9 c1234 c̃1234 ϕ∗(c̃1234) Nq (1)

We draw all the preceding decompositions in order to illustrate what is going on. The blowing up π : X → P2

is decomposed into two blowing ups π = π2 ◦ π1, where π1 : X1 → P2 is the blowing up at p1 and p3, and
where π2 : X → X1 is the blowing up at p2 and p4. The left column is the drawing of the starting configuration
in P2, the middle one the configuration after having blowing up p1 and p3, the right one the configuration in X.
The operation from a column to the next one is the virtual transform. Curves drawn in gray are not part of
virtual transform, curves drawn in red are the effective roots; these curves are contracted in Xs (but we do not
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draw this step). In brackets, to the right of the name of a curve, we put its self-intersection. We draw all the
cases of the preceding tabular, except the cubic case.

In any case, one can verify that the union of the black curves passes through p1, p3, p2, p4 and that the divisor
class is equal to −KX = 3E0 − E1 − E3 − E2 − E4.

`(1)

p1
•

p3
•

`12(1)

p2

`34(1)

p4

˜̀(1)

p2
•

p4
•

˜̀
12(0)˜̀

34(0)

E1(−1) E3(−1)

˜̀(1)

E2(−1) E4(−1)

Ẽ1(−2) Ẽ3(−2)

˜̀
12(−1)˜̀

34(−1)

`(1)
p1
•

p3
•

`12(1)

p2

`34(1)

p4 ˜̀(−1)

˜̀
12(0)δ̃34(0)

p2
•

p4
•

E1(−1) E3(−1)

˜̀(−1)

E2(−1) E4(−1)

Ẽ1(−2) Ẽ3(−2)

˜̀
12(−1)˜̀

34(−1)

`13(1)
p1
•

p3
•

`1(1)

p2

`σ1 (1)

p4 ˜̀
13(−1)

˜̀
1(0)˜̀σ

1 (0)

p2
•

p4
•

E1(−1) E3(−1)

˜̀
13(−1)

˜̀
1(0)˜̀σ

1 (0)

E2(−1) E4(−1)

E1(−2) E3(−2)

2`13(1)
p1
•

p3
•

`(1)

p2 p4 2˜̀13(−1)

E1(−1) E3(−1)

p2• p4 •
˜̀(1)

2˜̀13(−1)

Ẽ1(−2) Ẽ3(−2)

E2(−1) E4(−1) ˜̀(1)

3`13(1)
p1
•

p3
•

p2 p4 3˜̀13(−1)

2E1(−1) 2E3(−1)

p2• p4 •

3˜̀13(−1)

2Ẽ1(−2) 2Ẽ3(−2)

E2(−1) E4(−1)

p2 p4

q13(4)

•
p1

•
p3

`13(1)

q̃13(2)

E1(−1) E3(−1)

•
p2

•
p4

˜̀
13(−1)

q̃13(2)

Ẽ1(−2) Ẽ3(−2)

E2(−1) E4(−1)

˜̀
13(−1)
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q1234(4)

p2 p4

•
p1

•
p3

`13(1)

q̃1234(2)

E1(−1) E3(−1)

•
p2

•
p4

˜̀
13(−1)

q̃1234(0)

Ẽ1(−2) Ẽ3(−2)

˜̀
13(−1)

E2(−1) E4(−1)

q1234(4)

p2 p4

•
p1

•
p3

`(1)

q̃1234(2)

E1(−1) E3(−1)

•
p2

•
p4

`(1)

q̃1234(0)

Ẽ1(−2) Ẽ3(−2)

E2(−1) E4(−1)

`(1)

Some comments about the number of points.
Cases 1, 2, & 3. The unions of lines `12∪ `34, or `1∪ `3 (recall that `3 = `σ1 ), contain a unique rational point,

the intersection point of the two lines. Except ` (cases 1 and 2) or `13 (case 3), all the lines in the decomposition
are not defined over Fq and di not contain any rational points. Thus to the previous single point we have to add
the (q + 1) rational points of the line ` or `13.

Case 4. The two (black) components have (q+1) rational points but they meet at a rational point, thus their
union contains 2q + 1 rational points.

Case 5. The only component that contains rational points is ϕ∗(˜̀13).
Cases 6, 7, & 8. In these cases, they are two disjoint components that contain (q + 1) rational points.
Finally:

Nq (−KXs
) = 2q + 2.

Since none of the points pi is rational, the surfaces X and Xs still have q2 + q + 1 points. For every q, one
has #Xs(Fq) > Nq (−KXs

) and the evaluation map is always injective. The parameters of the code are thus
given by:

Proposition 4.3. Let p1 ≺ p2 and p3 ≺ p4 be such that p1, p3 and p2, p4 are conjugate points of degree 2. The
anticanonical code of the weak del Pezzo surface obtained by blowing up these points has parameters [q2 + q +
1, 6, q2 − q − 1].

Computation of the global sections from P2. — Let d ∈ Fq be a non-square and put ζ =
√
d ∈ Fq2 . We

choose p1 = (ζ : 0 : 1) and p2 = (ζ : 1). Then p3 = (−ζ : 0 : 1), the line `13 = (p1p3) has equation Y = 0,
the line `12 = (p1p2) corresponds to the zeros of the linear form L = X − ζ(Y + Z) and the line `34 = (p3p4)
corresponds to the zeros of the linear form Lσ = X + ζ(Y +Z) = 0. The linear forms Y,L, Lσ generate the global
sections of ` and we easily prove that

|3`− p1 − p3 − p2 − p4| =
〈
Y 3, Y 2L, Y 2Lσ, Y LLσ, L2Lσ, L(Lσ)2

〉
Fq

=
〈
Y 3, Y 2(L+ Lσ), Y 2ζ(L− Lσ), Y LLσ, LLσ(L+ Lσ), LLσζ(L− Lσ)

〉
Fq

=
〈
Y 3, Y 2X,Y 2(Y + Z), YΠ, XΠ, (Y + Z)Π

〉
Fq
,

where Π = LLσ = X2 − d(Y + Z)2. The evaluation points are nothing else than all the points of P2(Fq).

4.4 Degree 4, singularity of type A1

This example corresponds to the type number 8 in degree 4 [BH22].

Configuration to blow-up and down. — We blow up six points on a conic, the first two p1 and p2 being
conjugate (or rational), the last four p3, p4, p5, p6 being conjugate. This leads to a degree 3 weak Del Pezzo

surface Y
π−→ P2 as in (8). In this surface, the strict transform of the line `12 passing through p1 and p2 is a
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rational (−1)-curve that can be contracted: the codomain of the contraction Y
χ−→ X is the degree 4 weak Del

Pezzo surface we want to work with in this section.

p1

p2
p3

p4

p5
p6

`12

q123456

p2 = pσ1
p4 = pσ3
p5 = pσ

2

3

p6 = pσ
3

3

The anticanonical model of this weak del Pezzo surface X has a unique singular point.

Computation of the divisor class groups. — On Y , one has Cl(Y ) =
⊕6

i=0 ZEi and 27 exceptional classes
of divisor, namely the 6 exceptional lines Ei, 1 ≤ i ≤ 6, the 15 strict transforms of the lines passing through two
of the six points, Eij = E0 −Ei −Ej , 1 ≤ i < j ≤ 6, and the 6 strict transforms of the quadrics passing through
five of the six points, Qi = 2E0 −

∑
j 6=iEj , 1 ≤ 6. Due to weaknesses, among these classes, the quadric ones

are not represented by irreducible curves. Indeed 2E0 −
∑
j 6=iEj = Ei +

(
2E0 −

∑6
j=1Ej

)
and the last class is

nothing else than the class of the unique effective root, the strict transform of the quadric q123456 passing through
all the six points.

The group Cl(X) can be identified with Z(E0−E1−E2)⊥ via the orthogonal projection onto this space. This
projection is given by:

Cl(Y ) = Z(E0 − E1 − E2) ⊕ (Z(E0 − E1)⊕ Z(E0 − E2)⊕ ZE3 ⊕ · · · ⊕ ZE6)∑6
i=0 aiEi = (−a0 − a1 − a2)(E0 − E1 − E2) +

[
(a0 + a2)(E0 − E1) + (a0 + a1)(E0 − E2) +

∑6
i=3 aiEi

] ,
and thus

Cl(X) = ZL1 ⊕ ZL2 ⊕ ZE3 ⊕ · · · ⊕ ZE6, where Li = E0 − Ei, i = 1, 2.

In particular, the anticanonical divisors are related by

−KY = 3E0 −
6∑
i=1

Ei = −(E0 − E1 − E2) + 2L1 + 2L2 −
6∑
i=3

Ei︸ ︷︷ ︸
−KX

Only the exceptional classes of Y that do not meet E0 − E1 − E2 are mapped to exceptional classes on X;
for 3 ≤ i ≤ 6, this leaves the classes:

Ei 7−→ Ei, E1i 7−→ L1 − Ej , E2i 7−→ L2 − Ej , Qi 7−→ L1 + L2 −
∑

j∈{3,...,6}\{i}

Ej .

