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Abstract

We consider elliptic curves defined by an equation of the form y2 = x3+f(t), where f ∈ k[t]
has coefficients in a perfect field k of characteristic not 2 or 3. By performing 2 and 3-descent, we
obtain, under suitable assumptions on the factorization of f , bounds for the number of integral
points on these curves. These bounds improve on a general result by Hindry and Silverman.
When f has degree at most 6, we give exact expressions for the number of integral points of
small height in terms of certain subgroups of Picard groups of the k-curves corresponding to
the 2 and 3-torsion of our curve. This allows us to recover explicit results by Bremner, and
gives new insight into Pillai’s equation.

1 Introduction

Let k be a perfect field of characteristic not 2 or 3. In the applications we have in mind, k may
be a number field, or a finite field, or the algebraic closure of such fields.

In this paper, we consider elliptic curves E over k(t) defined by an equation of the form

y2 = x3 + f(t),

where f ∈ k[t] is a polynomial which we require to satisfy specific assumptions depending on the
statements we prove. More precisely, we are interested in the set of integral points on (the given
Weierstrass equation of) E, that is, the set

E(k[t]) := {(x, y) ∈ E(k(t)) | x, y ∈ k[t]}.

When k has characteristic 0 and f is not a 6th power in k[t] (i.e., E is nonconstant), it was proved
by Lang [Lan60] that this set is finite; an effective proof was given by Mason [Mas84, Chap. IV,
§3]. In positive characteristic, this set may be infinite for specific f , see [SS08, Theorem 1.2].

While the elliptic curves y2 = x3 + f(t) are quite special, the integral points on such curves
gain increased importance from the observation that they are essentially in bijection with elliptic
curves over k(t) with discriminant f(t), up to a constant (see [Shi05, §2.1]). This idea was famously
exploited earlier by Shafarevich over number fields [Š63].

In continuation of previous work by the first and the third author [GL22], we perform on such
curves explicit 2 and 3-descent computations, in close analogy with the number field case. Under
specific requirements on f , we prove that the 2 and 3-descent maps are finite-to-one when restricted
to E(k[t]). This allows us to deduce explicit upper bounds for the number of integral points on E.
Our main result is the following.
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Theorem 1.1. Let k be a perfect field of characteristic not 2 or 3, and let E be an elliptic curve
over k(t) defined by the Weierstrass equation y2 = x3 + f(t), for some f ∈ k[t].

Assume that f = f1f
2
2 f

3
3 f

4
4f

5
5 where the fi are pairwise coprime, separable polynomials in

k[t], and f1 is nonconstant. We let d := deg f , di := deg fi and we denote by ωi the number of
irreducible factors of fi.

(i) Assume that 3 ∤ d, and that f = f1f
2
2 f

4
4 . Then the set E(k[t]) of integral points on E satisfies

#E(k[t]) ≤ 2rkZ E(k(t))+1(2ω2+ω4+1 + 1)− 2 ≤ 22d1+2d2−1
(

2ω2+ω4+1 + 1
)

− 2.

If in addition f = f1, the previous bound can be sharpened as follows

#E(k[t]) ≤ 2rkZ E(k(t))+2 − 2 ≤ 22d − 2.

(ii) Assume d is odd, and that f = f1f
3
3f

5
5 . Then the set E(k[t]) of integral points on E satisfies

#E(k[t]) ≤
{

2ω3 ·
(

3rkZ E(k(t))+1 − 1
)

if ζ3 /∈ k

2ω3 ·
(

3
1

2
rkZ E(k(t))+2 − 3

)

if ζ3 ∈ k

where ζ3 denotes a primitive third root of unity in k̄. In particular,

#E(k[t]) ≤ 2ω3 · (3d+1 − 3).

The first item is obtained by performing 2-descent, while the second uses 3-descent. The
statements of Theorem 1.1 are extracted from §6.2, Theorem 6.3, and §6.3, Theorem 6.11.

For small values of d, the bounds above are close to being optimal. For instance, when f is
square-free and quadratic (d = 2), the bound in Theorem 1.1 (i) asserts that #E(k[t]) ≤ 14, and
an easy argument (Remark 6.4) refines this bound to #E(k[t]) ≤ 12. On the other hand, if k is
algebraically closed of characteristic 0, then it is known [Shi05, Th. 8.2] that #E(k[t]) = 12.

If K is a one-dimensional function field of characteristic 0, and if T is a finite set of places
of K, then Hindry and Silverman [HS88] proved a function field version of a conjecture of Lang,
giving a bound for the number of T -integral points on any non-constant elliptic curve E over K
given by a T -minimal Weierstrass equation. Their bound depends only on #T , the genus of K,
and the rank of E(K). In the situation of Theorem 1.1, their result takes the form

#E(k[t]) ≤ 144 · 107.1 rkZ E(k(t)).

Thus, in our restricted setting, Theorem 1.1 yields a notable quantitative improvement to the
result of Hindry-Silverman (and extends it to positive characteristic 6= 2, 3). We note that the
method used here is completely different from the technique used by Hindry and Silverman, which
relied on a careful study of canonical heights.

In a complementary direction, when d := deg f ≤ 6, we study integral points of small height on
E in terms of the arithmetic of the curves C2 and C3 arising from the 2 and 3-descent computations
for E (see Theorem 1.2 below). It is well-known that d ≤ 6 is equivalent to the fact that E yields
a rational elliptic surface [Shi90, §10]. In that case, the arithmetic genus χ of Néron’s minimal
regular model E of E is equal to 1. We say that an integral point P ∈ E(k[t]) is exceptional if
ĥ(P ) > χ = 1, where ĥ is the canonical height on E. The terminology is justified by a result of
Shioda [Shi05] that for generic f of degree d ≤ 6, E(k[t]) does not contain any exceptional integral
points.
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For f ∈ k[t] nonconstant and sixth-power free of degree d ≤ 6, let F (t, u) = u6f(t/u) and let
F (t, u) = F1F

2
2 F

3
3F

4
4 F

5
5 where the Fi are pairwise coprime separable binary forms of degree δi.

We call the quintuple (δ1, . . . , δ5) the type of f . If f has type (δ1, . . . , δ5), then E has δ1, . . . , δ5
singular fibers of types II, IV, I∗0, IV

∗, II∗, respectively (see Lemma 3.3).
For each possible type of f , we give information on the number of nonexceptional integral points

in E(k̄[t]) with a k(t)-rational (x- or y-)coordinate. In many cases, we give exact expressions in
terms of the number of rational torsion points in certain subsets of an associated Picard group
(see Section 2 for the definition of the Picard groups used).

Theorem 1.2. Let k be a perfect field of characteristic not 2 or 3, and let E be an elliptic curve
over k(t) defined by the Weierstrass equation y2 = x3 + f(t), where f ∈ k[t] is nonconstant of
degree at most 6. If f is not a perfect power in k̄[t], let C2, C3, and C

′
3 be the smooth projective

k-curves defined by the affine equations

C2 : x
3 = −f(t),

C3 : y
2 = f(t),

C ′
3 : y

2 = −27f(t).

(i) If f is of type (1, 0, 0, 0, 1) then E(k̄(t)) is trivial.

(ii) If f is of type (0, 1, 0, 1, 0) then E(k̄(t)) = {∞,±(0,
√
f)} ∼= Z/3Z for some choice of

√
f ∈

k̄[t].

(iii) If f is of type (2, 0, 0, 1, 0), then

#
{

P ∈ E(k̄(t)) | x(P ) ∈ k[t], ĥ(P ) = 1/3
}

= #
{

P ∈ E(k̄(t)) | x(P ) ∈ k[t], ĥ(P ) = 1
}

= 2(#Pic(C2)[2]− 1),

#
{

P ∈ E(k̄(t)) | y(P ) ∈ k[t], ĥ(P ) = 1/3
}

= 3(#Pic(C3,Q.D3)[3]− 1),

#
{

P ∈ E(k̄(t)) | y(P ) ∈ k[t], ĥ(P ) = 1
}

= 3(#Pic(C ′
3,Q.D

′
3)[3]− 1).

(iv) If f is of type (0, 0, 2, 0, 0), then E(k̄(t)) = {∞, ( 3
√
f , 0), (ζ3

3
√
f, 0), (ζ23

3
√
f, 0)} ∼= Z/2Z⊕Z/2Z,

for some choice of 3
√
f ∈ k̄[t] and ζ3 a primitive third root of unity .

(v) If f is of type (1, 1, 1, 0, 0), then

#
{

P ∈ E(k̄(t)) | x(P ) ∈ k[t], ĥ(P ) = 1/6
}

= #
{

P ∈ E(k̄(t)) | x(P ) ∈ k[t], ĥ(P ) = 1/2
}

= 2(#Pic(C2,Q.D2)[2] − 1),

#
{

P ∈ E(k̄(t)) | y(P ) ∈ k[t], ĥ(P ) = 1/6
}

= 3(#Pic(C3,Q.D3)[3] − 1),

#
{

P ∈ E(k̄(t)) | y(P ) ∈ k[t], ĥ(P ) = 1/2
}

= 3(#Pic(C ′
3,Q.D

′
3)[3] − 1).

(vi) If f is of type (3, 0, 1, 0, 0), then

#{P ∈ E(k̄(t)) | x(P ) ∈ k[t], ĥ(P ) = 1/2} = 2(#Pic(C2,Q.D2)[2] −#Pic(C2)[2]),

#{P ∈ E(k̄(t)) | y(P ) ∈ k[t], ĥ(P ) = 1/2} = #{P ∈ E(k̄(t)) | y(P ) ∈ k[t], ĥ(P ) = 1}
= 3(#Pic(C3)[3] − 1),

#{P ∈ E(k̄(t)) | x(P ) ∈ k[t], ĥ(P ) = 1} = 2(#Pic(C2)[2] − 1)·
(#nontrivial k-rational cyclic subgroups of Pic(C3)(k̄)[3]).
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Furthermore,

#{P ∈ E(k[t]) | ĥ(P ) = 1} = (#Pic(C2)[2] − 1)(#Pic(C3)[3] − 1).

(vii) If f is of type (0, 3, 0, 0, 0) then

#
{

P ∈ E(k̄(t)) | x(P ) ∈ k[t], ĥ(P ) = 1/3
}

= #
{

P ∈ E(k̄(t)) | x(P ) ∈ k[t], ĥ(P ) = 1
}

= 2#{P ∈ P1(k) | F (P ) = 0} ·#{α ∈ k | α3 = 2a2∆},
#
{

P ∈ E(k̄(t)) | y(P ) ∈ k[t], ĥ(P ) = 1/3
}

= 3#{P ∈ P1(k) | F (P ) = 0} ·#{α ∈ k | α2 = a∆}

#
{

P ∈ E(k̄(t)) | y(P ) ∈ k[t], ĥ(P ) = 1
}

= 3#{P ∈ P1(k) | F (P ) = 0} ·#{α ∈ k | α2 = −3a∆}.

where a is the leading coefficient of f and ∆ is the discriminant of the largest monic squarefree
divisor of f .

(viii) If f is of type (2, 2, 0, 0, 0), then

#{P ∈ E(k̄(t)) | x(P ) ∈ k[t], ĥ(P ) = 1/3} = 2 ·#{odd theta characteristics in Pic(C2)},
#
{

P ∈ E(k̄(t)) | y(P ) ∈ k[t], ĥ(P ) = 1/3
}

= 3 ·#{P1 + P3, P1 + P4, P2 + P3, P2 + P4}(k),

#{P ∈ E(k̄(t)) | x(P ) ∈ k[t], ĥ(P ) = 2/3} = 4(#{even theta characteristics in Pic(C2)} − 1),

#
{

P ∈ E(k(t)) | ĥ(P ) = 2/3
}

= #{P1, P2, P3, P4}(k)·
#{even theta characteristics in Pic(C2)} − 1),

#{P ∈ E(k̄(t)) | x(P ) ∈ k[t], ĥ(P ) = 1} = 2 ·#{odd theta characteristics in Pic(C2)},
#
{

P ∈ E(k̄(t)) | y(P ) ∈ k[t], ĥ(P ) = 1
}

= 3 ·#{P ′
1 + P ′

3, P
′
1 + P ′

4, P
′
2 + P ′

3, P
′
2 + P ′

4}(k),

where

{P1, P2, P3, P4} =

{

t−1({f2 = 0}), if deg f2 = 2

t−1({f2 = 0}) ∪ t−1(∞), if deg f2 = 1,

t(P1) = t(P2), t(P3) = t(P4), and P
′
1, P

′
2, P

′
3, P

′
4 are analogously defined on C ′

3.

(ix) If f is of type (4, 1, 0, 0, 0), then

#{P ∈ E(k̄(t)) | x(P ) ∈ k[t], ĥ(P ) = 2/3} = 2(#{odd theta characteristics in Pic(C2)} − 1),

#{P ∈ E(k̄(t)) | y(P ) ∈ k[t], ĥ(P ) = 2/3} = 3(#Pic(C3,Q.D3)[3] −#Pic(C3)[3]),

#{P ∈ E(k̄(t)) | x(P ) ∈ k[t], ĥ(P ) = 1} = 2 ·#{even theta characteristics in Pic(C2)}.

(x) If f is of type (6, 0, 0, 0, 0), then

#{P ∈ E(k̄(t)) | x(P ) ∈ k[t], ĥ(P ) = 1} = 2 ·#{odd theta characteristics in Pic(C2)},
#{P ∈ E(k̄(t)) | y(P ) ∈ k[t], ĥ(P ) = 1} = 3(#Pic(C3)[3] − 1).
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We note that Theorem 1.2 refines and extends certain results of Bremner [Bre91] (k = Q,deg f ≤
3), Shioda [Shi05, Th. 8.2] (k = k̄, f squarefree), and Elkies [Elk99] (deg f = 5, 6, f squarefree),
the last of whom already pointed out the connection with 2 and 3-descent maps, and with theta
characteristics. See also work of Clebsch [Cle69] and van Geemen [vG92]. It seems likely that
the present methods can also be used to construct similar expressions for the rank of E(k(t)) in
each of the cases of Theorem 1.2 (this rank was computed by Bremner [Bre91] when k = Q and
deg f ≤ 3; see also [ALRM07] for an alternative approach using Nagao’s conjecture to compute
ranks in certain cases).