As for the unique effective root of Y , it is mapped to the root L1 + L2 − E3 − E4 − E5 − E6 and the last four
exceptional classes are not represented by irreducible curves. Thus one has

R = Z(L1 + L2 − E3 − · · · − E6), R
⊥

=

{
a1L1 + a2L2 +

6∑
i=3

Ei | a1 + a2 +

6∑
i=3

ai = 0

}
.

In order to take into account the Galois action, which acts via (L1L2)(E3E4E5E6), we put L = L1 +L2 and E =∑6
i=3Ei. We easily verify that

Cl(X) = CaCl(X) = ZL ⊕ ZE = Z(L − E)⊕ ZE , R = Z(L − E), R⊥ = Z(2L − E) = ZKX .

This leads to the following isomorphism:

Cl(Xs) ' Cl(X)/R
'−→ ZE

aL+ bE mod R 7−→ (a+ b)E

Via this isomorphism, the sub-module CaCl(Xs) = R⊥ = Z(2L−E) = ZKX is mapped to ZE itself. In conclusion
both CaCl(Xs) and Cl(Xs) are free Z-module of rank 1 and the canonical embedding turns to be an isomorphism.
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Types of decomposition into irreducible components in |−KXs
|. — Recall that

−KX = 2L1 + 2L2 −
6∑
i=3

Ei = 4E0 − 2E1 − 2E2 −
6∑
i=3

Ei.

Global sections of −KX are thus related to quartics of P2. More precisely, one has the following one-to-one
correspondences:∣∣∣4`− 2p1 − 2p2 −

∑6
i=3 pi

∣∣∣
Y
−→

∣∣∣4E0 − 2E1 − 2E2 −
∑6
i=3Ei

∣∣∣
X
−→ |−KXs |Xs

C 7−→ χ∗
(
C]
)

7−→ ϕ∗
(
χ∗
(
C]
))
,

and we need to list all the quadrics of P2 having multiplicity at least 2 at p1 and p2 and passing through the pi
for 3 ≤ i ≤ 6. Note that in the correspondences above, we skip the surface Y . Recall that, as in (8), we

have P2 π←− Y
χ−→ X and the morphism χ here is the contraction of the strict transform of the line passing

through p1 and p2.

The orbits of lines, respectively conics, having degree less than 4 and passing through some of the points pi’s
are

`1 ∪ `2, `3 ∪ `4 ∪ `5 ∪ `6, `12, `35 ∪ `46, `13 ∪ `24 ∪ `15 ∪ `26, `14 ∪ `25 ∪ `16 ∪ `23,

respectively:

q1 ∪ q2, q12, q35 ∪ q46, q3456, q1235 ∪ q1246, q123456.

The only orbits of cubics or quartics having degree less than 4 that pass through the points pi are c123456

and t123456. We now combine the rational irreducible decompositions in order to construct plane curves in the
expected sub-linear system.

First, suppose that the decomposition into absolute irreducible components contains a line

� If this line joins one of the first two points to one of the last four points, i.e. a line `ij with i ∈ {1, 2}
and j ∈ {3, 4, 5, 6}, then this line has degree 4 and it turns out that its orbit under the Galois action lies in
the linear system; (cases 1 and 2 in the tabular below).

� If this line is `12, which is rational, then this line appears with multiplicity at most 2. If 2`12 is a part of the
decomposition then the complementary conic must be rational and pass through the last four points: the
conic must be `35 ∪ `46 or q3456 or q123456 (cases 3, 4, 5). If `12 has multiplicity 1, then the complementary
cubic passes through the six points. Since, except `12, all the lines passing through some pi have even degree,
this cubic cannot be a union of three lines. The remaining cases are thus q123456∪` or c123456 (cases 6 and 7).

� If the line is `i for i ≥ 3, then it has degree (at least) 4 and its orbit under Galois has degree 4 (or greater)
without passing through p1 and p2. It does not work.

� If the line is `1 then its conjugate `σ1 passes through p2; the complement is a conic passing through the six
points, and it must be q123456 (case 8).

� Last if this line is ` a line passing through none of the six points then the complementary cubic passes
through the six points with multiplicity 2 at p1 and p2. Since an irreducible plane cubic has at most one
singular point, this cubic must be reducible and it is the union of a line and a conic, whose meeting points
are the singular points, that is p1 and p2. Thus the line must be `12, and the conic is q123456 and we recover
case 6.

Secondly, suppose that there are only two absolutely irreducible conics in the decomposition. For the union
of these two conics to be singular at p1 and p2, they must pass through p1 and p2. Taking into account the
rationality, there are only three possibilities, cases 9, 10, 11.

Last if the quartic is absolutely irreducible, then it must pass through the six points with multiplicity 2 at p1

and p2.

In the tabular below, we summarize all the possibilities. As noted below, the strict transform ˜̀
12 in Y is

contracted in X via the morphism Y
χ−→ X; this explains why the curve disappears in the middle column.

Then from X to Xs, it is the irreducible effective root q̃123456 that is contracted by the morphism X
ϕ−→ Xs.

Thus on Xs, there are two specific rational points, p the image of the contraction of ˜̀12 and s the image of the
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contraction of q̃123456.∣∣∣4`− 2p1 − 2p2 −
∑6
i=3 pi

∣∣∣ |−KX | |−KXs | Max

on P2 on X on Xs nb. of pts

1 `13 ∪ `24 ∪ `15 ∪ `26
˜̀
13 ∪ ˜̀24 ∪ ˜̀15 ∪ ˜̀26 ϕ∗(˜̀13) ∪ ϕ∗(˜̀24) ∪ ϕ∗(˜̀15) ∪ ϕ∗(˜̀26) 0

2 `14 ∪ `25 ∪ `16 ∪ `23
˜̀
14 ∪ ˜̀25 ∪ ˜̀16 ∪ ˜̀23 ϕ∗(˜̀14) ∪ ϕ∗(˜̀25) ∪ ϕ∗(˜̀16) ∪ ϕ∗(˜̀23) 0

3 2`12 ∪ `35 ∪ `46
˜̀
35 ∪ ˜̀46 ϕ∗(˜̀35) ∪ ϕ∗(˜̀46) 2

4 2`12 ∪ q3456 q̃3456 ϕ∗(q̃3456) q + 2

5 2`12 ∪ q123456 q̃123456 ∪ E1 ∪ E2 {p, s} ∪ ϕ∗(E1) ∪ ϕ∗(E2) 2

6 `12 ∪ q123456 ∪ ` q̃123456 ∪ ˜̀ ϕ∗(˜̀) q + 2

7 `12 ∪ c123456 c̃123456 ϕ∗(c̃123456) Nq (1)

8 `1 ∪ `σ1 ∪ q123456
˜̀
1 ∪ ˜̀σ1 ∪ q̃123456 ϕ∗(˜̀1) ∪ ϕ∗(˜̀σ1 ) 2

9 q12 ∪ q123456 q̃12 ∪ q̃123456 ϕ∗(q̃12) q + 2

10 q1235 ∪ q1246 q̃1235 ∪ q̃1246 ϕ∗(q̃1235) ∪ ϕ∗(q̃1246) 2

11 2q123456 q̃123456 ∪
⋃6
i=3Ei {s} ∪

⋃6
i=3 ϕ∗(Ei) 1

12 t123456 singular at p1, p2 t̃123456 ϕ∗(t̃123456) Nq (1)

Some comments about the numbers of points are in order.
Cases 1 & 2. The four lines `13, `24, `15, `26 are conjugate, they do not meet and thus their union in P2

does not contain any rational point. In the blowing-up of P2 at the six points, the strict transforms of the
lines `13, `24, `15, `26 no longer meet the strict transform of `12. Thus the contraction of this line does not add any
rational point. Since none of the lines `13, `24, `15, `26 can be a tangent line to q123456 at some pi (otherwise the
line and the quadric would have too many intersection points by Bezout), blowing-up the pi, 1 ≤ i ≤ 6, separates
the strict transforms of the lines and the strict transform of the quadric. The contraction of this quadric neither
add rational points. This proves that these configurations do not contain any rational point.

Case 3. The lines `35 and `46 are conjugate to each other. Their intersection point is the unique rational
point of their union in P2. This point is still on ϕ∗(˜̀35) ∪ ϕ∗(˜̀46). The added point is p which comes from the

contraction of ˜̀12. Note that the contraction of q̃123456 does not add any point since the lines `35 and `46 are
separated from q̃123456 in the blow-ups. This is because none of these lines can be a tangent to q123456 at one of
the six points (otherwise the line and the quadric would have too many intersection points by Bezout).