In order to illustrate these connections, let us clarify the earlier work of Bremner [Bre91],
which in particular studied the set of integral points E(Q[t]) when f(t) is a squarefree cubic
(Type (3, 0, 1, 0, 0)). In this case, let us detail how one can recover from Theorem 1.2 the clas-
sification of nonexceptional integral points given by Bremner [Bre91, Theorem 1.2]. We first use
Theorem 1.2 to characterize when there is an integral point P = (x(t), y(t)) ∈ E(Q[t]) of height
ĥ(P ) = 1

2 (equivalently, degx = 1,deg y ≤ 1). If such a point exists, then clearly the lead-
ing coefficient a of f must be a perfect cube in Q (consistent with Theorem 1.2 (vi), if this is
not the case, Pic(C2,Q.D2)[2] \ Pic(C2)[2] is empty). Suppose now that a is a perfect cube. If
P ∈ E(Q̄[t]), ĥ(P ) = 1

2 , and y ∈ Q[t], then it follows easily from the fact a is a perfect cube that
after multiplying x by an appropriate 3rd root of unity, x ∈ Q[t] as well. Then by Theorem 1.2,
and since Q does not contain a primitive third root of unity, assuming a is a perfect cube, we have

#{P ∈ E(Q[t]) | ĥ(P ) = 1/2} =
1

3
#{P ∈ E(Q̄(t)) | y(P ) ∈ Q[t], ĥ(P ) = 1/2} = #Pic(C3)[3] − 1.

The curve C3 : y2 = f(t) is an elliptic curve, and it is well-known that C3 has either 0 or 2
nontrivial Q-rational 3-torsion points. Thus, we see that

#{P ∈ E(Q[t]) | ĥ(P ) = 1/2} =

{

2 if a ∈ Q∗3 and C3[3] 6= {0},
0 otherwise.

(1)

For integral points of canonical height 1, by Theorem 1.2 we have a bijection

{P ∈ E(Q[t]) | ĥ(P ) = 1} ↔ (Pic(C2)[2] \ {0}) × (Pic(C3)[3] \ {0}).

An easy calculation shows that C2 : x3 = −f(t) is an elliptic curve which can be given by the
Weierstrass equation Y 2 = X3 + 16∆f , where ∆f is the discriminant of f . Then C2 has a single
nontrivial Q-rational 2-torsion point if and only if 2∆f is a perfect cube in Q. Thus, we find

#{P ∈ E(Q[t]) | ĥ(P ) = 1} =

{

2 if 2∆f ∈ Q∗3 and C3[3] 6= {0},
0 otherwise.

(2)

Using the above simple characterizations, one may parametrize the various possibilities, leading
precisely to the (seemingly complicated) description of Bremner in [Bre91, Theorem 1.2] (excluding
information on the exceptional integral points, which were also classified by Bremner). We carry
out the explicit calculations in Remark 9.1.

When k is algebraically closed, we obtain explicit formulas for the number of nonexceptional
integral points using standard facts about the cardinalities of torsion subgroups of Picard groups,
the genus formulas (19) and (22), and the well-known formula for the number of odd (resp. even)
theta characteristics on a curve of genus g: 2g−1(2g − 1) (resp. 2g−1(2g + 1)). This extends
Theorem 8.2 of [Shi05], where these quantities were computed when f is squarefree, deg f ≤ 6,
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Table 1: Some entries from Theorem 1.2 over k̄

Type Mordell-Weil ĥ #E(k̄[t])h or 2 ·# Picard 3·# Picard

Lattice L #{v ∈ L | |v|2 = 2h} 2-torsion subset 3-torsion subset

(2, 0, 0, 1, 0) A∗
2

1
3 6 23 − 2 32 − 3

(3, 0, 1, 0, 0) D∗
4

1
2 24 25 − 23 33 − 3

(4, 1, 0, 0, 0) E∗
6

2
3 54 26 − 23 − 2 34 − 33

1 72 26 + 23 34 − 32

(6, 0, 0, 0, 0) E8 1 240 28 − 24 35 − 3

and additionally all nonexceptional integral points were found when deg f ≤ 4 (“extra integral
points” in [Shi05]). Remarkably, when k = k̄, our method allows one to precisely count sets of
integral points in two distinct ways: as twice the number of elements in an associated 2-torsion
subset of a Picard group (expressed in powers of 2) and as three times the number of elements in
an associated 3-torsion subset of a Picard group (expressed in powers of 3). The most interesting
cases are given in Table 1, where we have also included entries on the associated Mordell-Weil
lattices. The last entry in Table 1 (type (6, 0, 0, 0, 0)) is discussed extensively by Elkies [Elk99],
who makes many further connections, including the connection with lattices discussed below, and
the history and prior work of Clebsch and van Geemen mentioned previously.

The table yields the following identities:

6 = 23 − 2 = 32 − 3 (3)

24 = 25 − 23 = 33 − 3 (4)

240 = 28 − 24 = 35 − 3. (5)

and

54 = 26 − 23 − 2 = 34 − 33 (6)

72 = 26 + 23 = 34 − 32. (7)

The identities (3)–(5) were noted by Pillai in [Pil45], where it was conjectured that these were
the only solutions to the exponential Diophantine equation

2x − 2y = 3z − 3w

in positive integers x, y, z, w with x > y and z > w. Using estimates from linear forms in loga-
rithms, Pillai’s conjecture was proven by Stroeker and Tijdeman in [ST82]. We obtain then an
“explanation” of Pillai’s three identities, where we note that the numbers 6, 24, and 240 arise both
as the number of integral points of minimal height in E(k̄[t]), where E : y2 = x3 + f(t), f ∈ k̄[t] is
squarefree and deg f = 2, 3, 5 (or 6), respectively, and as the number of vectors of minimal norm
(in other words, the kissing number) of the lattices A∗

2,D
∗
4 , and E∗

8 = E8, respectively. In fact,
these numbers are precisely the kissing numbers in dimensions 2, 4, and 8, respectively (i.e., the
maximal possible kissing number in the respective dimensions; this is known, in these cases, for
both lattice packings and arbitrary sphere packings).

The identity (7) gives a nontrivial solution in positive integers to the equation

2x + 2y = 3z − 3w,
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whose finitely many solutions were classified by Pillai [Pil45]. Finally, the identity (6) gives a
solution in positive integers to the equation

2x − 2y − 2z = 3v − 3w > 0. (8)

If we exclude the solutions which come from the identities (3)–(5) (i.e., when y = z or x ∈
{y + 1, z + 1}), then (6) and the identity

216 = 28 − 25 − 24 = 35 − 33 (9)

appear to yield the only solutions in positive integers to (8) (up to permuting y and z). The
solutions to (8) can, in principle, be effectively computed using a (unpublished) method of Bennett
(see [Lev14, p. 650]).

2 Extending Picard groups

Let C be a smooth projective curve over a field k, and let D =
∑r

i=1 Pi be a reduced divisor
on C, where the Pi are closed points. We define the group of divisors with rational coefficients
above D by letting

Div(C,Q.D) := Div(C \D)⊕
r
⊕

i=1

Q · Pi,

and we define Pic(C,Q.D) by

Pic(C,Q.D) := Div(C,Q.D)/PDiv(C),

where PDiv(C) is the usual group of principal divisors. It was shown in [Gil09] that this group is
isomorphic to the group of Gm-torsors for Kato’s log flat topology on the curve C endowed with
the log structure attached to D. We refer to [Gil09, Section 3] for further details, and proofs of
the statements that we recall below. In fact, using the definition above, these statements have
elementary proofs.

We have a short exact sequence

0 −−−−→ Pic(C) −−−−→ Pic(C,Q.D)
ν−−−−→ ⊕r

i=1(Q/Z) · Pi −−−−→ 0. (10)

The usual degree map on Cartier divisors induces a degree map deg : Pic(C,Q.D) → Q, which
fits inside a commutative diagram

Pic(C,Q.D)
ν−−−−→ ⊕r

i=1(Q/Z) · Pi

deg





y





y

sum

Q −−−−→ Q/Z

(11)

where the map ν is that from (10), the horizontal bottom map is the natural one, and the right
vertical map is the sum map

∑r
i=1 ai · Pi 7→

∑r
i=1 ai.

Given n > 1, the Snake Lemma allows us to deduce from (10) an exact sequence

0 → Pic(C)[n] → Pic(C,Q.D)[n]
νn−−−−→ ⊕r

i=1(
1
nZ/Z) · Pi → Pic(C)/n→ Pic(C \D)/n. (12)

7



Torsion elements of Pic(C,Q.D) have degree zero, and so it follows from (11) that the image
of the map νn is contained in the kernel of the sum map. Therefore, when n = p is a prime, we
are able to deduce from (12) an upper bound

dimFp Pic(C,Q.D)[p] ≤ dimFp Pic(C)[p] + r − 1, (13)

which is valid unless r = 0, in which case the divisor D is empty and Pic(C,Q.D) = Pic(C).
On the other hand, we have a Kummer-like exact sequence

0 −−−−→ k×/n −−−−→ H1(C \D,µn) κ−−−−→ Pic(C,Q.D)[n] −−−−→ 0, (14)

which we shall now describe in more detail. The group H1(C \ D,µn) can be identified as a
subgroup of H1(k(C), µn) = k(C)×/n as follows:

H1(C \D,µn) = {h ∈ k(C)×/n | ∀v ∈ C \D, v(h) ≡ 0 (mod n)}.

Then the map κ in (14) is simply given by

κ : H1(C \D,µn) −→ Pic(C,Q.D)[n]

h ∈ k(C)× 7−→ 1

n
div(h),

(15)

and the exactness of (14) can be proved by using this description.

3 Heights

Throughout this paper, we will assume the following hypotheses:

(Hyp 1) k is a perfect field of characteristic not 2 or 3.

(Hyp 2) E is the elliptic curve over k(t) defined by the Weierstrass equation

y2 = x3 + f(t). (E)

(Hyp 3) f = f1f
2
2f

3
3 f

4
4 f

5
5 where the fi are pairwise coprime, separable polynomials in k[t]. We let

di := deg fi and d := deg f = d1 + 2d2 + 3d3 + 4d4 + 5d5.

(Hyp 4) f1 is nonconstant.

The height of a point on an elliptic curve measures, in some sense, the complexity of the point.
If E is an elliptic curve over K = k(t), given in some Weierstrass form, and P = (x, y) ∈ E(K),
then we can define the naive height by

h(P ) = max

{

1

2
deg x,

1

3
deg y

}

.

Here, if z ∈ k(t), z = p
q , p, q ∈ k[t], (p, q) = 1, then deg z = max{deg p,deg q} (i.e., the degree of

the corresponding rational function on P1).
A more fundamental notion of height on E is given by the canonical height ĥ. This agrees with

the naive height h up to O(1) and gives a quadratic form on E(K), providing a link to the group
structure on E. While the naive height depends on the chosen Weierstrass equation for E, the
canonical height is intrinsic to the curve E. Following Tate, the canonical height may be simply
defined as ĥ(P ) = limn→∞ 4−nh(2nP ), where h is some naive height for E.

We now explicitly compute the canonical height on the elliptic curves E of interest here.
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Theorem 3.1. Assume hypotheses (Hyp 1) – (Hyp 3) above, and let h (resp. ĥ) be the naive
(resp. canonical) height on E. Given P = (x, y) ∈ E(k(t)) we let, for 1 ≤ i ≤ 5,

ni := #{α ∈ k̄ | fi(α) = 0, x(α) = 0}.

Then

ĥ(P ) = h(P ) − 1

3
n2 −

1

2
n3 −

2

3
n4.

Since it is easily seen that n1 = n5 = 0, this may be rewritten more compactly as ĥ(P ) =
h(P )− 1

6

∑5
i=1 ini.

Corollary 3.2. Under the same hypotheses as Theorem 3.1, if f is square-free then ĥ = h, i.e.,
the canonical and naive heights agree.

Proof of Theorem 3.1. Let E → P1
k be the minimal regular model of E, whose zero section we

denote by O. Abusing notation, we denote by P the section of E corresponding to the point P .
Then, according to [Shi90, Theorem 8.6], the canonical height of P is given by the formula

ĥ(P ) =
1

2
〈P,P 〉 = χ(E) + (P ).(O)− 1

2

∑

bad v

contrv(P )

where 〈P,P 〉 is the Néron-Tate height pairing on E , χ(E) is the arithmetic genus of E , and contrv(P )
is a local contribution of P at a place v of bad reduction. This local contribution is zero if and only
if P meets the identity component of the fiber of E above v (equivalently, P has good reduction
at v).

According to Lemma 3.3, the bad places of E are those dividing f and possibly ∞. The
following table gives the reduction type of E at a place v dividing f , and the local contribution of
a point P which has bad reduction at v, extracted from [Shi90, table (8.16)]

v divides f1 f2 f3 f4 f5

reduction type at v II IV I∗0 IV∗ II∗

contrv(P ) for bad P 0 2/3 1 4/3 0

It follows immediately that

1

2

∑

bad v 6=∞
contrv(P ) =

1

3
n2 +

1

2
n3 +

2

3
n4.

So, in order to prove the statement, it remains to prove that the naive height satisfies

h(P ) = χ(E) + (P ).(O) − 1

2
contr∞(P ). (16)

Firstly, we have

χ(E) =
⌈

deg f

6

⌉

.

Since k[t] is a principal ideal domain, one can write

P = (x, y) =

(

a

e2
,
b

e3

)

with a, b, e ∈ k[t] and gcd(e, ab) = 1.
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Since f is sixth-power free, the Weierstrass equation y2 = x2 + f is minimal at all places, except
possibly at ∞. It follows that P meets O above some place v 6= ∞ if and only if v divides e, in
which case the intersection multiplicity is ordv(e). So, the intersection number (P ).(O) is obtained
by adding deg e with the intersection multiplicity above infinity. In order to compute the latter,
we consider the Weierstrass equation E′ : y2 = x3 + t6χf(1t ) and the point P ′ = (t2χx(1t ), t

3χy(1t ))
on E′ corresponding to P . It now suffices to compute the intersection (P ′).(O) at t = 0.

One can write

P ′ =

(

t2χ
a(1t )

e(1t )
2
, t3χ

b(1t )

e(1t )
3
)

)

=

(

U

tdeg a−2 deg e−2χ
,

V

tdeg b−3 deg e−3χ

)

where U and V are t-adic units. It follows that the denominator e′ of P ′ has t-valuation

max

{⌈

1

2
deg a

⌉

− deg e− χ,

⌈

1

3
deg b

⌉

− deg e− χ, 0

}

.