Case 4. The conics q123456 and q3456 are separated by the blowing up of the last four points and thus the
point s does not belong to the final section. The strict transforms of `12 and of q3456 meet at two points that are
mapped to p by the contraction of ˜̀12. If these two points are not rational, p is an added rational point of the
final section.

Case 5 & 11. The resulting sections contain some exceptional curves Ei in their supports since the multi-
plicities at some points pi are strictly greater than the ones expected. Since the points pi are not rational, none
of the Ei contain rational points and the only rational points are {p, s} or {s}.

Case 6. The point p lies on ϕ∗(˜̀) but it comes from the intersection point between ` and `12 (which cannot
be one of the pi since it is a rational point) so no points are added in the contraction of `12. As for the point s,

it lies also on ϕ∗(˜̀) and it could add one more point if ` meet q123456 at two conjugate points.
Case 7. The cubic must be smooth at p1 and p2; indeed if it would be singular at one of these points, by

Galois conjugation, it would be singular at both of them and it would have too many singular points. Thus, to
make the multiplicity greater than 2 at p1, p2, the complementary line must be `12. This line meets the cubic
at p1 and p2 and a third point which must be rational and not on q123456. Therefore, the contraction of ˜̀12 pass
through p but does not add any rational points to ϕ∗(˜̀12). As for the contraction of the strict transform of q123456,
it does not add points either since blowing up the six points separates the cubic and q123456.

Case 8. The meeting point of the curves `1 and `σ1 is necessarily rational and it is the unique rational point

of their union in P2. The strict transforms ˜̀1 and ˜̀σ1 do not meet ˜̀12 and thus the point p does belong to the
final section. The contraction of the root q̃123456 add the point s except if the meeting of the curves `1 and `σ1
already belongs to q123456.

Case 9. The conics q12 and q123456 are separated by the blowing ups. If the conic q12 is chosen in such a way
that the tangent line at p1 equals `12, then q̃12 and ˜̀12 meet at two unrational points in Y and the contraction
of ˜̀12 adds the rational point p to q̃12 in X. This explains why the final number of points is (q + 1) + 1.

Case 10. The two conics are conjugate. Besides p1 and p2, they meet at two other points (Bezout) that can
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be rational. If so these points are the only points of P2(Fq) that belong to the union of the two conics. Blowing
up the six points disconnect the two conics from the strict transforms of `12 and q123456. So no points are added.

Case 12. Since the quartic has at least two singular points, it geometric genus must be at most 1.

As predicted by the class group computations, all the curves on Xs in the linear system are irreducible; they
are not necessarily absolutely irreducible but it turns out that curves that are not absolutely irreducible never
contain too many rational points.

In any case, one has

Nq (−KXs
) ≤ Nq(1).

Since none of the points pi is rational, the surface Y has q2 + q + 1 rational points. Since X is obtained by
contracting ˜̀12, it contains q2 + 1 rational points. In the same way, after contracting q̃123456, the surface Xs

has q2 − q + 1 rational points. Since q2 − q + 1 ≤ Nq(1) for q ∈ {2, 3}, the evaluation map may be non injective
and we do not consider the codes with these two values.

Proposition 4.4. Suppose that q 6= 2, 3. Let p1, . . . , p6 ∈ P2
Fq

be six conconic points, such that p1, p2 and p3, p4, p5, p6

are conjugate. The anticanonical code of the weak del Pezzo surface obtained by blowing up these six points and
then blowing down the strict transform of the line (p1p2) has parameters [q2 − q + 1, 5,≥ q2 − q + 1−Nq (1)].

Computation of the global sections from P2. — Let Q be a quadratic polynomial that defines q123456

and Lij a linear form that defines the line `ij . Then∣∣∣∣∣4`− 2p1 − 2p2 −
6∑
i=3

pi

∣∣∣∣∣ = 〈QL12X,QL12Y,QL12Z,L
2
12L35L46, L13L24L15L26〉Fq

The three first sections are clearly linearly independent. The fourth one cannot be a linear combination of the
three first ones since otherwise Q would be reducible. Last, the fifth one cannot be a linear combination of the
four first ones since otherwise L12 would divide L13L24L15L26.

4.5 Degree 4, singularity of type 4A1

This example corresponds to the type number 48 in degree 4 [BH22]. We recover an example already studied by
Koshelev [Kos20, §1.2]. Our point of view slightly differs from Koshelev’s one, so even if this example appears in
the literature, we choose to go into details.

Configuration to blow-up and down. — The context is still the one described in (8) with a non trivial

map Y
χ−→ X.

Let p1, p2 = pσ1 , p3 = pσ
2

1 , p4 = pσ
3

1 ∈ P2 be four conjugate points in general position (no three of them
are collinear) and, as usual, let `12, `23, `34, `14 denote the lines (p1p2), (p2p3), (p3p4), (p1p4); they are conjugate.
Let p5 be the intersection point of `12 and `34 and p6 be the intersection point of `23 and `14. They are also
conjugate and we denote by `56 the rational line passing through p5, p6.

p1
p2

p3

p4

•
p5

•p6

p2 = pσ1
p3 = pσ

2

1

p4 = pσ
3

1

p6 = pσ5

We blow up these six points to obtain a degree 3 weak del Pezzo surface Y . The strict transform of the line `56,
of class E0 − E5 − E6, is an exceptional curve that can be contracted to obtain the degree four weak del Pezzo
surface X we consider here. The anticanonical model of this surface has four singular points of type A1 (since
the four irreducible effective roots do not intersect, see below).

Computation of the divisor class groups. — Over Fq, we know that Cl(Y ) =
⊕6

i=0 ZEi and that −KY =

3E0−
∑6
i=1Ei. Moreover the surface Y has four irreducible effective roots, the strict transforms of the lines `125, `236, `345, `146

whose conjugate classes in Cl(Y ) are:

E0 − E1 − E2 − E5, E0 − E2 − E3 − E6, E0 − E3 − E4 − E5, E0 − E1 − E4 − E6.
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The group Cl(X) identifies with Z(E0 − E5 − E6)⊥ inside Cl(Y ). Since

Cl(Y ) = Z(E0 − E5 − E6)
⊥
⊕

[
Z(E0 − E5)⊕ Z(E0 − E6)⊕

⊕4
i=1 ZEi

]
∑6
i=0 aiEi = (−a0 − a5 − a6)(E0 − E5 − E6) + (a0 + a6)(E0 − E5) + (a0 + a5)(E0 − E6) +

∑4
i=1 aiEi

(9)

one has
Cl(X) = Z(E0 − E5)⊕ Z(E0 − E6)⊕ ZE1 ⊕ ZE2 ⊕ ZE3 ⊕ ZE4.

In particular,

−KX = 2(E0 − E5) + 2(E0 − E6)− E1 − E2 − E3 − E4 = 4E0 − 2E5 − 2E6 − E1 − E2 − E3 − E4.

On X, there are still four effective roots, the image by the contraction of the effective roots on Y :

R = Z(E0 − E1 − E2 − E5)⊕ Z(E0 − E2 − E3 − E6)⊕ Z(E0 − E3 − E4 − E5)⊕ Z(E0 − E1 − E4 − E6).

On X there are 16 exceptional classes,

(E0 − Ei)− Ej , i ∈ {5, 6}, j ∈ {1, 2, 3, 4}, (E0 − E5) + (E0 − E6)− Ei1 − Ei2 − Ei3 , {i1, i2, i3} ⊂ {1, 2, 3, 4},

and E1, E2, E3, E4. Only these last four classes are represented by irreducible exceptional curves. We recover the
graph number 9 of the Proposition 6.1 of Coray & Tsfasman [CT88].

The Galois group acts as as a 4-cycle on the roots and as (E1E2E3E4) on the (−1)-curves. Let us put F =
(E0 − E5) + (E0 − E6) and E = E1 + E2 + E3 + E4, in such a way that F ·2 = 2, E ·2 = −4 and F · E = 0. Then
one has:{

R = Z2(F − E)

Cl(X) = Z(F − E)⊕ ZE
=⇒ Cl(Xs) = Cl(X)/R

'−→ Z/2Z(F − E) ⊕ ZE
aF + bE 7−→ a(F − E) mod R + (a+ b)E

As for the Cartier class group, we find CaCl(Xs) = R⊥ = Z(2F − E) = Z(−KX) which embeds in Cl(Xs)
via −KX 7→ E . Thus, via the canonical embedding, CaCl(Xs) and the free part of Cl(Xs) are isomorphic.

Types of decomposition into irreducible components in |−KXs
|. — The situation looks like the preceding

one except that the multiplicity is at points p5, p6 here. One has:∣∣∣4`−∑4
i=1 pi − 2p5 − 2p6

∣∣∣
Y
−→

∣∣∣4E0 − 2E5 − 2E6 −
∑4
i=1Ei

∣∣∣
X
−→ |−KXs |Xs

C 7−→ χ∗
(
C]
)

7−→ ϕ∗
(
χ∗
(
C]
))
.