Summing up everything, we obtain

χ+ (P ).(O) = max

{⌈

1

2
deg a

⌉

,

⌈

1

3
deg b

⌉

,deg e+ χ

}

. (17)

We deduce from the relation b2 = a3 + fe6 that among the three polynomials b2, a3, fe6, at least
two of them have the same degree, hence two of the three following quantities agree:

1

2
deg a;

1

3
deg b; deg e+

deg f

6
. (18)

If the maximum in (18) is achieved simultaneously by the first two quantities, then P has good
reduction at ∞, and 1

2 deg a and 1
3 deg b are integers. So, we obtain from (17) that

χ+ (P ).(O) − 1

2
contr∞(P ) = χ+ (P ).(O) = max

{

1

2
deg a,

1

3
deg b

}

= h(P ),

which proves (16). Now, if the maximum in (18) is achieved by the last quantity, it means that P
has bad reduction at ∞, and that either 1

2 deg a = deg e+ deg f
6 or 1

3 deg b = deg e+ deg f
6 . In each

case, one can check from Lemma 3.3 and [Shi90, table (8.16)] that

1

2
contr∞(P ) =

⌈

deg f

6

⌉

− deg f

6
= χ− deg f

6
,

which, combined with (17), yields (16).

The following Lemma describes the bad fibers of Néron’s minimal regular model E → P1 of the
elliptic curve defined by the equation (E) above.

Lemma 3.3. Over k, the places of bad reduction of E → P1 are the zeroes of f , and possibly the
point at infinity. The reduction types are as follows:

v divides f1 f2 f3 f4 f5

reduction type at v II IV I∗0 IV∗ II∗

At infinity, the reduction type depends on the congruence class of d modulo 6 as follows:
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d (mod 6) 0 1 2 3 4 5

reduction type at ∞ good II∗ IV∗ I∗0 IV II

Proof. The first table follows from Tate’s algorithm [Tat75]. It remains to see what happens at
infinity. For that, we should look at the behavior at t = 0 of the elliptic curve defined by the

equation y2 = x3 + f(1t ). This equation can be rewritten as y2 = x3 + t6χf(1t ) where χ =
⌈

deg f
6

⌉

as previously. Using Tate’s algorithm [Tat75], one deduces the reduction type (over k) at t = 0,
depending on the value of d (mod 6).

4 The 2-descent map

Proposition 4.1. Assume hypotheses (Hyp 1) – (Hyp 3) above, and that f is not a cube in k̄[t].
Let C2 be the smooth, projective, geometrically integral k-curve defined by the affine equation:

x3 = −f(t). (C2)

Let us define a divisor D2 ⊂ C2 by letting

D2 := t−1({f3 = 0}) ∪
{

t−1(∞) if d ≡ 3 (mod 6)

∅ otherwise.

Then the map

φ2 : E(k(t))/2E(k(t)) −→ Pic(C2,Q.D2)[2]

(x0, y0) 7−→
1

2
div(x0 − x)

is an injective morphism of groups.

Remark 4.2. It follows from the Riemann-Hurwitz formula that the genus of C2 is given by

g(C2) =

{

d1 + d2 + d4 + d5 − 2 if 3 | d
d1 + d2 + d4 + d5 − 1 otherwise.

(19)

By combining the Proposition above with the bound (13), one obtains the following Corollary,
which also follows easily from [GL22, Theorem 1.1].

Corollary 4.3. In the set-up of Proposition 4.1, we have

rkZE(k(t)) ≤ dimF2
Pic(C2)[2] +

∑

v∈P1

εv (20)

where

εv :=















2 if the fiber of D2 at v is the sum of three kv-rational points

1 if the fiber of D2 at v has exactly one kv-rational point

0 otherwise.

It follows that

rkZE(k(t)) ≤
{

2 · (∑ di − 2) if 6 | d
2 · (∑ di − 1) otherwise.

(21)

Moreover, when ζ3 /∈ k, this upper bound can be improved by a factor two.
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Remark 4.4. While the bound (21) is none other than the geometric rank bound deduced from
Igusa’s inequality, the bound (20) has a more arithmetic flavor. See the introduction of [GL22] for
further details.

Proof of Proposition 4.1. It is well known (see for example [BK77, §2]) that the composition of
the cohomological maps defined in [GL22, §2.1]

E(k(t))/2
δ−−−−→ H1(k(t), E[2])

h1ω−−−−→ H1(k(C2), µ2),

can be described as

E(k(t))/2 −→ k(C2)
×/2 ≃ H1(k(C2), µ2)

(x0, y0) 7−→ x0 − x,

where x is the x-coordinate map on C2, given by the equation x3 = −f(t). Let N → P1 be
Néron’s group scheme model of E, which is the smooth locus of E → P1, and let Φv be the group
of connected components of the special fiber of N at a given place v. The arguments at the
beginning of the proof of [GL22, Theorem 1.1] prove that the Kummer map δ has values in the
subgroup H1(P1 \Σ2,N [2]), where Σ2 is the set of places of bad reduction of N at which #Φv(k)
is divisible by 2. It follows that the map h1ω ◦ δ has values in H1(C2 \ t−1(Σ2), µ2).

According to Lemma 3.3, the bad fibers at places dividing f3 contribute to Σ2, and the contri-
bution at infinity occurs exactly when d ≡ 3 (mod 6), in which case Φ∞(k) ≃ (Z/2)2. Therefore,

t−1(Σ2) = D2

and the map h1ω ◦ δ has values in H1(C2 \D2, µ2).
If follows from the discussion above that φ2 is none other than the composition of h1ω ◦ δ with

the map κ defined in (15). Therefore, φ2 is a morphism of groups. The injectivity of φ2 follows
from the same argument as in the proof of [GL22, Theorem 1.1], the key ingredients being: the
injectivity of h1ω◦δ, the exactness of the sequence (14), and the fact that k×/2 does not contribute
to the kernel of the norm map.

Proof of Corollary 4.3. Let us prove (20). According to Proposition 4.1, φ2 is injective, with
values in Pic(C2,Q.D2)[2]. Let us compute the number of closed points of D2. We note that
D2 = t−1(Σ2), where Σ2 is as in the proof of Proposition 4.1.

The map t : D2 → Σ2 is étale of degree 3, from which it follows that the number of closed
points of D2 lying above a given v ∈ Σ2 is given by the formula

#(D2)v =















3 if #(D2)v(kv) = 3

2 if #(D2)v(kv) = 1

1 otherwise.

Moreover, it follows from a local argument (in short: one can define the 2-descent map over
the localization of P1 at each v ∈ Σ2) that the image of the map φ2 lands in the kernel of the
multi-degree map

Pic(C2,Q.D2)[2] −→
⊕

v

(Q/Z) · v,

where each partial map computes the degree (mod Z) of the fiber of the divisor above v.
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Observing that εv = #(D2)v − 1, it follows from a variant of (13) that

rkZE(k(t)) ≤ dimF2
Pic(C2)[2] +

∑

v

εv .

It remains to prove (21). If 6 | d, then (D2)∞ = ∅ and ε∞ = 0. On the other hand, the
other εv are bounded by 2, and their number is bounded above by d3 = deg f3. Moreover,
g(C2) =

∑

i 6=3 di − 2 according to (19). It follows from (20) that

rkZE(k(t)) ≤ dimF2
Pic(C2)[2] +

∑

v

εv ≤ 2 · (
∑

i 6=3

di − 2) + 2d3.

If d ≡ 3 (mod 6), then ε∞ is bounded by 2, and g(C2) =
∑

i 6=3 di − 2, hence

rkZE(k(t)) ≤ 2 · (
∑

i 6=3

di − 2) + 2d3 + 2.

In any other case, ε∞ = 0 and g(C2) =
∑

i 6=3 di − 1, hence

rkZE(k(t)) ≤ 2 · (
∑

i 6=3

di − 1) + 2d3.

which proves the result.
Finally, if ζ3 /∈ k, the field k(ζ3) is a quadratic extension of k, and we have

rkZE(k(ζ3, t)) = rkZE(k(t)) + rkZE
′(k(t)),

where E′ denotes the twist of E by the extension k(ζ3)/k. According to the discussion at the
beginning of the next section, E′ is isogenous to E over k(t), hence E and E′ have the same rank
over k(t). This implies that the rank of E over k(ζ3, t) is twice the rank over k(t). The bound (21)
being valid over k(t), one deduces the result.

Remark 4.5. Corollary 4.3 can be recovered from the third statement of [GL22, Theorem 1.1].

5 The 3-descent maps

Before we proceed with 3-descent, let us recall some well-known facts. Let E′ be the elliptic
curve defined by the equation

y2 = x3 − 27f(t). (E′)

Then E′ is the twist of E by the quadratic extension k(ζ3) = k(
√
−3), unless ζ3 belongs to k, in

which case E′ is isomorphic to E. One checks that the map

λ : E −→ E′

(x, y) 7−→
(

x3 + 4f

x2
,
y(x3 − 8f)

x3

)

is a 3-isogeny, whose kernel is the subset of E defined by the equation x = 0. Consequently, the
smooth compactification of ker(λ : N → N ′) \ {0} is the projective curve C3 defined by the affine
equation y2 = f(t) (where N and N ′ denote Néron’s group scheme models). This curve C3 is
geometrically integral, because f is not a square in k(t) according to (Hyp 4).

We denote by λt : E′ → E the dual isogeny. By combining λ-descent and λt-descent, we shall
prove the following.

13



Proposition 5.1. Assume hypotheses (Hyp 1) – (Hyp 3), and that f is not a square in k̄[t]. Let
C3 and C ′

3 be the smooth, projective, geometrically integral k-curves defined by the affine equations
below:

y2 = f(t) (C3)

y2 = −27f(t). (C ′
3)

We define a divisor D3 ⊂ C3 by letting

D3 := t−1({f2f4 = 0}) ∪
{

t−1(∞) if d ≡ 2 or 4 (mod 6)

∅ otherwise

and the same formula defines a similar divisor D′
3 ⊂ C ′

3. Then:

1) We have a short exact sequence

0 −→ E′(k(t))/λE(k(t)) −→ E(k(t))/3E(k(t)) −→ E(k(t))/λtE′(k(t)) −→ 0

in which the left-hand side map is induced by λt.

2) The maps

φ3 : E(k(t))/λtE′(k(t)) −→ Pic(C3,Q.D3)[3]

(x0, y0) 7−→
1

3
div(y0 − y)

and

φ′3 : E
′(k(t))/λE(k(t)) −→ Pic(C ′

3,Q.D
′
3)[3]

(x0, y0) 7−→
1

3
div(y0 − y)

are injective morphisms of groups.

The kernels of λ and λt are Cartier dual to each other. In particular, C3 and C ′
3 become

isomorphic over the field k(ζ3) = k(
√
−3), which is clear when looking at their equations.

Remark 5.2. We observe that C3 can be more simply defined by the equation Y 2 = f1(t)f3(t)f5(t),
and similarly for C ′

3. It follows (again) from the Riemann-Hurwitz formula that the genus of C3

and C ′
3 are given by

g(C3) = g(C ′
3) =

{

1
2(d1 + d3 + d5 − 2) if 2 | d
1
2(d1 + d3 + d5 − 1) otherwise.

(22)

Corollary 5.3. In the set-up of Proposition 4.1, we have

rkZE(k(t)) ≤ dimF3
Pic(C3)[3] + dimF3

Pic(C ′
3)[3] + ε+ ε′ (23)

where
ε := #{v ∈ P1, the fiber of D3 at v is the sum of two kv-rational points}

and ε′ is defined similarly for D′
3.
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Remark 5.4. When k is algebraically closed, the bound (23), like the bound (20), is equivalent
to the geometric rank bound (21) deduced from Igusa’s inequality. Nevertheless, (20) and (23) are
not equivalent in general.

Proof of Proposition 5.1. 1) This follows from the ker-coker Lemma for the map [3] = λt ◦λ on the
group E(k(t)), the exactness on the left being due to the fact that ker(λt) has no rational point
over k(t). 2) The properties of φ3 and φ

′
3 can be proved with the same methods as in the 2-descent

case.

Proof of Corollary 5.3. By combining the two statements of Proposition 5.1, and observing that
E(k(t)) has no 3-torsion, one finds that

rkZE(k(t)) ≤ dimF3
Pic(C3,Q.D3)[3] + dimF3

Pic(C ′
3,Q.D

′
3)[3].

The inequality (23) follows by similar arguments as in the proof of Corollary 4.3.

6 Upper bounds for the number of integral points

6.1 Davenport’s inequality

In addition to the tools developed in the previous sections, we will also use the following
inequality of Davenport [Dav65], with an extension by Schütt and Schweizer [SS08] to positive
characteristic.

Theorem 6.1 (Davenport’s inequality). Let k be a field and let g, h ∈ k[t] with deg(g3) =
deg(h2) = 6M for some integer M > 0. Suppose that one of the following holds:

(i) k has characteristic 0 and g3 6= h2;

(ii) k has characteristic not 2 or 3, and g3 − h2 contains at least one irreducible factor of multi-
plicity one.

Then
deg(g3 − h2) ≥M + 1.

Proof. The case (i) is the original Davenport’s inequality. The case (ii) is a result by Schütt and
Schweizer [SS08, Theorem 1.2, (b)].

Recall from section 3 that for a point P = (x(t), y(t)) ∈ E(k(t)), we define the naive height of
P by

h(P ) := max

{

1

2
deg x,

1

3
deg y

}

.

Davenport’s inequality can be restated in terms of heights as follows.

Corollary 6.2. Assume hypotheses (Hyp 1) – (Hyp 4) above. If P ∈ E(k[t]) is an integral point
on the elliptic curve E, then h(P ) ≤ d− 1 = deg f − 1.

It will be convenient to set

E(k[t])n = {P ∈ E(k[t]) | h(P ) = n}.

We similarly define sets E(k[t])<n, E(k[t])≥n, etc.
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6.2 Tools from 2-descent

The aim is to prove the following:

Theorem 6.3. Assume hypotheses (Hyp 1) – (Hyp 4) above. Assume in addition that f = f1f
2
2 f

4
4

and that 3 ∤ d. For i = 2, 4, let ωi = ω(fi) be the number of irreducible factors of fi. Let us
consider the natural map

E(k[t]) → E(k(t))/2E(k(t)).

(i) When restricted to E(k[t])≤d/6, this map is 2-to-1 onto its image and omits 0. In particular,

#E(k[t])≤d/6 ≤ 2rkZ E(k(t))+1 − 2 ≤ 22d1+2d2−1 − 2.

(ii) When restricted to E(k[t])>d/6, this map is at most 2ω2+ω4+2-to-1 onto its image. In partic-
ular,

#E(k[t])>d/6 ≤ 2rkZ E(k(t))+ω2+ω4+2 ≤ 22d1+3d2+d4 .

(iii) The set E(k[t]) of all integral points on E satisfies

#E(k[t]) ≤ 2rkZ E(k(t))+1(2ω2+ω4+1 + 1)− 2 ≤ 22d1+2d2−1
(

2ω2+ω4+1 + 1
)

− 2.

(iv) If in addition f = f1, the previous bound can be sharpened as follows:

#E(k[t]) ≤ 2rkZ E(k(t))+2 − 2 ≤ 22d − 2.

Remark 6.4. When d = 2, one can slightly improve the inequality of Theorem 6.3 (iv) to obtain
a sharp result. In this case, the height of any point in E(k(t)) is at least 1

3 . Then Davenport’s
inequality, combined with the fact that h is a canonical height, shows that the map of Theorem 6.3
omits 0 in its image. In this case, we obtain the improved bound #E(k[t]) ≤ 22d−1 − 2 = 6, which
is sharp by [Shi05, Th. 8.2] when k is algebraically closed of characteristic 0.

As before, let C2 be the smooth projective completion of the affine plane curve defined by
x3 + f(t) = 0. We first record some elementary facts about the geometry of C2.

If 3 ∤ d, the unique pole of t in k(t) totally ramifies in k(C2) and we denote by ∞ the corre-
sponding point on C2. If 3 | d, the pole of t totally splits in k(C2) and we denote by ∞1,∞2,∞3

the corresponding points of C2 (over k̄).
We can identify the function field k(C2) with k(t, x). For h ∈ k(C2), we let (h)∞ denote the

divisor of poles of h. When h ∈ k[t], we use degt h to denote the degree of h as a polynomial in t.
Note that, when considered as maps C2 → P1, x has degree d, and t has degree 3.

For a divisor D on C2, we let

ord⋆∞(D) =

{

multiplicity of D at ∞ if 3 ∤ d

max1≤i≤3 {multiplicity of D at ∞i} if 3 | d
(24)

Lemma 6.5. Assume that f = f1f
2
2 f

4
4 . Then the ring of rational functions on C2 which are

regular outside infinity can be explicitly described as

k[t]⊕ k[t] · x
f4

⊕ k[t] · x2

f2f24
.
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Moreover, if ψ = γ + β x
f4

+ α x2

f2f2
4

belongs to this ring, then the divisor of its poles satisfies

ord⋆∞(ψ)∞ =

{

max{3 degt γ, 3 degt β + d1 + 2d2 + d4, 3 degt α+ 2d1 + d2 + 2d4} if 3 ∤ d,

max
{

degt γ,degt β + d1+2d2+d4
3 ,degt α+ 2d1+d2+2d4

3

}

if 3 | d,

(note that the rationals appearing in this formula are all integers).

Proof. The ring B of rational functions on C2 which are regular outside infinity is nothing else
than the integral closure of k[t] inside k(C2) = k(t, x). Since the extension k(t, x)/k(t) is radical of
degree 3 and since 3 does not divide the characteristic of k, only the zeros of f1f2f4 ramify in k(t, x).
More precisely, every zero of f1f2f4 totally ramifies in k(t, x) and disc(B/k[t]) = f21 f

2
2 f

2
4 . The two

functions x
f4

and x2

f2f2
4

are elements of B since
(

x
f4

)3
+ f1f

2
2 f4 = 0 and

(

x2

f2f2
4

)3 − f21 f2f
2
4 = 0. We

deduce that k[t] ⊕ k[t] xf4 ⊕ k[t] x2

f2f2
4

⊂ B. Using magma, we compute the discriminant of the left

ring; we find f21 f
2
2 f

2
4 and therefore both rings are equal.

For ψ ∈ B, the computation of ord⋆∞(ψ)∞ is strongly related to Newton polygons. Let v =
− degt be the valuation “at infinity” of the rational function field k(t). This valuation totally
ramifies (resp. splits) in k(C2) if 3 ∤ d (resp. 3 | d); let w or w1, w2, w3 denote the extensions of v
to k(C2) (note that w(B) = 1

3Z). The number ord⋆∞(ψ)∞ is related with these valuations, in the
following way:

ord⋆∞(ψ)∞ =

{

−3w(ψ) if 3 ∤ d

max1≤i≤3 {−wi(ψ)} if 3 | d
Hence, up to a factor of 3 in the case 3 ∤ d, we want to compute the maximum at ψ of the
opposite valuations extending v. These opposite valuations are known to correspond to the slopes
of the Newton polygon of the characteristic polynomial of ψ, and the maximum of these opposite
valuations must be the slope of the right-most segment of the polygon (because the polygon is a
lower convex hull its slopes must increase from left to right). Let χ(X) = X3 + c2X

2 + c1X + c0 ∈
k[t][X] be the characteristic polynomial of ψ; with magma, we easily find that

χ(X) = X3 − 3γX2 + 3
(

αβf1f2f4 + γ2
)

X −
(

α3f21 f2f
2
4 − β3f1f

2
2 f4 + 3αβγf1f2f4 + γ3

)

.

In order to study the Newton polygon of this polynomial, we put

δ0 = v(γ), δ1 = v(β)− d1 + 2d2 + d4
3

, δ2 = v(α) − 2d1 + d2 + 2d4
3

, δ = max {−δ0,−δ1,−δ2} .

We tabulate the v-values of the different products which appear in the coefficients of χ(X):

c2X
2 c1X c0

coef. γ αβf1f2f4 γ2 α3f21f2f
2
4 β3f1f

2
2f4 αβγf1f2f4 γ3

v δ0 δ1 + δ2 2δ0 3δ2 3δ1 δ0 + δ1 + δ2 3δ0

Hence we have v(ci) ≥ δ(i − 3). This means that the points of the Newton polygon of χ(X) are
above the line j = δ(i − 3), i.e. at the gray points or above in the following figure.

17



0 1 2 3

−δ

−2δ

−3δ

In fact, at least one of the gray points are on the segment; indeed:

• if δ = −δ0, the right gray point (2,− degt(c2)) lies on the segment;

• if δ is equal to exactly one of the (−δi)’s then the left gray point (0,− degt(c0)) lies on the
segment;

• in the remaining case, when δ = −δ1 = −δ2 < −δ0, then the middle gray point (1,− degt(c1))
lies on the segment.

Therefore the right-most segment of the polygon must be of slope δ. This proves that δ = −w(ψ)
if 3 ∤ d or δ = max1≤i≤3 {−wi(ψ)} if 3 | d and ends the proof.

Lemma 6.6 (Key Lemma). Assume that f = f1f
2
2 f

4
4 . Consider the composition

E(k[t]) → E(k(t))/2E(k(t)) →֒ Pic(C2,Q.D2)[2].

If two points P0 = (x0(t), y0(t)) and P1 = (x1(t), y1(t)) in E(k[t]) have the same image by this
map, then there exists a rational function ψ ∈ k(C2), regular outside infinity, such that

(x0(t)− x)(x1(t)− x) = ψ2. (25)

Moreover:

(i) there exist polynomials a, b and c in k[t], with c 6= 0, such that

ψ = c+ bx+ a
x2

f2f24

and we have the relations

b2 + 2
ac

f2f24
= 1 (26a)

2bc− a2f1 = −(x0 + x1) (26b)

c2 − 2abf1f2f
2
4 = x0x1. (26c)

(ii) if a = 0 then P0 = ±P1.

Remark 6.7. In Lemma 6.6 (i), the statement that c 6= 0 fails when f1 is constant. But in fact
there are counterexamples to Theorem 6.3 in this case, as was proved by Schütt and Schweizer
[SS08, Theorem 1.2 (a)].
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Proof. The above composition associates to (x0(t), y0(t)) the divisor class of the divisor D0 =
1
2 div(x0(t) − x) in Pic(C2,Q.D2)[2], where we view x0(t) − x as a rational function in k(C2).
Obviously, the two distinct points (x0(t), y0(t)) and (x0(t),−y0(t)) map to the same element of
Pic(C2,Q.D2)[2] (or E(k(t))/2E(k(t))). Let (x1(t), y1(t)) ∈ E(k[t]) be another point and let
D1 = 1

2 div(x1(t) − x). Suppose that [D0] = [D1] in Pic(C2,Q.D2)[2], or equivalently, D0 − D1

is a principal divisor. Let div(φ) = D0 − D1, where φ ∈ k(C2). Then div(φ2) = 2D0 − 2D1 =

div
(

x0(t)−x
x1(t)−x

)

and it follows that

(x0(t)− x)(x1(t)− x) = ψ2

for some ψ ∈ k(C2). Since the function on the left-hand side is regular outside infinity, one deduces
that ψ is regular outside infinity.

According to Lemma 6.5, there exist polynomials α, β and γ such that

ψ = γ + β
x

f4
+ α

x2

f2f
2
4

.

By identifying the coefficients of 1, x and x2 in the identity (25), we find that

β2

f24
+ 2

αγ

f2f
2
4

= 1 (27a)

2
βγ

f4
− α2f1 = −(x0 + x1) (27b)

γ2 − 2αβf1f2f4 = x0x1. (27c)

First, we shall prove that f4 divides β. Assume by contradiction that this is not the case; then
there exists an irreducible factor π of f4 which does not divide β. According to (27b), βγ

f4
is a

polynomial, hence π | γ. On the other hand, according to (27a), we have

β2 = f24 − 2
αγ

f2
.

But we know that π ∤ f2 because f2 and f4 are coprime. It follows that π divides the polynomial
αγ
f2
, and hence π divides β2, a contradiction.
This proves that f4 divides β. In order to prove (i), it remains to prove that γ 6= 0. Assume by

contradiction that γ = 0; then it follows from (27c) that f1 divides x0x1. But f1 is nonconstant
(Hyp 4) hence, up to exchanging x0 and x1, the polynomials f1 and x1 have an irreducible factor
in common, that we denote by π. On the other hand, the point P1 = (x1, y1) lies on E, hence

y21 = x31 + f1f
2
2 f

4
4 .

The polynomial f1 being separable, its π-adic valuation is exactly one. Therefore, the π-adic
valuation of x31 + f1f

2
2f

4
4 is also one, which is impossible since this polynomial is a square.

It remains to prove (ii). If α = 0, then, up to a choice of sign for ψ, we find that

β = f4, 2γ = −(x0 + x1), γ2 = x0x1,

which implies that x0 = x1 = −γ. It follows that P0 = ±P1.
Finally, letting a := α, b := β/f4 and c := γ, the relations (27a), (27b) and (27c) are none

other than the relations at the end of the statement.
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Main steps of the proof of Theorem 6.3. The goal of the proof is to estimate the cardinality of
fibers of the natural map E(k[t]) → E(k(t))/2E(k(t)). To this end we use the key Lemma 6.6: let
P0 = (x0(t), y0(t)) and P1 = (x1(t), y1(t)) be two points in E(k[t]) such that P0 and P1 define the
same class in E(k(t))/2E(k(t)); then there exists a rational function ψ ∈ k(C2), regular outside
infinity, such that

ψ2 = (x0(t)− x)(x1(t)− x) and ψ = c+ bx+ a
x2

f2f
2
4

(28)

for some a, b, c ∈ k[t] with c 6= 0 and satisfying (26c),(26b),(26a). Thanks to Lemma 6.5, these
two expressions give two ways of computing ord⋆∞(ψ)∞. At that stage, it is natural to distinguish
between the cases of points of small height (≤ d

6) and of large height (> d
6) since the divisor of poles

of the function xi(t) − x behaves differently in each case. In any case, thanks to Lemma 6.6 (ii),
we are reduced to proving that a = 0; see the proofs of items (i), (ii) and (iv) below for the details.

Once the fibers are bounded above in cardinality by a power of 2, we easily deduce an upper
bound for #E(k[t]) that involves the size of the target set inside E(k(t))/2E(k(t)), which is at
most 2rkZ E(k(t)) (or this size minus 1). Finally, from the “geometric” upper bound on rkZE(k(t))
stated in Corollary 4.3, we are able to deduce an upper bound on #E(k[t]) which depends only
on the di and the ωi.

Proof of Theorem 6.3 (i). The two formulas in (28) give two ways to compute ord⋆∞(ψ)∞. On one
hand, by Lemma 6.5, we know that ord⋆∞ (xi(t)− x)∞ = max{3 degt xi, d} = d, which yields

ord⋆∞(ψ)∞ = d. (29)

On the other hand, by the same Lemma,

ord⋆∞(ψ)∞ = max {3 degt c, 3 degt b+ d, 3 degt a+ 2d1 + d2 + 2d4} . (30)

Comparing these two formulas and taking into account the facts that d = d1 + 2d2 + 4d4 and
that 3 ∤ d leads to

3 degt c < d (31a)

degt b ≤ 0 (31b)

3 degt a+ d1 ≤ d2 + 2d4. (31c)

The second inequality means that b is a constant polynomial; the combination 1
3 [(31a) + (31c)]

yields degt a + degt c < d2 + 2d4. Since by (26a), 2ac = (1 − b2)f2f
2
4 , we must have ac = 0, and

thus a = 0 because c 6= 0.

Proof of Theorem 6.3 (ii). First, if an integral point P = (x(t), y(t)) satisfies h(P ) > d
6 , then,

by definition of the height, either 3 degt x(t) > d or 2 degt y(t) > d. Since y(t)2 = x(t)3 + f(t),
with degt f(t) = d, necessarily, both degrees are greater than d and 3degt x(t) = 2degt y(t).

Consequently, 2 | degt x(t), 3 | degt y(t) and h(P ) = degt x(t)
2 = degt y(t)

3 is a positive integer.
Secondly, according to Davenport’s inequality (Corollary 6.2), we have

E(k[t])>d/6 = {P ∈ E(k[t]), d/6 < h(P ) ≤ d− 1}.

We now write E(k[t])>d/6 as the union of two subsets:

E(k[t])>d/6 = {P ∈ E(k[t]), d/6 < h(P ) ≤ d/2} ∪ {P ∈ E(k[t]), d/2 < h(P ) ≤ d− 1}.
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We observe that, if P belongs to one of these subsets, then 3h(P ) is an upper bound on the height
of elements in the same subset. The result then follows by applying Lemma 6.8 below to each of
these two subsets.

Lemma 6.8. Let Pi = (xi(t), yi(t)) ∈ E(k[t])>d/6, i = 0, 1. If h(P1) ≤ h(P0) < 3h(P1),
gcd(x0(t), f2f4) = gcd(x1(t), f2f4), and P0 and P1 have the same image in E(k(t))/2E(k(t)),
then P0 = ±P1.