Thus we are reduced to list all the types of irreducible decompositions of quadrics passing through the six points,
the last two with multiplicities at least 2.

The orbits of lines of degree less than 4 that involve the six points are

`5 ∪ `6, `1 ∪ `2 ∪ `3 ∪ `4, `56, `13 ∪ `24, and `125 ∪ `236 ∪ `345 ∪ `146.

There are only two ways (cases 1 and 2 below) to combine these configurations in order to obtain a curve in the
expected linear system.

The orbits of conics of degree less than 4 that involve the six points are q1234, q56 and q1356 ∪ q2456. There are
only two ways (cases 3 and 4 below) to combine the configurations of lines and conics in order to obtain a curve
in the expected linear system.

If the decomposition contains a cubic, it must be smooth at p5 and p6 and the complement must be `56; this
is case 5. This leads to the list below. Let us note that on X the curve ˜̀56 in Y is contracted by χ. On Xs, this
contraction is mapped to a smooth rational point p. This surface contains also four singular points si, 1 ≤ i ≤ 4,
coming from the contraction of the four roots; they are conjugate and of degree 4.∣∣∣4`−∑4

i=1 pi − 2p5 − 2p6

∣∣∣ |−KX | |−KXs
| Max

on P2 on X on Xs nb. of pts

1 2`56 ∪ `13 ∪ `24
˜̀
13 ∪ ˜̀24 ϕ∗(˜̀13) ∪ ϕ∗(˜̀24) 2

2 `125 ∪ `236 ∪ `345 ∪ `146
˜̀
125 ∪ ˜̀236 ∪ ˜̀345 ∪ ˜̀146 ∪

⋃4
i=1Ei {si} ∪

⋃4
i=1 ϕ∗(Ei) 0

3 2`56 ∪ q1234 q̃1234 ϕ∗(q̃1234) q + 2

4 q1356 ∪ q2456 q̃1356 ∪ q̃2456 ϕ∗(q̃1356) ∪ ϕ∗(q̃2456) 2

5 c123456 ∪ `56 c̃123456 ϕ∗(c̃123456) Nq (1)

6 t123456 singular at p5, p6 t̃123456 ϕ∗(t̃123456) Nq (1)
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Some comments on the number of rational points.
Case 1. The lines `13 and `24 are conjugate, their meeting point is the unique rational point of their union.

After the contraction of ˜̀56, these two lines have one more rational point in common, the point p.
Case 3. If q1234 meets `56 at two conjugate points, the contraction of ˜̀56 adds the point p to the other rational

points.
Case 4. Blowing up p5 and p6 separates the strict transforms q̃1356 and q̃2456 from `56. So the contraction of

this curve do not add any point. On P2 the union of conics q̃1356 and q̃2456 has at most two rational points: their
meeting points that differ from p5, p6 if they are rational.

Case 5. Necessarily the cubic is smooth at p5, p6 and the tangent lines at these points cannot be equal to `56.
Therefore blowing up p5, p6 separates the curves ˜̀56 and c̃123456 above p5 and p6. Besides p5, p6 the curves `56

and c123456 meet at a third point (Bezout) which is necessarily rational. Via the contraction of ˜̀56, this line
concentrates at this third point and no points are added on c̃123456.

Case 6. Necessarily blowing up p5 and p6 disconnects the strict transforms t̃123456 and ˜̀56. Moreover, it
desingularizes the quartic t since the singularities at p5 and p6 must be ordinary. Blowing up p1, . . . , p4 also
disconnects t̃ from all the effective roots. Finally ϕ∗(t123456) turns to be an elliptic curve.

Finally Nq(−KXs) ≤ Nq(1).

Since none of the points pi is rational, #X(Fq) = #P2(Fq) = q2 +q+1. Then contracting the rational line ˜̀56

decreases the number by q and #Xs(Fq) = q2 + 1. Except for q = 2, this number is stricly greater that Nq(1)
and the evaluation map is injective.

Proposition 4.5. Suppose q 6= 2. Let p1, p2 = pσ1 , p3 = pσ
2

1 , p4 = pσ
3

1 ∈ P2
Fq

be four conjugate points in general

position (no three of them are collinear) and let p5 (resp. p6) be the point of intersection of the lines (p1p2)
and (p3p4) (resp. (p2p3) and (p1p4)). The anticanonical code of the weak del Pezzo surface obtained by blowing
up these six points and then blowing down the strict transform of the line (p5p6) has parameters [q2 + 1, 5,≥
q2 + 1−Nq (1)].

As proved by Koshelev [Kos20, §1.2], for some values of q, the minimum distance can be improved by one.
Since the argument is very nice, we choose to briefly sketch it below. The idea is to prove that all the elliptic
curves in our linear system must have a rational 2-torsion point and thus an even number of points. Since for
some q, the maximum Nq(1) is odd, this means that Nq (−KXs

) < Nq(1) and our bound for the minimum distance
can be improved by 1. Let c be a cubic passing through the six points. Then, for any choice of the origin, the
alignments of points permit to show that:

p1 + p2 + p5

= p1 + p4 + p6

= p2 + p3 + p6

= p3 + p4 + p5

=⇒

p1 − p3

= p2 − p4

= p4 − p2

= p6 − p5

=⇒ 2(p2 − p4) = 0,

and these points must be rational since p2 − p4 = p6 − p5 with p5, p6 conjugate. The case of the quartics in the
linear system works in the same way but it is a little bit more technical since we need to know the group law on
this kind of curve.

Computation of the global sections from P2. — In this example, we do not find a nice explicit basis for
the global sections. Instead, we choose to present a magma code that permits to construct the generator matrix.

1 c l e a r ;

q := 7 ;
Fq<xi> := F in i t eF i e l d (q ) ;
P2<X,Y,Z> := Pro jec t iveSpace (Fq , 2) ; XYZ<X,Y,Z> := CoordinateRing (P2) ;

6 phi := map < P2 −> P2 | [Xˆq ,Yˆq ,Zˆq ] > ;

// Some bas i c r ou t i n e s such as v e r i f y i n g i f some po int s are in gene ra l po s i t i on
load ” U t i l i t i e s .magma” ;

11 // Choose randomly a degree 4 point in gene ra l p o s i t i on .
repeat

p1 := Random(P2( ext< Fq | 4>)) ;
p2 := phi ( p1 ) ; p3 := phi ( p2 ) ; p4 := phi ( p3 ) ;
Cl1234 := Cluster ( p1 ) ;

16 un t i l EnPosit ionGenerale ( [ p1 , p2 , p3 , p4 ] ) ;

//// To compute the po int s p5 , p6 we need the extend the s c a l a r s to Fq4
P2 Fq4 := BaseChange (P2 , ext < Fq | 4 >) ;

21 p1 Fq4 := P2 Fq4 ! ElementToSequence ( p1 ) ; p2 Fq4 := P2 Fq4 ! ElementToSequence ( p2 ) ;
p3 Fq4 := P2 Fq4 ! ElementToSequence ( p3 ) ; p4 Fq4 := P2 Fq4 ! ElementToSequence ( p4 ) ;

L12 := Scheme (P2 Fq4 , Sec t i ons ( LinearSystem ( LinearSystem (P2 Fq4 , 1) , [ p1 Fq4 , p2 Fq4 ] ) ) [ 1 ] ) ;
L34 := Scheme (P2 Fq4 , Sec t i ons ( LinearSystem ( LinearSystem (P2 Fq4 , 1) , [ p3 Fq4 , p4 Fq4 ] ) ) [ 1 ] ) ;

26
p5 Fq4 := Points (L12 meet L34 ) [ 1 ] ;
p5 := P2( ext < Fq | 2 >)!ElementToSequence ( p5 Fq4 ) ;
//// End of the computation over Fq4

31 p6 := phi ( p5 ) ;
Cl56 := Cluster ( p5 ) ;
Cl56 square := Cluster (P2 , Id ea l ( Cl56 )ˆ2) ;
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L := LinearSystem ( LinearSystem (P2 , 4) , Cl1234 ) ;
36 L := LinearSystem (L , Cl56 square ) ;

TheSections := Sec t i ons (L) ;

L56 := Scheme (P2 , Sec t i ons ( LinearSystem ( LinearSystem (P2 , 1) , Cl56 ) ) [ 1 ] ) ;
S := ( Points (P2) d i f f Points (L56 ) ) j o i n {@ Points (L56 ) [ 1 ]@} ;

41
G := Matrix (Fq,5 ,1+qˆ2 , &cat [ [ Evaluate ( f , ElementToSequence (p ) ) : p in S ] : f in TheSections ] ) ;
TheCode := LinearCode (G) ;

p r i n t f ”Generator matrix G =\n%o\n” , G ;
46 l g := Length (TheCode ) ; dim := Dimension (TheCode ) ; d min := MinimumWeight (TheCode ) ;

p r i n t f ”q = %o ,\n [ n , k , d ] = [%o , %o , %o ]\n” , q , lg , dim , d min ;
p r i n t f ”What was provided ( not taking in to account Kashelev remark ) = [%o , 5 , %o ] ” ,

qˆ2+1 , qˆ2 − q − Floor (2* Sqrt (q ) ) ;

4.6 Degree 4, singularity of type A2

This example corresponds to the type number 30 in degree 4 [BH22]. This type works almost as the one described
in section 4.5.

Configuration to blow-up and down. — Let p1, p2 = pσ1 , p3 = pσ
2

1 , p4 = pσ
3

1 ∈ P2 be four conjugate points
in general position (no three of them are collinear). The two lines (p1p3) and (p2p4) are conjugate. We choose a
degree 2 point p5 on (p1p3) and we let p6 = pσ5 which lies on (p2p4).

•p1 •p2

•p3•p4

•p5

•p6

`135

`246

`56

p2 = pσ1
p3 = pσ

2

1

p4 = pσ
3

1

p6 = pσ5

The surfaces of the diagram (8) are the following: we blow up the six points to obtain the degree 3 weak del Pezzo
surface Y . On this surface, the strict transform of the line `56, of class E0−E5−E6, is an exceptional curve that
can be contracted to obtain the weak degree four weak del Pezzo surface X defined over Fq. The anticanonical
model has a unique singular point of type A2 (since there are only two irreducible effective root that meet, see
below).

Computation of the divisor class groups. — Over Fq, we know that Cl(Y ) =
⊕6

i=0 ZEi and that −KY =

3E0−
∑6
i=1Ei. There are only two irreducible effective roots on Y , the strict transforms of the lines `135 and `246

whose conjugate classes in Cl(Y ) are E0 − E1 − E3 − E5 and E0 − E2 − E4 − E6.
The group Cl(X) identifies with Z(E0−E5−E6)⊥ inside Cl(Y ). We recover the same orthogonal decomposition

as in (9). In particular, we still have −KX = 4E0 −
∑4
i=1Ei − 2E5 − 2E6. On X there are still two (conjugate)

irreducible effective roots, of classes E0 − E1 − E3 − E5 and E0 − E2 − E4 − E6.
We follow the same computation as in section 4.5 and we still put E = (E0 − E5) + (E0 − E6) and F =

E1 + E2 + E3 + E4. Then, for X we have:

−KX = 2F − E , R = Z(F − E), and Cl(X) = Z(F − E)⊕ ZE ,

and for Xs we deduce that:

CaCl(Xs) = Z(2F − E) = Z(−KX)
Cl(Xs)

'−→ ZE
aF + bE 7−→ (a+ b)E

CaCl(Xs)
'→ Cl(Xs)

−KX 7→ E

The canonical embedding induces an isomorphism between the two class groups.

Types of decomposition into irreducible components in |−KX |. — Since the two class groups are
isomorphic and free of rank one, all the sections are necessarily irreducible. However, they can be absolutely
reducible and we need to review all the possibilities.

As in section 4.5, we are reduced to list all the types of irreducible decompositions of quartics passing through
the six points, the last two with multiplicities at least 2. We follow the same line.

The orbits of lines of degree less than 4 that involve the six points are

`5 ∪ `6, `1 ∪ `2 ∪ `3 ∪ `4, `56, `12 ∪ `23 ∪ `34 ∪ `14, `16 ∪ `25 ∪ `36 ∪ `45, and `135 ∪ `246.
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There are five ways (cases 1 to 5 below) to combine these configurations in order to obtain a curve in the expected
linear system.

The orbits of conics of degree less than 4 that involve the six points are q1234 and q56. Note that compared
to the example of section 4.5, the orbit q1356 ∪ q2456 does not appear since a conic q1356 cannot be irreducible
otherwise it would have three intersection points with the line `135. There are only two ways (cases 6 and 7 below)
to combine the configurations of lines and conics in order to obtain a curve in the expected linear system.

If the decomposition contains a cubic, it must be smooth at p5 and p6 and the complement must be `56; this
is case 8.

This leads to the list below. In Y , the strict transforms ˜̀135 and ˜̀246 are separated from the strict transform ˜̀
56.

In X this last curve is contracted to a smooth rational point p. Last, another difference from the example of
section 4.5: the two effective roots of X meet and they are thus contracted by the anticanonical morphism ϕ∗
onto the same point s. This point is the unique singular point of Xs and it is necessarily a rational point.∣∣∣4`−∑4

i=1 pi − 2p5 − 2p6

∣∣∣ |−KX | |−KXs | Max

on P2 on X on Xs nb. of pts

1 2`56 ∪ `135 ∪ `246
˜̀
56 ∪ ˜̀135 ∪ ˜̀246 ∪ E5 ∪ E6 ϕ∗(E5) ∪ ϕ∗(E6) ∪ {s, p} 2

2 `56 ∪ `135 ∪ `246 ∪ ` ˜̀
135 ∪ ˜̀246 ∪ ˜̀ ϕ∗(˜̀) q + 2

3 `16 ∪ `25 ∪ `36 ∪ `45
˜̀
16 ∪ ˜̀25 ∪ ˜̀36 ∪ ˜̀45 ϕ∗(˜̀16) ∪ ϕ∗(˜̀25) ∪ ϕ∗(˜̀36) ∪ ϕ∗(˜̀45) 0

4 `5 ∪ `6 ∪ `135 ∪ `246
˜̀
5 ∪ ˜̀6 ∪ ˜̀135 ∪ ˜̀246 ϕ∗(˜̀5) ∪ ϕ∗(˜̀6) ∪ {s} 2

5 2`135 ∪ 2`246
˜̀
135 ∪ ˜̀246 ∪ E1 ∪ E2 ∪ E3 ∪ E4 ϕ∗(E1) ∪ ϕ∗(E2) ∪ ϕ∗(E3) ∪ ϕ∗(E4) 1

6 `135 ∪ `246 ∪ q56
˜̀
135 ∪ ˜̀246 ∪ q̃56 ϕ∗(q̃56) ∪ {s} q + 2

7 2`56 ∪ q1234 q̃1234 ∪ {p} ϕ∗(q̃1234) ∪ ϕ∗({p}) q + 2

8 c123456 ∪ `56 c̃123456 ϕ∗(c̃123456) Nq (1)

9 t123456 singular at p5, p6 t̃123456 ϕ∗(t̃123456) Nq (1)

Some comments about the numbers of points.
Case 1 & 5. The exceptional curves E5 and E6 do not contain any rational points. The other components

are all contracted to the points p or s. The same is true in case 5, without the point p.
Case 2. The ending curve passes through p but the contraction of ˜̀56 does not add any rational point since `56

and ` meet at a rational point. The ending curve passes through s and the contraction of the roots add a point
if ` meet `135 and `246 outside the meeting point of these two curves.

Case 3. All theses lines and `135, `246 and `56 are separated by the blowing ups. Since the four lines cannot
contain any rational point, neither does their image in Xs.

Case 4. The conjugate lines `5 and `6 contain a unique rational point, their intersection point, to which is
added the point s.

Case 6. The curve q̃56 no longer meets ˜̀135, ˜̀246 and ˜̀56. The ending curve contains the rational points of q56

plus the point s.
Case 7. If q1234 meets `56 at two conjugate points then in X, after ˜̀56 being contracted, the strict trans-

form q̃1234 passes through p which is an additional rational point. Necessarily the blowing ups of p1, . . . , p4

separate the strict transforms q̃1234, ˜̀135 and ˜̀246 and the roots contraction does not add any point.
Cases 8 & 9. Same as §4.5.
Finally Nq (−KXs

) ≤ Nq(1).

As in the previous example, one has #Xs(Fq) = q2 +1, and for q = 2, the evaluation map may not be injective.

Proposition 4.6. Suppose q 6= 2. Let p1, p2 = pσ1 , p3 = pσ
2

1 , p4 = pσ
3

1 ∈ P2 be four conjugate points in general
position (no three of them are collinear), let p5 be a point of the line (p1p3) inside P2(Fq2) and let p6 = pσ5 in such
a way that p6 lies on (p2p4). The anticanonical code of the weak del Pezzo surface obtained by blowing up these six
points and then blowing down the strict transform of the line (p5p6) has parameters [q2 + 1, 5,≥ q2 + 1−Nq (1)].

Computation of the global sections from P2. — This example looks like the previous one and we do not
find a nice explicit basis for the global sections. A slightly modification of the code given for the previous example
leads to a program which permits to compute a generator matrix.