Proof. As in the case of points of small height, the formulas contained in (28) give two ways to
compute ord⋆∞(ψ)∞. On one hand, by Lemma 6.6, since degt xi >

d
3 , we know that

ord⋆∞ (xi(t)− x)∞ = max {3 degt xi, d} = 3degt xi.

Since ψ2 = (x0(t)− x)(x1(t)− x), we have

ord⋆∞(ψ)∞ = 3

(

degt x0
2

+
degt x1

2

)

= 3 (h(P0) + h(P1)) . (32)

On the other hand, by Lemma 6.6, we also know that

ord⋆∞(ψ)∞ = max {3 degt c, 3 degt b+ d1 + 2d2 + d4, 3 degt a+ 2d1 + d2 + 2d4} . (33)

We have that d1 + 2d2 + d4 ≡ d (mod 3), 2d1 + d2 + 2d4 ≡ 2d (mod 3) and 3 ∤ d, hence 3 degt c is
the only integer that is divisible by 3 in the preceding maximum. Putting together (32) and (33),
we deduce that

degt c = h(P0) + h(P1) (34a)

3 degt b+ d1 + 2d2 + 4d4 < 3 degt c (34b)

3 degt a+ 2d1 + d2 + 2d4 < 3 degt c. (34c)

We want to prove that a = 0, and so we assume, by contradiction, that a 6= 0. Recall that
c 6= 0 by Lemma 6.6. Then by formula (26a) one has b2 − 1 = 2ac

f2f2
4

.

If b = 0, we deduce that degt(a) = d2+2d4−degt c < d2+2d4 since degt c = h(P0)+h(P1) > 0.
This inequality still holds if b 6= 0. Indeed, first observe that the two nonzero polynomials (b2 −
1)f2f

2
4 and 2ac have the same degree, that is

d2 + 2d4 = degt a+ degt c− 2 degt b. (35)

Replacing this expression of d2 + 2d4 in the sum of (34b) and (34c) leads to 2 degt a + d1 <
degt b+ degt c. Using (26b), we deduce that degt b+ degt c = deg(x0 + x1) and then

degt b ≤ max{2h(P0), 2h(P1)} − degt c since degt xi = 2hi

≤ 2h(P0)− degt c since h(P1) ≤ h(P0) by hypothesis

≤ 2h(P0)− (h(P0) + h(P1)) = h(P0)− h(P1) by (34a)

<
h(P0) + h(P1)

2
since h(P0) < 3h(P1) by hypothesis.

Hence degt c− 2 degt b > 0 and (35) implies that degt a < d2 + 2d4.
According to Lemma 6.9, there exists an irreducible π ∈ k[t] that divides x0, x1, f2f4, c but

not a. Thanks to (26b), π | a2f1; this is impossible since gcd(f1, f2f4) = 1 and π ∤ a. Therefore a =
0.
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Lemma 6.9. Suppose that degt a < d2 + 2d4 and that gcd(x0, f2f4) = gcd(x1, f2f4). Then there
exists an irreducible polynomial that divides x0, x1, f2f4 and c but not a.

Proof. By (26a), we know that f2f
2
4 divides ac. Assume, by contradiction, that f2f4 divides a.

Let a′ := a/f2; then since degt a < d2 + 2d4 we have that deg a′ < 2d4, and since f24 divides a′c
there must exist an irreducible polynomial π ∈ k[t] which divides f4, a and c.

By (26c), necessarily π divides x0x1, and hence it divides one of the xi and thus it divides both of
them since gcd(x0, f2f4) = gcd(x1, f2f4). Going back to the Weierstrass equation y2i = x3i +f1f

2
2 f

4
4 ,

we deduce that, in fact, π2 must divide x0 and x1. Then π3 | abf1f2f24 , π4 | x0x1 and by (26c),
necessarily π2 | c. Using (26c) again, we prove that π2 | ab. We remark that we cannot have π | b
since otherwise, by (26a), this would imply that π | 1. Hence π2 | a. Since this is true for
every irreducible polynomial dividing f4, we deduce that f2f

2
4 divides a, which contradicts the

assumption that degt a < d2 + 2d4.

Proof of Theorem 6.3 (iv). When the polynomial f is separable, i.e. when f = f1, the upper
bound can be sharpened. Instead of dividing the height range [0, d[ in three pieces

[

0, d6
]

,
]

d
6 ,

d
2

]

and
]

d
2 , d
[

, we divide it in two pieces only, namely
[

0, d3
[

and
[

d
3 , d
[

.
Firstly, we prove that the natural map E(k[t])<d/3 → E(k(t))/2E(k(t)) is 2-to-1 onto its image

and omits 0. As usual, the two formulas (28) give two ways of computing ord⋆∞(ψ)∞. On one hand,
since 3 degt xi < 2d, by Lemma 6.5, we know that ord⋆∞ (xi(t)− x)∞ = max{3 degt xi, d} < 2d
which yields ord⋆∞(ψ)∞ < 2d. On the other hand, by the same Lemma, if a 6= 0, then ord⋆∞(ψ)∞ =
max {3 degt c, 3 degt b+ d, 3 degt a+ 2d} ≥ 2d, and we reach a contradiction. Therefore a = 0 and
Lemma 6.6 allows us to conclude the argument.

Secondly, we prove that the natural map E(k[t])≥d/3 → E(k(t))/2E(k(t)) is 2-to-1 onto its
image: if two points P0, P1 ∈ E(k[t])≥d/3 with h(P1) ≤ h(P0) have the same image then h(P0) <
3h(P1) and Lemma 6.8 allows us to conclude the argument.

The sharpened upper bound follows.

It turns out that a mix of the techniques used to bound the number of integral points of small
and large height when 3 ∤ d can be gathered to obtain an upper bound on the number of integral
points of small height when 3 | d.

Proposition 6.10. Assume hypotheses (Hyp 1) – (Hyp 4) above. Assume in addition that f =
f1f

2
2 f

4
4 and that 3 | d. For i = 2, 4, let ωi = ω(fi) be the number of irreducible factors of fi. Let

us consider the natural map

E(k[t]) → E(k(t))/2E(k(t)).

When restricted to E(k[t])≤d/6, this map is at most 2ω2+ω4+1-to-1 onto its image, and omits 0. In
particular,

#E(k[t])≤d/6 ≤ 2rkZ E(k(t))+ω2+ω4+1 − 2 ≤
{

22d1+3d2+d4−3 − 2 if d ≡ 0 (mod 6)

22d1+3d2+d4−1 − 2 if d ≡ 3 (mod 6).

Proof. We begin as in the proof of Theorem 6.3. By considering the two expressions of the
function ψ ∈ k(C2) in (28), Lemma 6.5 yields

ord⋆∞(ψ)∞ =
d

3
= max

{

degt c,degt b+
d

3
,degt a+

2d1 + d2 + 2d4
3

}

. (36)
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Since d = d1 + 2d2 + 4d4, we deduce that

3 degt c ≤ d (37a)

degt b ≤ 0 (37b)

3 degt a+ d1 ≤ d2 + 2d4. (37c)

Unlike the case when 3 ∤ d, the first inequality need not be strict. Nevertheless, either this
inequality is strict, in which case we can conclude as in the proof of Theorem 6.3, (i), or it
is an equality, i.e. 3 degt c = d = d1 + 2d2 + 4d4. Then, using this to eliminate d1 in (37c)
yields degt a ≤ d2 + 2d4 − degt c < d2 + 2d4 since degt c = d/3 > 0.

According to Lemma 6.9, there exists an irreducible π ∈ k[t] which divides x0, x1, f2f4, c but
not a. Thanks to (26b), π | a2f1; this is impossible since gcd(f1, f2f4) = 1 and π ∤ a. Therefore a =
0.

6.3 Tools from 3-descent

The aim is to prove the analogue of Theorem 6.3 but in the context of 3-descent.

Theorem 6.11. Assume hypotheses (Hyp 1) – (Hyp 4) above. Assume in addition that f = f1f
3
3 f

5
5

and that 2 ∤ d. Let ω3 be the number of irreducible factors of f3. Let us consider the natural map

E(k[t]) → E(k(t))/λtE′(k(t)).

(i) When restricted to E(k[t])<d/4, this map is at most 2ω3-to-1 (resp. (3 · 2ω3)-to-1) onto its
image if ζ3 /∈ k (resp. if ζ3 ∈ k), and omits 0. In particular,

#E(k[t])<d/4 ≤
{

2ω3
(

3rkZ E(k(t)) − 1
)

if ζ3 /∈ k

2ω3

(

3
1

2
rkZ E(k(t))+1 − 3

)

if ζ3 ∈ k.

(ii) When restricted to E(k[t])d/4≤·<d/2 or E(k[t])≥d/2, it is at most 2ω3-to-1 (resp. (3 ·2ω3)-to-1)
onto its image if ζ3 /∈ k (resp. if ζ3 ∈ k). In particular,

#E(k[t])≥d/4 ≤
{

2ω3+1 · 3rkZ E(k(t)) if ζ3 /∈ k
2ω3+1 · 3 1

2
rkZ E(k(t))+1 if ζ3 ∈ k.

(iii) The set E(k[t]) of all integral points on E satisfies

#E(k[t]) ≤
{

2ω3 ·
(

3rkZ E(k(t))+1 − 1
)

if ζ3 /∈ k

2ω3 ·
(

3
1

2
rkZ E(k(t))+2 − 3

)

if ζ3 ∈ k.

The following Lemma is analogous to (and even easier than) Lemma 6.5 and can be proved
similarly.

Lemma 6.12. Assume that f = f1f
3
3 f

5
5 . Then the ring of rational functions on C3 which are

regular outside infinity can be explicitly described as

k[t]⊕ k[t] · y

f3f25
.

23



Moreover, if ψ = β + α y
f3f2

5

belongs to this ring, then the divisor of its poles satisfies

ord⋆∞(ψ)∞ =

{

max{2 degt β, 2 degt α+ d1 + d3 + d5} if 2 ∤ d,

max
{

degt β,degt α+ d1+d3+d5
2

}

if 2 | d,

(note that the rationals appearing in this formula are all integers).

Lemma 6.13 (Key Lemma for the 3-descent). Assume that f = f1f
3
3 f

5
5 . Consider the composition

E(k[t]) → E(k(t))/λtE′(k(t)) →֒ Pic(C3,Q.D3)[3].

If two points P0 = (x0(t), y0(t)) and P1 = (x1(t), y1(t)) in E(k[t]) have the same image by this
map, then there exists a rational function ψ ∈ k(C3), regular outside infinity, such that

(y0(t)− y)(y1(t) + y) = ψ3. (38)

Moreover:

(i) there exist polynomials a and b in k[t], with b 6= 0, such that

ψ = b+ a
y

f3

and we have the relations

a3f1f
5
5 + 3

ab2

f3
= y0 − y1 (39a)

b3 + 3a2bf1f3f
5
5 = y0y1 − f1f

3
3f

5
5 (39b)

(ii) if gcd(y0, f3) = gcd(y1, f3) then f3 | a;

(iii) if a = 0 then (x1(t), y1(t)) = (ζx0(t), y0(t)) for some ζ ∈ k satisfying ζ3 = 1.

Proof. The above composition associates to (x0(t), y0(t)) the divisor class of the divisor D0 =
1
3 div(y0(t) − y) in Pic(C3,Q.D3)[3], where we view y0(t) − y as a rational function in k(C3).
Obviously, if ζ3 ∈ k, the three distinct points (x0(t), y0(t)), (ζ3x0(t), y0(t)) and (ζ23x0(t), y0(t))
map to the same element of Pic(C3,Q.D3)[3]. Let (x1(t), y1(t)) ∈ E(k[t]) be another point and
let D1 =

1
3 div(y1(t)− y). Suppose that [D0] = [D1] in Pic(C3,Q.D3)[3], or equivalently, D0 −D1

is a principal divisor. Let div(φ) = D0 − D1, where φ ∈ k(C3). Then div(φ3) = 3D0 − 3D1 =

div
(

y0(t)−y
y1(t)−y

)

. Since (y1(t)− y)(y1(t) + y) = y1(t)
2 − f(t) = x1(t)

3, it follows that

(y0(t)− y)(y1(t) + y) = ψ3

for some ψ ∈ k̄(C3). Since the function on the left-hand side is regular outside infinity, one deduces
that ψ is regular outside infinity.

Proof of (i). According to Lemma 6.12, there exist polynomials α, β such that ψ = β +α y
f3f2

5

.

By identifying the coefficients of y and 1 in the identity (38) we obtain:

α3f1
f5

+ 3
αβ2

f3f25
= y0 − y1 (40)

β3 + 3α2βf1f3f5 = y0y1 − f1f
3
3 f

5
5 . (41)
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Let us prove that f25 divides α in several steps. First we show that gcd(f5, xi) = gcd(f5, yi) = 1.
Let v denotes the valuation associated to an irreducible divisor of f5. Since y2i = x3i + f1f

3
3 f

5
5 ,

then v(yi) = 1 (resp v(yi) = 2) implies 3v(xi) = 2 (resp. 3v(xi) = 4) and v(yi) ≥ 3 implies 3v(xi) =
5; all these lead to contradictions and thus v(yi) = v(xi) = 0. We deduce that gcd(f5, β) = 1
since otherwise, by (41), we would have gcd(f5, yi) 6= 1 for at least one i. According to (40), f5
divides αβ2 and hence f5 divides α. Going back to (40), since gcd(f5, β) = 1, we deduce that f25 |
αβ2 and thus f25 | α. Letting b = β and a = α/f25 , item (i) is proved except that b 6= 0. Assume by
contradiction that b = 0; then by (39b), f1 | y0y1. But f1 being nonconstant, up to exchanging y0
and y1, there exists π an irreducible factor of f1 that divides y0. This is incompatible with the
relation y20−f1f33 f55 = x30, since the left-hand term is of π-valuation equal to 1, while the right-hand
term must have a π-valuation divisible by 3.

Proof of (ii). Let π be an irreducible divisor of f3. By (39a), we know that π | ab2 and
thus π | a or π | b. If the latter occurs, then by (39b), π | y0y1, and hence π | y0 and π | y1
since gcd(y0, f3) = gcd(y1, f3). Then (39a) shows that π | a3f1f55 which implies that π | a
since gcd(f3, f1f5) = 1 and π | f3. In conclusion, in any case, π | a and necessarily f3 | a.

Proof of (iii). A direct consequence of (39a).

Proof of Theorem 6.11. Common starting point. In any case, we start with Pi = (xi(t), yi(t)) ∈
E(k[t]), i = 0, 1, having the same image in E(k(t)/λtE′(k(t)) by the natural map. Then by
Lemma 6.13, there exist ψ ∈ k(C3) and a, b ∈ k[t] such that

(y0 − y)(y1 + y) = ψ3 and ψ = b+ a
y

f3
. (42)

We use these two formulas to compute ord⋆∞(ψ)∞, but we need to distinguish the cases of small
or large height. In both cases, assuming that gcd(f3, y0) = gcd(f3, y1), we show that a = 0.

Specific argument for (i). Here we suppose that h(Pi) <
d
4 . By Lemma 6.12 (applied with α =

f3f
2
5 ), we know that ord⋆∞(yi(t)± y)∞ = max {2 deg yi, d}. Since h(Pi) <

d
4 , we have 2 deg yi <

3d
2

and thus ord⋆∞(yi(t) ± y)∞ < 3d
2 . Therefore ord⋆∞(y0(t) − y)(y1(t) + y)∞ < 3d and ord⋆∞(ψ)∞ <

d, by the left-hand side of (42). On the other hand, according to the right-hand side, one
has ord⋆∞(ψ)∞ = max {2 deg b, 2 deg a+ d1 + d3 + 5d5} (Lemma 6.12 again, applied with α = af25 ).
Hence 2 deg a+ d1 + d3 + 5d5 < d which means that deg a < d3.

If moreover gcd(f3, y0) = gcd(f3, y1) then by Lemma 6.13 (ii), we know that f3 | a and
thus a = 0.

Specific argument for (ii). Here we suppose that h(Pi) ≥ d
4 , and in particular h(Pi) >

d
6 . Recall

that if this holds then h(Pi) =
deg yi

3 = deg xi

2 and necessarily 3 | deg yi.
Let Pi = (xi(t), yi(t)) ∈ E(k[t])≥d/4, i = 0, 1, be two integral points having the same image

in E(k(t)/λtE′(k(t)) by the natural map. By Lemma 6.13, there exists ψ ∈ k(C3) such that (y0 −
y)(y1 + y) = ψ3. This equality permits us to compute ord⋆∞(ψ)∞; indeed:

ord⋆∞(yi ± y)∞ = max {2 deg yi, d} by Lemma 6.12

= 2deg yi since h(Pi) =
deg yi
3

≥ d

4

and then

ord⋆∞((y0 − y)(y1 + y))∞ = 2 (deg y0 + deg y1) =⇒ ord⋆∞(ψ)∞ = 2

(

deg y0
3

+
deg y1

3

)

. (43)

In particular this order is an even integer since 3 divides deg yi.
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On the other hand, taking into account the fact that the function ψ can be written ψ = b+a y
f3

with a, b ∈ k[t], we also have

ord⋆∞(ψ)∞ = max {2 deg b, 2 deg a+ d1 + d3 + 5d5} (44)

(Lemmas 6.13 and 6.12 again). Since 2 ∤ d, only the first integer inside the brackets is even, hence
by comparing formulas (43) and (44) we deduce that:

2 deg b = 2

(

deg y0
3

+
deg y1

3

)

and 2deg a+ d1 + d3 + 5d5 < 2 deg b. (45)

Adding deg a to the last inequality leads to 3 deg a + d1 + 5d5 < deg a + 2deg b − d3, and thus
by (39a) one has deg a+ 2deg b− d3 = deg(y0 − y1).

Let us now assume that the condition h(P1) ≤ h(P0) < 2h(P1) holds, which applies to any
appropriately ordered pair of points in each of the two regions considered (one for obvious reasons,
and the other one by Davenport’s inequality). Then

deg a = d3 − 2 deg b− deg(y0 − y1)

= d3 − 2

(

deg y0
3

+
deg y1

3

)

+ deg(y0 − y1) by (45)

≤ d3 − 2

(

deg y0
3

+
deg y1

3

)

+ deg y0 since h(P1) ≤ h(P0)

< d3 since h(P0) < 2h(P1).

If moreover gcd(f3, y0) = gcd(f3, y1), then by Lemma 6.13 (ii), we know that f3 | a and thus a = 0.
Common concluding argument. Let us define the map

E(k[t]) −→ E(k(t))/λtE′(k(t)) × {0, 1}ω3 ,

where the first coordinate is none other than the natural map, and the second coordinate is the
map

(x(t), y(t)) 7→ (vπ(gcd(f3, y))π,

where π runs through the set of irreducible factors of f3. Using Lemma 6.13 (iii), all the previous
specific arguments lead to the following fact: when restricted to E(k[t])<d/4, or E(k[t])d/4≤·<d/2,
or E(k[t])≥d/2, the preceding map is 1-to-1 if ζ3 6∈ k and 3-to-1 if ζ3 ∈ k. Finally, we note that

dimF3
E(k(t))/λtE′(k(t)) ≤ rkZE(k(t)).

In the case when ζ3 ∈ k, the curves E and E′ are isomorphic, the groups E(k(t))/λtE′(k(t))
and E′(k(t))/λE(k(t)) are isomorphic, and hence from the exact sequence of Proposition 5.1 we
are able to deduce that

dimF3
E(k(t))/λtE′(k(t)) =

1

2
rkZE(k(t)).

The result follows.
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7 Integral points of small height

We first prove a Lemma which allows us to transport computations of integral points to a
convenient Weierstrass model.

Lemma 7.1. Let f ∈ k[t] be a polynomial of degree d and let

E : y2 = x3 + f(t),

E′′ : y2 = x3 + t6⌈d/6⌉f(1/t).

The bijection

E(k(t)) → E′′(k(t))

(x(t), y(t)) → (t2⌈d/6⌉x(1/t), t3⌈d/6⌉y(1/t))

induces a bijection between the sets of integral points E(k[t])≤⌈d/6⌉ and E
′′(k[t])≤⌈d/6⌉ that preserves

the canonical height of the points. Let Ci, C
′′
i ,Di,D

′′
i , i = 2, 3, be the associated curves and divisors.

Then the isomorphisms

C2 → C ′′
2

(t, x) 7→ (t−1, t−2⌈d/6⌉x)

and

C3 → C ′′
3

(t, y) 7→ (t−1, t−3⌈d/6⌉y),

and the bijection above, induce commutative diagrams for i = 2, 3:

E(k(t)) −−−−→ Pic(Ci,Q.Di)[i]




y





y

E′′(k(t)) −−−−→ Pic(C ′′
i ,Q.D

′′
i )[i].

Proof. If we base-change the curve E by the automorphism t 7→ 1/t of k(t), we obtain the elliptic
curve E′′ defined by the equation y2 = x3+f(1/t). The map (x(t), y(t)) 7→ (x(1/t), y(1/t)) induces
a bijection E(k(t)) → E′′(k(t)), whose inverse is given by the same recipe. By the (obvious) change
of coordinates (x, y) 7→ (t2⌈d/6⌉x, t3⌈d/6⌉y), E′′ can be defined by the Weierstrass equation

y2 = x3 + t6⌈d/6⌉f(1/t).

The main interest of considering this equation is that t6⌈d/6⌉f(1/t) is again a polynomial in t.
We shall now consider integral points on E′′ with respect to this specific Weierstrass equation.

The explicit bijection E(k(t)) → E′′(k(t)) described in the statement of the Lemma is obtained
by composing the bijection t 7→ 1/t with the previous change of coordinates. Similarly, Ci ≃ C ′′

i as
k-curves, and the bijection is described by the same recipe. The diagram comparing the 2-descent
maps on E and E′′ (resp. the 3-descent maps) commutes for obvious reasons.
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Denoting by E → P1
k (resp. E ′′ → P1) the minimal regular model of E (resp. E′′), we have a

Cartesian square
E ′′ −−−−→ E




y





y

P1 −−−−→
t7→1/t

P1

and in particular, E and E ′′ are isomorphic k-surfaces. Since the canonical (Néron-Tate) height
can be computed via intersection theory between divisors on these surfaces [Shi90, Theorem 8.6],
the bijection E(k(t)) → E′′(k(t)) preserves the canonical height. Alternatively, one can check that
the heights are preserved by a direct computation, applying Theorem 3.1.

Finally, we claim that the bijection E(k(t)) → E′′(k(t)) induces by restriction a bijection
between E(k[t])≤⌈d/6⌉ and E′′(k[t])≤⌈d/6⌉. It suffices to check that E(k(t)) → E′′(k(t)) sends
E(k[t])≤⌈d/6⌉ to E′′(k[t])≤⌈d/6⌉, and similarly for the inverse bijection. This is elementary: if x(t)

has degree ≤ 2⌈d/6⌉ then t2⌈d/6⌉x(1/t) is a polynomial in t, and likewise if y(t) has degree ≤ 3⌈d/6⌉
then t3⌈d/6⌉y(1/t) is a polynomial. The other way around is left to the reader.

Since the canonical height is a quadratic form on E(k̄(t)), we can define an associated bilinear
pairing, the height pairing, by

〈P,Q〉 = ĥ(P +Q)− ĥ(P )− ĥ(Q).

This pairing gives E(k̄(t))/E(k̄(t))tors the structure of a positive-definite lattice, called theMordell-
Weil lattice of E. In our setting, the elliptic curves E have complex multiplication by Z[ζ3], where
ζ3 is a primitive third root of unity. Then Z[ζ3] acts on the Mordell-Weil lattice and since

ĥ(αP ) = N(α)ĥ(P ), ∀α ∈ Z[ζ3],

(where N = NQ(ζ3)/Q is the norm), we deduce that 〈αP,αQ〉 = N(α)〈P,Q〉.
We first prove some facts about lattices that will be useful in studying 2-descent and 3-descent

maps. This leads to an alternative approach to some of the results of Section 6.
For a lattice L and v ∈ L, we define the norm of v to be N(v) = 〈v, v〉 and let Lα = {v ∈ L |

N(v) = α} be the set of elements of norm α. If L also has the structure of a Z[ζ3]-module such
that N(αv) = N(α)N(v) for all α ∈ Z[ζ3], v ∈ L, we will call L a Z[ζ3]-lattice. We now study
the maps L → L/2L and L → L/

√
−3L (when L is a Z[ζ3]-lattice), restricted to certain sets of

elements.

Lemma 7.2. Let L be a lattice and let µ be the minimum norm of L. Then the canonical map

Lµ → L/2L

is 2-to-1 and omits 0 in its image. Suppose further that L is a Z[ζ3]-lattice. Then

v ≡
√
−3v (mod 2L)

for all v ∈ L, and in particular the canonical map
√
−3Lµ → L/2L

is 2-to-1 and omits 0 in its image. Moreover, the canonical map

Lµ → L/
√
−3L

is 3-to-1 and omits 0 in its image.
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Proof. The minimum norm of 2L is 4µ. If v,w ∈ Lµ, then by the triangle inequality, N(v−w) ≤ 4µ,
with equality if and only if w = −v. Thus, v ≡ w (mod 2L), v, w ∈ Lµ, implies that w = ±v.
Since v and −v map to the same element of L/2L, the first result follows immediately.

Suppose now that L is a Z[ζ3]-lattice. Since v −
√
−3v = 2(−ζ3v) ∈ 2L, we immediately find

v ≡
√
−3v (mod 2L) for all v ∈ L. Then the statement for the map

√
−3Lµ → L/2L follows

immediately from the same statement for the map Lµ → L/2L.
We now prove the last statement. First, we note that since

√
−3 divides 1 − ζ3 and 1− ζ23 in

Z[ζ3], we have

v ≡ ζ3v ≡ ζ23v (mod
√
−3L) (46)

for all v ∈ L.
Let v,w ∈ Lµ, v 6= w. Then, by definition of µ, we have

N(v − w) = 2µ − 2〈v,w〉 ≥ µ.

After possibly replacing w by −w, it follows that if v 6= ±w, then |〈v,w〉| ≤ 1
2µ.

Suppose now that v − w =
√
−3u ∈

√
−3L, v 6= w. Then N(v − w) = N(

√
−3u) ≥ 3µ, and by

the same calculation as above, 〈v,w〉 ≤ −1
2µ. So we must have either equality 〈v,w〉 = −1

2µ or
v = −w. If v 6= −w, then

N(v + 2w) = N(v) + 4〈v,w〉 + 4N(w) = 3µ

and

v + 2w ≡ v + 2ζ3v ≡ v + 2ζ23v (mod 2L).

We have v + 2w = (v − w) + 3w =
√
−3u + 3w =

√
−3(u −

√
−3w) and so N(v + 2w) =

N(
√
−3(u −

√
−3w)) = 3N(u −

√
−3w), which is equal to 3µ. It follows that N(u −

√
−3w) = µ

and v+2w =
√
−3(u−

√
−3w) ∈

√
−3Lµ. We also have v+2ζ3v = (1+ 2ζ3)v =

√
−3v ∈

√
−3Lµ

and similarly v + 2ζ23v ∈
√
−3Lµ. Since

√
−3Lµ → L/2L is 2-to-1, we conclude that w = ζ3v or

w = ζ23v.
Finally, we show that w = −v is impossible. Suppose 2v =

√
−3u ∈

√
−3L. Then taking

norms of both sides gives N(u) = 4
3µ. We also have

2v + 2ζ23u = (
√
−3 + 2ζ23 )u = −u

and so

N(2v + 2ζ23u) = 4N(v + ζ23u) = N(−u) = 4

3
µ,

a contradiction since this would imply N(v + ζ23u) =
1
3µ. Therefore v 6≡ −v (mod

√
−3L). Com-

bined with the above and noting (46), we see that Lµ → L/
√
−3L is 3-to-1 and obviously omits 0

in its image.

Lemma 7.3. Assume hypotheses (Hyp 1) – (Hyp 3) and that f is not a perfect power in k̄[t]. Let
µ be the minimal (nonzero) canonical height of a point in E(k̄(t)) and let

Emin = {P ∈ E(k̄(t)) | ĥ(P ) = µ}
E′

min = {P ∈ E′(k̄(t)) | ĥ(P ) = µ}.
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Let φ̃2 and φ̃3 denote the canonical lifts of the descent maps φ2 and φ3 (defined in Prop. 4.1 and
Prop. 5.1) to Emin, and let A2 and A3 be the images of φ̃2 and φ̃3, respectively. Similarly, define
φ̃′3 and A′

3 associated to the descent map φ′3 and E′
min. Then there are 2-to-1 maps

{P ∈ Emin | x(P ) ∈ k(t)} → A2(k),

{P ∈
√
−3Emin | x(P ) ∈ k(t)} → A2(k),

and 3-to-1 maps

{P ∈ Emin | y(P ) ∈ k(t)} → A3(k),

{P ∈
√
−3Emin | y(P ) ∈ k(t)} → A′

3(k).