4.7 Degree 4, singularity of type D5

This example corresponds to the type number 58 in degree 4 [BH22].
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Configuration to blow-up. — In this example, the surfaces Y and X of diagram (8) are equal and we obtain
directly the surface X by blowing up P2 at five rational points p1 ≺ p2 ≺ · · · ≺ p5, with p1, p2, p3 collinear. Let
us denote by π1, . . . , π5 these five blowups at p1, . . . , p5 respectively:

P2 X1 X2 X3 X4 Xπ1 π2 π3 π4 π5

π

The fact that p1, p2, p3 are collinear means that there is a line `123 of P2 whose strict transform by π1 passes
through p2 and whose strict transform by π2 ◦ π1 passes through p3. The anticanonical model of this weak
del Pezzo surface has a unique singular point of type D5 (since there are five irreducible effective roots whose
intersection graph is D5, see the picture at the end of this example).

Computation of the divisor class groups. — Since all the blown-up points are rational, there is no need
to work with the base change X. The irreducible effective classes of roots are the strict transform of `123 and
of E1, E2, E3, E4, whose classes in Cl(X) are:

E0 − E1 − E2 − E3, E1 − E2, E2 − E3, E3 − E4, and E4 − E5.

The submodule R, generated by these classes, is a direct summand and for example Cl(X) = R ⊕ ZE5; the
projection onto the factor ZE5 leads to an isomorphism Cl(X)/R → ZE5. As for the submodule R⊥, it is defined
by the equations a1 = a2 = · · · = a5 and a0 + a1 + a2 + a3 = 0 and thus R⊥ = ZKX . Since

−KX = 3 (E0 − E1 − E2 − E3) + 2 (E1 − E2) + 4 (E2 − E3) + 6 (E3 − E4) + 5 (E4 − E5) + 4E5,

via the preceding isomorphism, the module R⊥ embeds via −KX 7→ 4E5.
In brief, both divisor class groups CaCl(Xs) and Cl(Xs) are free rank one Z-modules, the first one being of

index 4 in the latter via the canonical embedding.
For this example, it makes sense to reverse the order of the paragraphs and we start to compute a basis of the

global sections.

Computation of the global sections from P2. — We need to compute a basis of the sublinear system
on P2

|3`− p1 − · · · − p5| .

So we consider a cubic of P2
X,Y,Z whose restriction to the affine space A2

x1,y1 (x1 = X
Z , y1 = Y

Z and Z 6= 0) is
defined by the equation:

C1(x1, y1) = a30x
3
1 + a21x

2
1y1 + a20x

2
1 + a12x1y

2
1 + a11x1y1 + a10x1 + a03y

3
1 + a02y

2
1 + a01y1 + a00 = 0

We choose p1 = (0, 0) ∈ A2
x1,y1 . The cubic passes through the point p1 if and only if a00 = 0.

Let x2, y2 be the coordinates of the affine chart of the blowing up of A2
x1,y1 at p1 defined by x1 = x2

and y1 = x2y2. In this chart, the exceptional divisor E1 has equation x2 = 0 and the strict transform of C1 is
defined by:

C2(x2, y2) =
1

x2
C1(x2, x2y2) = a30x

2
2 +a21x

2
2y2 +a20x2 +a12x

2
2y

2
2 +a11x2y2 +a10 +a03x

2
2y

3
2 +a02x2y

2
2 +a01y2 = 0.

We choose p2 = (0, 0) ∈ A2
x2,y2 which corresponds to the line `123 with affine equation y1 = 0 in A2

x1,y1 or Y. = 0
in P2

X,Y,Z . The cubic passes through the point p2 if and only if a10 = 0.

Let x3, y3 be the coordinates of the affine chart of the blowing up of A2
x2,y2 at p2 defined by x2 = x3

and y2 = x3y3. In this chart, the exceptional divisor E2 has equation x3 = 0 and the strict transform of C2 is
defined by:

C3(x3, y3) =
1

x3
C2(x3, x3y3) = a30x3 + a21x

2
3y3 + a20 + a12x

3
3y

2
3 + a11x3y3 + a03x

4
3y

3
3 + a02x

2
3y

2
3 + a01y3 = 0.

Since p1, p2, p3 are colinear, we have to choose p3 = (0, 0) ∈ A2
x3,y3 . The cubic passes through the point p3 if and

only if a20 = 0.
Let x4, y4 be the coordinates of the affine chart of the blowing up of A2

x3,y3 at p3 defined by x3 = x4

and y3 = x4y4. In this chart, the exceptional divisor E3 has equation x4 = 0 and the strict transform of C3 is
defined by:

C4(x4, y4) =
1

x4
C2(x4, x4y4) = a30 + a21x

2
4y4 + a12x

4
4y

2
4 + a11x4y4 + a03x

6
4y

3
4 + a02x

3
4y

2
4 + a01y4 = 0.
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Since p4 ∈ E3, we have to choose p4 = (0, α) ∈ A2
x4,y4 and since p1, p2, p3, p4 are not colinear, necessarily α 6= 0.

The cubic passes through the point p4 if and only if a30 + αa01 = 0.
Last, let x5, y5 be the coordinates of the affine chart of the blowing up of A2

x4,y4 at p4 defined by x4 = x5

and y4 = α + x5y5. In this chart, the exceptional divisor E4 has equation x5 = 0 and the strict transform of C4

is defined by:

C5(x5, y5) =
1

x5
C2(x5, x5y5)

=
1

x5

[
a30 + a21x

2
5(α+ x5y5) + a12x

4
5(α+ x5y5)2 + a11x5(α+ x5y5) + a03x

6
5(α+ x5y5)3

+a02x
3
5(α+ x5y5)2 + a01(α+ x5y5)

]
≡ αa11 + αa21x5 + a01y5 + a11x5y5 mod x2

5Fq[x5, y5].

(10)

Since p5 ∈ E4, one can choose p5 = (0, β) ∈ A2
x5,y5 . The cubic passes through the point p5 if and only if αa11 +

βa01 = 0.
To sum up, the global sections are defined by

a00 = a10 = a20 = 0, a30 = −αa01, and a11 = −β
α
a01.

The fact that α 6= 0 is important here. In the projective setting, this leads to the basis

|3`− p1 − · · · − p5| =
〈
αY Z2 − βXY Z − α2X3, Y 3, X2Y,XY 2, Y 2Z

〉
Fq
. (11)

Types of decomposition into irreducible components in |−KX |. — Since CaCl(Xs) if of index 4 in-
side Cl(Xs), even if these two groups are free of rank 1, an irreducible Cartier divisor may decompose into Weil
irreducible components. In order to lower bound the minimum distance, we need to review all these kinds of
decompositions into irreducible components for the curves of the anticanonical linear system on Xs. As usual, we
start form P2 and use the one-to-one correspondences:

|3`− p1 − · · · − p5|P2 −→ |−KX |X −→ |−KXs
|Xs

C 7−→ C] 7−→ ϕ
(
C]
)

where C] denotes the virtual transform of C in the composition of the five blowups.
Thanks to the preceding computation, for every curve in |3`− p1 − · · · − p5|P2 there exists α1, . . . , α5 ∈ Fq

such this curves is defined by

α1

(
αY Z2 − βXY Z − α2X3

)
+ α2Y

3 + α3X
2Y + α4XY

2 + α5Y
2Z = 0.

We deduce that such a curve can decompose in six different ways, as listed in the tabular below:

� either a cubic c12345 for which p1 is a smooth flex point with tangent line equal to `123, if α1 6= 0 (case 1);

� or a cubic singular at p1 which contains `123 as a component, if α1 = 0, the complementary component, of
discriminant α3α

2
5 (up to a constant), being either

– a quadric q12 smooth at p1 with tangent line `123, if α3 6= 0 and α5 6= 0 (case 2),

– or the union of two lines, if α3 6= 0 and α5 = 0, α3 = 0 and α5 6= 0, α3 = α5 = 0 and α4 6= 0,
α3 = α4 = α5 = 0 (cases 3, 4, 5, 6 respectively).∣∣∣3`−∑5

i=1 pi

∣∣∣ |−KX | |−KXs
| Max

on P2 on X on Xs nb. of pts

1 c12345 c̃12345 ϕ∗(c̃12345) Nq (1)

2 `123 ∪ q12
˜̀
123 ∪ q̃12 ∪ Ẽ1 ∪ 2Ẽ2 ∪ 2Ẽ3 ∪ Ẽ4 ϕ∗(q̃12) q + 1

3 `123 ∪ `1 ∪ `′1 ˜̀
123 ∪ 2Ẽ1 ∪ 2Ẽ2 ∪ 2Ẽ3 ∪ Ẽ4 ∪ ˜̀1 ∪ ˜̀′1 ϕ∗(˜̀1) ∪ ϕ∗(˜̀′1) 2q + 1

4 2`123 ∪ ` 2˜̀123 ∪ Ẽ1 ∪ 2Ẽ2 ∪ 3Ẽ3 ∪ 2Ẽ4 ∪ E5 ∪ ˜̀ ϕ∗(E5) ∪ ϕ∗(˜̀) 2q + 1

5 2`123 ∪ `1 2˜̀123 ∪ 2Ẽ1 ∪ 3Ẽ2 ∪ 4Ẽ3 ∪ 3Ẽ4 ∪ 2E5 ∪ ˜̀1 2ϕ∗(E5) ∪ ϕ∗(˜̀1) 2q + 1

6 3`123 3˜̀123 ∪ 2Ẽ1 ∪ 4Ẽ2 ∪ 6Ẽ3 ∪ 5Ẽ4 ∪ 4E5 4ϕ∗(E5) q + 1
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Let us give details for the computation of the virtual transform π](C) if, for example, C = `123 ∪ `1 ∪ `′1:

C1 = π]1(C) = ˜̀
123 + ˜̀1 + ˜̀′1 + 2E1 [p1 ∈ `123 ∩ `1 ∩ `′1 ⇒ mp1(C) = 3]

C2 = π]2(C1) = ˜̀
123 + ˜̀1 + ˜̀′1 + 2Ẽ1 + 2E2

[
p2 ∈ ˜̀123 ∩ E1 ⇒ mp2(C1) = 3

]
C3 = π]3(C2) = ˜̀

123 + ˜̀1 + ˜̀′1 + 2Ẽ1 + 2Ẽ2 + 2E3

[
p3 ∈ ˜̀123 ∩ E2 ⇒ mp3(C2) = 3

]
C4 = π]4(C3) = ˜̀

123 + ˜̀1 + ˜̀′1 + 2Ẽ1 + 2Ẽ2 + 2Ẽ3 + E4 [p4 ∈ E3 ⇒ mp4(C3) = 2]

C] = π]5(C4) = ˜̀
123 + ˜̀1 + ˜̀′1 + 2Ẽ1 + 2Ẽ2 + 2Ẽ3 + Ẽ4 [p5 ∈ E4 ⇒ mp5(C4) = 1] .

This leads to the following decomposition of the canonical class into a sum of effective classes

−KX = (E0 − E1 − E2 − E3) + (E0 − E1) + (E0 − E1) + 2(E1 − E2) + 2(E2 − E3) + 2(E3 − E4) + (E4 − E5)

The intersection graph of the irreducible effective roots in X is connected (see figure below) and all these curves
are contracted by the morphism ϕ to a single rational singular pointy s (of singularity type D5).

on X

Ẽ1(−2)

Ẽ2(−2)

Ẽ3(−2)

˜̀
123(−2)

Ẽ4(−2)

E5(−1)

ϕ∗

ϕ∗(E5)

•s
on Xs

We comment on the numbers of points.
Cases 2 & 6. All the components in X are roots that are contracted, except q̃12 and E5 respectively. These

two strict transforms meet the tree of roots at only one point and by ϕ∗ they are mapped to isomorphic curves
that pass through s.

Case 3. Except ˜̀1 and ˜̀′1, all the components on X are irreducible effective roots and they are mapped to

the point s by the morphism ϕ∗. After the contraction, the curves ϕ∗(˜̀1) and ϕ∗(˜̀′1) meet at this singular point,
thus their union contains 2q + 1 rational points.

Cases 4 & 5. The line E5 does not intersect the lines ˜̀ or ˜̀1 in X. However, since ` and `123 meet at some
point of P2 (not equal to p1), the lines ˜̀and ˜̀123 intersect in X; in the same way since `1 passes through p1, the

lines ˜̀1 and Ẽ1 intersect in X. Therefore, ϕ∗(E5) and ϕ∗(˜̀) or ϕ∗(E5) and ϕ∗(˜̀1) both intersect at s. Thus the
two unions has 2q + 1 rational points.

Finally Nq (−KXs
) = 2q + 1.

The surface Xs has a unique singular point s. All the irreducible effective roots of X, that is ˜̀123, Ẽ1, . . . , Ẽ4

are contracted to this single point. The last exceptional curve E5 meets E4 and thus ϕ(E5) passes through s.
In conclusion the rational points of Xs(Fq) are in one-to-one correspondence with

(
P2(Fq) \ `123(Fq)

)
∪E5(Fq),

which counts q2 + q + 1 elements. This number is always strictly greater that 2q + 1 and the evaluation map is
always injective.

Proposition 4.7. Let p1 ≺ p2 ≺ p3 ≺ p4 ≺ p5 be infinitely near rational points. Suppose that the first three
ones are collinear. The anticanonical code of the weak del Pezzo surface obtained by blowing up these points has
parameters [q2 + q + 1, 5, q2 − q].

The construction of a generator matrix of this code is a nice application of proposition 3.3. It consists of
two blocks, the left one, of size 5 × q2, contains the evaluations of the five global sections of (11) at every point
of P2(Fq)\`123(Fq), the right one, of size 5×(q+1) contains the evaluations of the homogeneous parts of degree 1
of the five global sections of (11) at every point of P1(Fq). Letting y5 = β + z5 in (10), this homogeneous part of
degree 1 equals (αa21 + βa11)x5 + a01z5. Finally, we get the explicit matrix:

αyz2 − βxyz − α2x3
... −β2u+ αv

...

y3
... 0

...
x2y (x : y : z) ∈ P2(Fq) | y 6= 0 αu (u : v) ∈ P1(Fq)

xy2
... 0

...

y2z
... 0

...


,

where α ∈ F∗q and β ∈ Fq.
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4.8 Degree 3, singularity of type A1

This example corresponds to the type number 11 in degree 3 [BH22].

Configuration to blow-up and down. — We blow up six conjugate points p1, . . . , p6 ∈ P2 on a smooth
conic q123456.

p1
p2

p3

p4
p5

p6

q123456

p2 = pσ1
p3 = pσ

2

1

p4 = pσ
3

1

p5 = pσ
4

1

p6 = pσ
5

1

The resulting surface X is a weak del Pezzo of degree 3, whose anticanonical model Xs has a unique singular
point of type A1.

Computation of the divisor class groups. — We have:

Cl(X) =

6∑
i=0

ZEi and Cl(X) = ZE0 ⊕ ZE , where E =

6∑
i=1

Ei.

There is a unique irreducible effective root, the strict transform of the conic q123456, whose class is 2E0 − E . The
root module R, generated this class, is a direct summand, Cl(X) = R ⊕ ZE0. The projection onto the second
factor leads to an isomorphism

Cl(X)/R −→ ZE0

E0 mod R 7−→ E0

E mod R 7−→ 2E0

.

As for the module R⊥, inside Cl(X) it is defined by the single equation 2a0 + a1 + · · · + a6 = 0; after taking
the Galois invariants, we obtain CaCl(Xs) = ZKX , whose image by the previous isomorphism is also ZE0.
Therefore CaCl(Xs) ' Cl(Xs) and both of them are free of rank one.

Types of decomposition into irreducible components in |−KX |. — This proves that all the sections of
the anticanonical divisor are irreducible. As in our previous work [BCH+20], we expect that the curves of the
associated linear system can contain at most Nq (1) rational points. However we need to investigate the types of
irreducible decompositions. Here this is easy since one can check that the only Galois orbits of lines or conics or
cubics that pass through at least one point pi are `14∪`25∪`36 or q123456 or c123456 (all the others lead to Fq-curves
of degree strictly greater than 3). Combining them in order to construct a curve in the expected sub-linear system
leads to very few decompositions:∣∣∣3`−∑6

i=1 pi

∣∣∣ |−KX | |−KXs | Max

on P2 on X on Xs nb. of pts

1 `14 ∪ `25 ∪ `36
˜̀
14 ∪ ˜̀25 ∪ ˜̀36 ϕ∗(˜̀14) ∪ ϕ∗(˜̀25) ∪ ϕ∗(˜̀36) 1

2 ` ∪ q123456
˜̀∪ q̃123456 ϕ∗(˜̀) 3 s q + 2

3 c123456 c̃123456 ϕ∗(c̃123456) Nq (1)

The number of rational point in case 1 is at most 1 if the three lines meet. In case 2, during the process, if the two
meeting points of ` and q123456 are not rational, then the singular point s is an additional rational point on ϕ∗(˜̀).
We deduce that Nq (−KXs

) ≤ Nq(1).

Since the blown up points are not rational, the blowing ups do not add point on the surface and #X(Fq) =
q2 + q+ 1. Then, the irreducible effective root is contracted and thus #Xs(Fq) = q2 + 1. If q = 2, the evaluation
map may fail to be injective.