Proof. Note that if (x0, y0) ∈ Emin, then φ̃2 sends (x0,±y0) to the same element, and φ̃3 sends
(ζ i3x0, y0), i = 0, 1, 2, to the same element. Since φ̃2 and φ̃3 are Gal(k̄/k)-equivariant maps, it is
immediate that if φ̃2 is 2-to-1, then it induces a 2-to-1 map {(x0, y0) ∈ Emin | x0 ∈ k(t)} → A2(k),
and similarly if φ̃3 is 3-to-1, it induces a 3-to-1 map {(x0, y0) ∈ Emin | y0 ∈ k(t)} → A3(k).

Let L be the Mordell-Weil lattice associated to E(k̄(t)). The elliptic curve E has complex
multiplication by the ring of integers OQ(ζ3) = Z[ζ3] of Q(ζ3) = Q(

√
−3), and this induces a

Z[ζ3]-lattice structure on L. According to [Shi90, Theorem 8.7], the identity component of the
Néron model of E has no torsion; since f is not a perfect power, it follows easily from the types of
singular fibers of E that the torsion subgroup of E(k̄(t)) is trivial, and we have an isomorphism
of Z[ζ3]-modules E(k̄(t)) → L.

Let ψ be the isomorphism (over k(
√
−3)) ψ : E → E′, (x, y) 7→ (−3x,−3

√
−3y). Then it is

easily verified that λt(ψ(P )) =
√
−3P , and so λt(E′(k̄(t))) =

√
−3E(k̄(t)). It follows that we have

commutative diagrams
Emin −−−−→ E(k̄(t))/2E(k̄(t))




y





y

L −−−−→ L/2L

and
Emin −−−−→ E(k̄(t))/λt(E′(k̄(t)))




y





y

L −−−−→ L/
√
−3L.

Then by Lemma 7.2, the maps φ̃2 and φ̃3 are 2-to-1 and 3-to-1, respectively, proving the
statements for Emin (using the previous remarks).

Since
√
−3 ≡ 1 (mod 2Z[ζ3]), we have a commutative diagram

Emin −−−−→ E(k̄(t))/2E(k̄(t))

√
−3





y





y
id

√
−3Emin −−−−→ E(k̄(t))/2E(k̄(t))

proving that there is a 2-to-1 map {P ∈
√
−3Emin | x(P ) ∈ k(t)} → A2(k). Finally, we note that

λt : E′
min →

√
−3Emin is bijective, and the y-coordinate of λt is a rational function in y over k. It

follows that the composition

{P ∈
√
−3Emin | y(P ) ∈ k(t)} (λt)−1

→ {P ∈ E′
min | y(P ) ∈ k(t)} → A′

3(k)

is 3-to-1.
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We study in more detail integral points of small height when F (t, u) is squarefree up to a power
of a single linear form (equivalently, up to a change of variable, the inhomogeneous polynomial
f(t) is squarefree). In this case, we relate integral points of small height with torsion points lying
on certain (generalized) Brill-Noether loci.

Classically, for a curve C and positive integer d, one studies the Brill-Noether locus consisting
of the classes in Picd(C) that can be represented by effective divisors of degree d. Choosing a
base divisor D0 of degree d, one may embed the Brill-Noether locus in Pic0(C) via the mapping
[D] 7→ [D−D0]. In our setting, suppose that f(t) is squarefree, and let C be one of the curves C2

or C3 arising in the 2-descent and 3-descent maps. In either case, we let D∞ denote the reduced
divisor with support t−1(∞). Let P = (x0, y0) ∈ E(k̄[t]) be an integral point of canonical height
n = ĥ(P ) = h(P ) ∈ 1

6Z. Then deg x0 ≤ 2n and deg y0 ≤ 3n. For a Q-divisor D, write D ≥ 0 if D
is effective. We shall see in the proof of Theorem 7.4 that on C2,

1

2
div(x0 − x) +

3n

degD∞
D∞ ≥ 0

and on C3,

1

3
div(y0 − y) +

2n

degD∞
D∞ ≥ 0.

Therefore, if we define

Wn(C2)[2] = {[D] ∈ Pic(C2,Q.D2)[2] | D + n/(degD∞)D∞ ≥ 0}
Wn(C3)[3] = {[D] ∈ Pic(C3,Q.D3)[3] | D + n/(degD∞)D∞ ≥ 0},

then the 2 and 3-descent maps induce maps
{

P = (x0, y0) ∈ E(k̄(t)) | x0 ∈ k[t], ĥ(P ) ≤ n
}

→W3n(C2)[2]
{

P = (x0, y0) ∈ E(k̄(t)) | y0 ∈ k[t], ĥ(P ) ≤ n
}

→W2n(C3)[3].

7.1 Arguments using 2-descent

We assume throughout that f(t) is squarefree.

Theorem 7.4. Let n ∈ Q, n > 0. Then there is a map

φ2 :
{

P = (x0, y0) ∈ E(k̄(t)) | x0 ∈ k[t], 0 < ĥ(P ) ≤ n
}

→W3n(C2)[2] \ {0}

P = (x0, y0) 7→
[

1

2
div(x0 − x)

]

(i) If n < d/3, the map φ2 is 2-to-1 onto its image.

(ii) If n ≤ d/6 + 1/3, the map φ2 is 2-to-1 and surjective.

Remark 7.5. For 0 < n ≤ d/6 + 1/3, there are points of canonical height n on E only if:

n =
d

6
, if d ≡ 0, 2, 3 (mod 6),

n =
d

6
,
d

6
+

1

3
, if d ≡ 4 (mod 6),

n =
d+ 1

6
, if d ≡ 5 (mod 6).

In particular, there are no such points if d ≡ 1 (mod 6).
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We note that if 3 ∤ d and P = (x0, y0) ∈ E(k̄[t]), then 3ĥ(P ) = 3h(P ) = deg y0.

Proof of Theorem 7.4. Let P = (x0(t), y0(t)) ∈ E(k̄(t)), with x0 ∈ k[t] and 0 < h(P ) = ĥ(P ) ≤ n.
It is elementary that h(P ) = 1

6 max{d, 3 deg x0}. By Proposition 4.1, we have [D] ∈ Pic(C2,Q.D2)[2],
where D = 1

2 div(x0(t)− x). By Lemma 6.5,

ord∞D =
1

2
max{d, 3 deg x0} = 3h(P ) ≤ 3n = 3n/degD∞ if 3 ∤ d,

max
1≤i≤3

ord∞i
D =

1

6
max{d, 3 deg x0} = h(P ) ≤ 3n/degD∞ if 3 | d.

Thus, D+3n/(degD∞)D∞ is effective and φ2 is well-defined. If n < d/3, then P ∈ E(k̄[t])<d/3,
and so φ2 is 2-to-1 onto its image by the proof of Theorem 6.3 (iv).

Suppose now that n ≤ d
6 +

1
3 . We first claim that φ2 is 2-to-1 onto its image. If d ≥ 3, then this

implies that n < d
3 and φ2 is 2-to-1 from the above. If d = 2, then it is easy that 0 < h(P ) ≤ 2

3

implies that h(P ) = 1
3 , and the claim follows taking n = 1

3 <
d
3 . If d = 1 then E(k̄(t)) is trivial

and the claim is vacuously true.
It remains to show that φ2 is surjective. Let [D] ∈W3n(C2)[2] \ {0} so that

D0 := D + 3n/(degD∞)D∞ ∈ Div(C2,Q.D2)

is effective. Then

2D = 2D0 −
6n

degD∞
D∞

is principal and 6n ≤ d + 2 < d + 3. It follows from Lemma 6.5 that there exists a polynomial
x0(t) ∈ k[t] with deg x0 ≤ 2n and a ∈ k such that div(x0(t) + ax) = 2D. If a = 0, then this
implies that x0(t) is a perfect square (up to a constant) and D itself is principal, contradicting
[D] 6= 0. Then a 6= 0 and replacing x0 by −ax0, we obtain a polynomial x0(t) ∈ k[t] with
div(x0(t) − x) = 2D. This implies that there exists y0 ∈ k̄[t] such that y20 = x30 + f . Moreover,
using Lemma 6.5 to compute the poles of x0(t)− x, we find that 6n ≥ d. Let P = (x0, y0). Then
h(P ) = max{d

6 ,
1
2 deg x0} ≤ n and φ2(P ) = [D]. So φ2 is surjective as well.

An elementary calculation using the Riemann-Hurwitz formula yields the canonical divisor
(and the genus of C2, already given in (19)).

Lemma 7.6. Let KC2
be the canonical divisor of C2. Then

KC2
∼
{

(2d− 4)∞ if 3 ∤ d,
(

2d
3 − 2

)

D∞, if 3 | d.

In certain cases, the 2-torsion in Wn(C2) can be given a more useful characterization. Let C
be a nonsingular projective curve of genus g. Recall that a theta characteristic of C is an element
L ∈ Pic(C) such that L⊗2 ∼= ωC , the canonical bundle of C. Abusing terminology, we will also call
a divisor D a theta characteristic if O(D) is a theta characteristic. The theta characteristic is called
even or odd if the dimension of the space of global sections, h0(L), is even or odd, respectively.
We say that L is an effective theta characteristic if h0(L) > 0, and that L is a vanishing theta
characteristic if h0(L) > 1. Over an algebraically closed field of characteristic 6= 2, it is well-known
that there are precisely 2g−1(2g−1 + 1) even theta characteristics and 2g−1(2g−1 − 1) odd theta
characteristics. Note that if L is a theta characteristic, then L′ ∈ Pic(C) is a theta characteristic
if and only if L′ ⊗ L−1 ∈ Pic(C)[2] is a 2-torsion element. In particular, there are 22g theta
characteristics over an algebraically closed field of characteristic 6= 2.
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Lemma 7.7. Let

g = g(C2) =

{

d− 1 if 3 ∤ d,

d− 2 if 3 | d
and

1

2
KC2

:=

{

(d− 2)∞ if 3 ∤ d,
(

d
3 − 1

)

D∞, if 3 | d.

(i) If 3 ∤ d then

Wg(C2)[2] = Pic(C2)[2].

(ii) If d 6≡ 3 (mod 6) then

Wg−1(C2)[2] → {effective theta characteristics in Pic(C2)}

[D] 7→
[

D +
1

2
KC2

]

is a bijection.

(iii) If d ≡ 3 (mod 6) then there is a bijection

Wg+ 1

2

(C2)[2] → (Pic(C2,Q.D2)[2] \ Pic(C2)[2]) ∪ {effective theta characteristics in Pic(C2)}.

Proof. Suppose first that 3 ∤ d. Then Pic(C2,Q.D2) = Pic(C2). For any line bundle L, by the
Riemann-Roch formula the condition h0(L ⊗ OC2

(gD∞)) > 0 is always satisfied, and so clearly
Wg(C2)[2] = Pic(C2)[2].

Suppose now that d 6≡ 3 (mod 6). Then again Pic(C2,Q.D2) = Pic(C2). Note that 1
2KC2

=
g−1

degD∞

D∞ and by Lemma 7.6, 1
2KC2

is a theta characteristic. Then the claimed bijection between
Wg−1(C2)[2] and effective theta characteristics of C2 follows immediately from the definitions.

Finally, suppose that d ≡ 3 (mod 6). LetW1 =Wg+ 1

2

(C2)[2]∩Pic(C2) andW2 =Wg+ 1

2

(C2)[2]∩
(Pic(C2,Q.D2) \ Pic(C2)). We first consider W1. In this case, since

⌊

g+ 1

2

degD∞

⌋

=
⌊

d
3 − 1

2

⌋

= d
3 −1 =

g−1
degD∞

, we see that for a Z-divisor D, D +
g+ 1

2

degD∞

D∞ is effective if and only if D + g−1
degD∞

D∞.
Then by the same proof as in case (ii), W1 is in bijection with effective theta characteristics in
Pic(C2).

Now let [D] ∈ Pic(C2,Q.D2)[2] \ Pic(C2)[2]. Then we may write the principal divisor 2D as
2D = 2D′ − ǫ1∞1 − ǫ2∞2 − ǫ3∞3, where D

′ is a Z-divisor and ǫi ∈ {0, 1}, i = 1, 2, 3, not all 0.
Since deg 2D = 0, looking mod 2 we see that ǫi = 0 for some unique i, which after reindexing we
can assume is ∞3. It follows that ∞1 +∞2 and ∞3 are k-rational. We also have

deg

(

D′ +

(

d

3
− 1

)

D∞

)

= g,

where D′ +
(

d
3 − 1

)

D∞ is a Z-divisor. Then by Riemann-Roch, D′ +
(

d
3 − 1

)

D∞ ∼ E for some
effective divisor E. Then

D +
g + 1

2

degD∞
D∞ = D +

(

d

3
− 1

2

)

D∞ = D′ +
1

2
∞3 +

(

d

3
− 1

)

D∞ = E +
1

2
∞3

is effective. It follows that [D] ∈W2 and W2 = Pic(C2,Q.D2)[2] \ Pic(C2)[2].
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Lemma 7.8. Let C be a nonsingular projective curve of genus g over an algebraically closed field.
Then every odd theta characteristic is an effective theta characteristic. Furthermore,

(i) If g ≤ 3, then C has no vanishing theta characteristics.

(ii) If g = 4 and C is not hyperelliptic, then there exists a vanishing even theta characteristic if
and only if C is trigonal and there is a unique g13 on C, in which case the unique vanishing
even theta characteristic on C is the g13 on C.

Proof. If [D] is a theta characteristic on C, then degD = g − 1. The statement is trivial when
g = 0. When g > 0 and C is not rational, we have l(D) ≤ degD−1 = g−2, and so l(D) ≤ 1 when
g ≤ 3. The first statement follows immediately. For the second statement see [Kul17, Th. 4.3] and
[Vak01, Section 2.8].

7.2 Arguments using 3-descent

We assume throughout that f(t) is squarefree.

Theorem 7.9. Let n ∈ Q, n > 0. Then there is a map

φ3 :
{

P = (x0, y0) ∈ E(k̄(t)) | y0 ∈ k[t], 0 < ĥ(P ) ≤ n
}

→W2n(C3)[3] \ {0}

P = (x0, y0) 7→
[

1

3
div(y0 − y)

]

(i) If n < d/4, the map φ3 is 3-to-1 onto its image.