Proposition 4.8. Suppose q 6= 2. Let p1, . . . , p6 ∈ P2 be six conjugate points lying on a smooth conic. The
anticanonical code of the weak del Pezzo surface obtained by blowing up these points has parameters [q2 + 1, 4,≥
q2 + 1−Nq (1)].
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Computation of the global sections from P2. — Let Q denote the conic passing through p1, . . . , p6 and
let L14, L25, L36 be the linear forms whose zeros are the lines `14, `25, `36. Then

H0
(
P2, 3`−

∑6
i=1 pi

)
= 〈XQ,Y Q,ZQ,L14L25L36〉Fq

4.9 Degree 3, singularity of type 3A2

This example corresponds to the type number 76 in degree 6 [BH22]. As in section 4.5, this example appears in
Koshelev’s work [Kos20, §1.1] but with another point of view.

Configuration to blow-up. — First we blow up three non-collinear conjugate points p1, p2, p3. This leads
to a degree 6 del Pezzo surface with three exceptional conjugate curves E1, E2, E3, the other exceptional curves
being the strict transforms `12, `13, `23 of the lines joining two of the three points. Then we blow up three other
points p4, p5, p6 with pi+3 � pi, and more precisely p4 is the intersection point of E1 and ˜̀12, p5 is the intersection

point of E2 and ˜̀23 and p6 is the intersection point of E3 and ˜̀13. These points are also conjugate and the
resulting surface X is a weak degree three del Pezzo surface, with three new exceptional curves E4, E5, E6. The
anticanonical model Xs has three conjugate singular points of type A2.

p4

p5

p6•
p1

•
p2

•
p3

p2 = pσ1 p5 = pσ4
p3 = pσ

2

1 p6 = pσ
2

4 .

The point p4 lies on the strict transform of the line (p1p2), which we denote by `124. In the same way we introduce
the lines `235 and `136.

Computation of the divisor class groups. — There are six irreducible effective roots, the strict transforms
of E1, E2, E3 and the strict transforms of `124, `235, `136; their classes are:

R1 = E1 − E4, R2 = E2 − E5, R3 = E3 − E6,

R′1 = E0 − E1 − E2 − E4, R′2 = E0 − E2 − E3 − E5, R′3 = E0 − E1 − E3 − E6.

The absolute Galois group acts on this six root classes as (R1R2R3)(R′1R
′
2R
′
3) and also on the exceptional curves

as (E1E2E3)(E4E5E6) (the first three exceptional curves are the total transforms of the exceptional curves on
the degree 6 del Pezzo surface, they are no longer irreducible).

We have

Cl(X) =

6⊕
i=0

ZEi R =

3⊕
i=1

ZRi ⊕ ZR′i and R
⊥

= ZKX .

Let us put:

E = E1 + E2 + E3, E ′ = E4 + E5 + E6, R = R1 +R2 +R3 = E − E ′, R′ = R′1 +R′2 +R′3 = 3E0 − 2E − E ′.

One easily verify that

Cl(X)Γ = ZE0 ⊕ ZE ⊕ ZE ′, R = R
Γ

= ZR⊕ ZR′ = Z(E − E ′)⊕ Z(3E0 − 2E − E ′), and R⊥ = ZKX .

It turns out that the submodule R is not a direct summand in Cl(X); indeed

R = Z(E − E ′)⊕ Z3(E0 − E) ⊂ Z(E − E ′)⊕ Z(E0 − E)⊕ ZE ′ = Cl(X)

(we have just replaced 3E0 − 2E − E ′ by (3E0 − 2E − E ′)− (E − E ′) in the initial basis). Therefore the projection
onto the two last factors leads to an isomorphism:

Cl(Xs) ' Cl(X)/R −→ Z/3Z(E0 − E) ⊕ ZE ′
a0E0 + aE + a′E ′ mod R 7−→ (a0 mod 3) (E0 − E) + (a0 + a+ a′)E ′

Via this isomorphism the group CaCl(Xs) = R⊥ = ZKX embeds via −KX 7→ E ′; this means that CaCl(Xs) is
isomorphic to the free part of Cl(Xs) and these two groups are free of rank one.
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Types of decomposition into irreducible components in |−KX |. — As in the previous case, the global
sections of the divisor |−KXs

| are irreducible but not necessarily absolutely irreducible. As usual, we list the
Galois orbits of lines or conics or cubics of degree less than 3 that pass through at least one of the six points. The
only possibilities are

`1 ∪ `2 ∪ `3, `124 ∪ `235 ∪ `136, q123, c123, c123456.

(it is important to keep in mind that a curve which passes through p4 necessarily passes through p1). There are
only two combinations that lead to a cubic which passes through the six points:∣∣∣3`−∑6

i=1 pi

∣∣∣ |−KX | |−KXs
| Max

on P2 on X on Xs nb. of pts

1 `124 ∪ `235 ∪ `136
˜̀
124 ∪ ˜̀235 ∪ ˜̀136 ∪ Ẽ1 ∪ Ẽ2 ∪ Ẽ3 ∪ E4 ∪ E5 ∪ E6 ϕ∗(E4) ∪ ϕ∗(E5) ∪ ϕ∗(E6) 0

2 c123456 c̃123456 ϕ∗(c̃123456) Nq (1)

The roots of X are ˜̀124, Ẽ2 (mapped to a singular point s ∈ Xs), ˜̀235, Ẽ3 (mapped to a singular point sσ ∈ Xs),

and ˜̀136, Ẽ1 (mapped to a singular point sσ
2 ∈ Xs). The curves Ei, i = 4, 5, 6, are not defined over Fq and do

not contain any rational point. In conclusion Nq (−KXs) ≤ Nq(1).
Since the points p1, . . . , p6 are not rational the blowing ups do not add any rational point, and since the

singular points are not rational the contractions do not add any rational point also. Thus #Xs(Fq) = q2 + q+ 1,
this number is always strictly greater than Nq(1) and we deduce the parameters given below.

Proposition 4.9. The weak del Pezzo surface of degree 3 associated to the configuration specified at the beginning
of this section has parameters [q2 + q + 1, 4,≥ q2 + q + 1−Nq (1)].

Koshelev [Kos20, §1.1] proves that the minimum distance can be improved by 1 for some q since he shows
that cubics of the considered linear system must have a 3-torsion point.

Computation of the global sections from P2. — Let L12, L23, L13 be the three conjugate linear forms that
respectively define the lines `124, `235, `136 in P2. The family L12, L23, L13 is a Fq-basis of H0(P2, `), while the
family of degree 3 monomials in L12, L23, L13 is a Fq-basis of H0(P2, 3`). A cubic in this space can be written:

a1L
3
12 + a2L

3
23 + a3L

3
13 + b1L12L

2
23 + c1L13L

2
23 + b2L12L

2
13 + c2L23L

2
13 + b3L13L

2
12 + c3L23L

2
12 + dL12L23L13

Such a cubic pass through p1 if and only if a2 = 0 (since p1 is a common zero of L12 and L13). In the same way
it passes through p2 and p3 if and only if a3 = 0 and a1 = 0. Now passing through p4 means that if this cubic
is not singular at p1 then its tangent line at this point must be `12. After deshomogenizing by putting L23 = 1
(this is possible since L23 does not vanish at p1) this means that the linear component b1L12 + c1L13 should
be proportional to L12; necessarily c1 = 0. In the same way passing through p5 (resp. p6) means that b2 = 0
(resp. c3 = 0). Finally, one has

H0
(
P2, 3`−

∑6
i=1 pi

)
=
〈
L12L

2
23, L23L

2
13, L13L

2
12, L12L23L13

〉
Fq

In order to deduce a Fq-base, we consider θ any primitive element of Fq3 over Fq. The linear independence of
homomorphisms permits to prove that the matrix (σi(θj))1≤i,j≤3 is invertible. Let us put:

C1 = L12L
2
23 + L23L

2
13 + L13L

2
12

Cθ = θL12L
2
23 + σ(θ)L23L

2
13 + σ2(θ)L13L

2
12

Cθ2 = θ2L12L
2
23 + σ(θ2)L23L

2
13 + σ2(θ2)L13L

2
12

then C,Cθ, Cθ2 are defined over Fq, as the product L12L23L13 and one has:

H0
(
P2, 3`−

∑6
i=1 pi

)
= 〈C1, Cθ, Cθ2 , L12L23L13〉Fq

The birational morphism
P2 99K P4

(X : Y : Z) 7−→ (C1 : Cθ : Cθ2 : L12L23L13)

has Xs as image in P4. Thus, if r1, . . . , rq2+q+1 denote the rational points of P2, one of the generating matrix of
this code is nothing else than: 

C1(r1) · · · C1(rq2+q+1)
Cθ(r1) · · · Cθ(rq2+q+1)
Cθ2(r1) · · · Cθ2(rq2+q+1)

L12L23L13(r1) · · · L12L23L13(rq2+q+1)


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