(ii) If n ≤ (d+ 1)/6, the map φ3 is 3-to-1 and surjective.

By Remark 7.5, the only interesting values of n in (ii) are n = d/6 if d ≡ 0, 2, 3, 4 (mod 6) and
n = (d+ 1)/6 if d ≡ 5 (mod 6).

Proof. Let P = (x0(t), y0(t)) ∈ E(k̄(t)), with y0 ∈ k[t] and 0 < h(P ) = ĥ(P ) ≤ n. It is elementary
that h(P ) = 1

6 max{d, 2 deg y0}. By Proposition 5.1, we have [D] ∈ Pic(C3,Q.D3)[3], where
D = 1

3 div(y0(t)− y). By Lemma 6.12,

ord∞D =
1

3
max{d, 2 deg y0} = 2h(P ) ≤ 2n = 2n/degD∞ if 2 ∤ d,

max
1≤i≤2

ord∞i
D =

1

3
max{d/2,deg y0} = h(P ) ≤ 2n/degD∞ if 2 | d.

Thus, in any case, D + 2n/(degD∞)D∞ is effective and φ3 is well-defined. If n < d/4, then
P ∈ E(k̄[t])<d/4, and so φ3 is 3-to-1 onto its image by the proof of Theorem 6.11 (i).

Suppose now that n ≤ (d + 1)/6. We first claim that φ3 is 3-to-1 onto its image. If d ≥ 3,
then this implies that n < d

4 and φ3 is 3-to-1 from the above. If d = 2, then 0 < h(P ) ≤ 1
2 easily

implies that h(P ) = 1
3 and the claim follows by taking n = 1

3 <
d
4 . If d = 1 then E(k̄(t)) is trivial

and the claim is vacuously true.
It remains to show that φ3 is surjective. Let [D] ∈W2n(C3)[3] \ {0} so that

D0 := D + 2n/(degD∞)D∞ ∈ Div(C3,Q.D3)
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is effective. Then

3D = 3D0 −
6n

degD∞
D∞

is principal and 6n ≤ d + 1 < d + 2. It follows from Lemma 6.12 that there exists a polynomial
y0(t) ∈ k[t] with deg y0 ≤ 3n and a ∈ k such that div(y0(t)+ ay) = 3D. If a = 0, then this implies
that y0(t) is a perfect cube (up to a constant) and D itself is principal, contradicting [D] 6= 0. Then
a 6= 0 and replacing y0 by −ay0, we obtain a polynomial y0(t) ∈ k[t] with div(y0 − y) = 3D. This
implies that there exists x0 ∈ k̄[t] such that y20 = x30+ f . Moreover, using Lemma 6.12 to compute
the poles of y0 − y, we find that 6n ≥ d. Let P = (x0, y0). Then h(P ) = max{d

6 ,
1
2 deg x0} ≤ n

and φ3(P ) = [D]. So φ3 is surjective as well.

An elementary calculation using the Riemann-Hurwitz formula yields the canonical divisor
(and the genus of C3, already given in (22)).

Lemma 7.10. Let KC3
be the canonical divisor of C3. Then

KC3
∼
{

(d− 3)∞ if d is odd,
(

d
2 − 2

)

D∞, if d is even.

Lemma 7.11. Let

g = g(C3) =

{

1
2(d− 1) if d is odd
1
2(d− 2) if d is even.

(i) If d is odd or d ≡ 6 (mod 12) then

Wg(C3)[3] = Pic(C3)[3].

(ii) If d ≡ 2, 4 (mod 6) then

Wg+ 2

3

(C3)[3] = Pic(C3,Q.D3)[3] if g is even

Wg+ 1

3

(C3)[3] = (Pic(C3,Q.D3)[3] \ Pic(C3)[3]) ∪ (Pic(C3) ∩Wg−1(C3)[3]) if g is odd.

Proof. Suppose first that d is odd or d ≡ 6 (mod 12). Then Pic(C3,Q.D3) = Pic(C3). For any
line bundle L, by the Riemann-Roch formula the condition h0(L⊗OC3

( g
degD∞

D∞)) > 0 is always
satisfied, and so clearly Wg(C3)[3] = Pic(C3)[3] (note that when d ≡ 6 (mod 12), g is even and
g/degD∞ ∈ Z).

Suppose now that d ≡ 2, 4 (mod 6). We first assume that g is even. Let W1 =Wg+ 2

3

(C3)[3] ∩
Pic(C3) and W2 = Wg+ 2

3

(C3)[3] ∩ (Pic(C3,Q.D3) \ Pic(C3)). In this case, since
⌊

g+ 2

3

degD∞

⌋

=
⌊ g
2 + 1

3

⌋

= g
2 = g

degD∞

, we see that for a Z-divisor D, D +
g+ 2

3

degD∞

D∞ is effective if and only

if D + g
degD∞

D∞ is effective. By Riemann-Roch, if degD = 0, then h0(D + g
degD∞

D∞) > 0, and
it follows that W1 = Pic(C3).

Now let [D] ∈ Pic(C3,Q.D3)[3] \ Pic(C3)[3]. Then we may write the principal divisor 3D as
3D = 3D′ + ǫ1∞1 + ǫ2∞2, where D

′ is a Z-divisor and ǫi ∈ Z, i = 1, 2, not both divisible by 3.
Since deg 3D = 0, we find that ǫ1 ≡ −ǫ2 (mod 3). Then, after possibly interchanging the points
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at infinity, we can write D = D′ + 1
3∞1 − 1

3∞2 for some Z-divisor D′. Note also that in this case
∞1 and ∞2 are k-rational. We also have

deg

(

D +
g + 2

3

degD∞
D∞ − 2

3
∞1

)

= deg
(

D′ +
g

2
D∞

)

= g

whereD′+ g
2D∞ is a Z-divisor. Then by Riemann-Roch, D+

g+ 2

3

degD∞

D∞− 2
3∞1 is linearly equivalent

to an effective divisor, and D ∼ E − g+ 2

3

degD∞

D∞ for some effective Q-divisor E. It follows that
[D] ∈W2 and W2 = Pic(C3,Q.D3)[3] \ Pic(C3)[3].

Now suppose that g is odd. Similar to the previous case, we let W1 = Wg+ 1

3

(C3)[3] ∩ Pic(C3)

andW2 =Wg+ 1

3

(C3)[3]∩(Pic(C3,Q.D3) \ Pic(C3)). Since
⌊

g+ 1

3

degD∞

⌋

=
⌊

g−1
2 + 2

3

⌋

= g−1
2 = g−1

degD∞

,

we see that for a Z-divisor D, D+
g+ 1

3

degD∞

D∞ is effective if and only if D+ g−1
degD∞

D∞ is effective.
It follows that W1 = Pic(C3)∩Wg−1(C3)[3]. Now let [D] ∈ Pic(C3,Q.D3)[3] \Pic(C3)[3]. Then as
before, after possibly interchanging the points at infinity, we can write D = D′ − 1

3∞1 − 2
3∞2 for

some Z-divisor D′. We also have

deg

(

D +
g + 1

3

degD∞
D∞ − 1

3
∞1

)

= deg

(

D′ +
g − 1

2
D∞

)

= g

where D′ + g−1
2 D∞ is a Z-divisor. Then by Riemann-Roch, D +

g+ 1

3

degD∞

D∞ − 1
3∞1 is linearly

equivalent to an effective divisor, and D ∼ E − g+ 1

3

degD∞

D∞ for some effective Q-divisor E. It
follows that [D] ∈W2 and W2 = Pic(C3,Q.D3)[3] \ Pic(C3)[3].

8 An application

When k = k̄ is algebraically closed, Theorems 7.4 (ii) and 7.9 (ii) combined yield an unexpected
relation between certain 2-torsion and 3-torsion sets associated to C2 and C3, respectively. This
extends Table 1 to higher genus curves, where however one lacks an explicit formula, and in general
the quantities depend on the polynomial f (and not just deg f).

Theorem 8.1. Suppose that k = k̄ is algebraically closed. Let f ∈ k̄[t] be a squarefree polynomial
of positive degree d. Then

2
(

#W d
2

(C2)[2] − 1
)

= 3
(

#W d
3

(C3)[3] − 1
)

, d 6≡ 5 (mod 6)

2
(

#W d+1

2

(C2)[2] − 1
)

= 3
(

#W d+1

3

(C3)[3] − 1
)

, d ≡ 5 (mod 6)

The statement is trivial if d ≡ 1 (mod 6) (see Remark 7.5).
In general, it seems to be a difficult problem to bound the number of n-torsion points on a

given subvariety V of an abelian variety (in fact, if the subvariety V does not contain a torsion
translate of a nontrivial abelian subvariety, then the number of torsion points on V is finite by a
theorem of Raynaud (Manin-Mumford conjecture)). Using (13) and (19), we have the naive bound

#W d
2

(C2)[2] ≤ 22g(C2)+1 ≤ 22d−1.

Taking advantage of Theorem 8.1 immediately gives, for large d, an exponential improvement
to the naive bound:
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Table 2: Oguiso-Shioda classification and Theorem 1.2

Type No. in [OS91] T E(k̄(t)) ∼=(Mordell-Weil Lattice L)⊕E(k̄(t))tors

(1, 0, 0, 0, 1) 62 E8 0

(0, 1, 0, 1, 0) 69 A2 ⊕ E6 Z/3Z

(2, 0, 0, 1, 0) 27 E6 A∗
2

(0, 0, 2, 0, 0) 73 D4 ⊕D4 Z/2Z⊕ Z/2Z

(1, 1, 1, 0, 0) 32 A2 ⊕D4
1
6

(

2 1

1 2

)

(3, 0, 1, 0, 0) 9 D4 D∗
4

(0, 3, 0, 0, 0) 39 A3
2 A∗

2 ⊕ Z/3Z

(2, 2, 0, 0, 0) 11 A2
2 A∗2

2

(4, 1, 0, 0, 0) 3 A2 E∗
6

(6, 0, 0, 0, 0) 1 0 E8

Theorem 8.2. Let f ∈ k[t] be a squarefree polynomial of positive degree d. Then

#W d
2

(C2)[2] ≤
{

1
2(3

d − 1) if d ≡ 2, 3, 4 (mod 6),
1
2(3

d−1 − 1) if d ≡ 0 (mod 6),

and

#W d+1

2

(C2)[2] ≤
1

2
(3d − 1) if d ≡ 5 (mod 6).

When d = 2, 3, 5, 6, the inequality is easily seen to be sharp over an algebraically closed field
(of characteristic not 2 or 3).

Proof. We may assume k = k̄. If d ≡ 2, 4 (mod 6), then

#W d
2

(C2)[2] =
3

2
#W d

3

(C3)[3]−
1

2
≤ 3

2
32g+1 − 1

2
≤ 1

2
(3d − 1).

The other cases are similar.

9 Proof of Theorem 1.2

Let Σ be the set of places of bad reduction of E → P1 over k̄. Then we have the root lattice
T = ⊕v∈RTv, where Tv is given by 0, A2,D4, E6, E8 if the reduction type at v is II, IV, I∗0, IV

∗, II∗,
respectively (see [OS91]). Taking the corresponding entries from [OS91], we find Table 2.

We now combine Table 2 with the tools from the previous sections to prove Theorem 1.2.

Proof of Theorem 1.2. The cases of types (1, 0, 0, 0, 1), (0, 1, 0, 1, 0), and (0, 0, 2, 0, 0) of Theo-
rem 1.2 are immediate from Table 2, after noting the obvious torsion points.

Next, we consider the remaining type where F is a perfect power: type (0, 3, 0, 0, 0). We prove
the case where f is the square of a cubic; the proof when f is the square of a quadratic polynomial
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is similar. In this case, we have f(t) = ac(t)2 for some monic separable cubic polynomial c ∈ k[t]
and a ∈ k∗. Write

c(t) = (t− α1)(t− α2)(t− α3), αi ∈ k̄, i = 1, 2, 3,

g(t) = (α1 − α2)(α1 − α3)(t− α2)(t− α3) ∈ k(α1)[t],

∆ = (α1 − α2)
2(α1 − α3)

2(α2 − α3)
2,

where ∆ ∈ k∗ is the discriminant of c(t).
We easily find the point

(

2ag(t)
3
√
2a2∆

,

√

a

∆
g(t)((α2 + α3 − 2α1)t+ α1α2 + α1α3 − 2α2α3)

)

.

Permuting the roots αi and taking the six possible combinations of square and cube roots yields
18 points of canonical height 1

3 in E(k̄[t]). Similarly, for the points (x0, y0) above, the points

λt((−3x0, 3
√
−3y0))

give 18 points of canonical height 1 in E(k̄[t]). From the Mordell-Weil lattice in Table 2, these
are all of the points of canonical height ≤ 1, and the entry in Theorem 1.2 follows easily from the
explicit formulas for the points.

In the case (2, 2, 0, 0, 0), we have F = F1F
2
2 where degF1 = degF2 = 2. Working over k̄, we

first compute the images of the descent maps on the points of canonical heights 1/3 and 1. Using
Lemma 7.1 and a change of variable, we reduce to considering the case f = at4 + bt3 + ct2 ∈ k̄[t],
a, c ∈ k̄∗, b2 − 4ac 6= 0. Then we find 12 points of the form

Qi = (xi, yi) =

(

− 3

√

b+ 2
√
act,

√
at2 −√

ct

)

for the various choices of the square and cube roots (choosing
√
ac =

√
a
√
c consistent with the

choices of
√
a and

√
c), with each such point of canonical height 1

3 . It follows from the Mordell-Weil
lattice entry in Table 2 that there are exactly 12 points of the minimal canonical height µ = 1

3 , and
12 points of canonical height 1. Thus, we have found all points of Emin, and

√
−3Emin contains all

points of canonical height 1. The curve C2 : x
3 = −f(t) has genus 2. Abusing notation, let 0 and∞

denote the unique points on C2 mapping to 0 and ∞, respectively, on P1 via the map t : C2 → P1.
Then 4∞ − 2 · 0 is a canonical divisor on C2, and the map Qi 7→ 1

2 div(xi − x) + (2∞ − 0)
is 2-to-1 onto its image by Lemma 7.3. The images are effective theta characteristics, which
for a genus 2 curve are equivalent to odd theta characteristics. Since there are 6 odd theta
characteristics of C, the image must be precisely the odd theta characteristics of C. Similarly,
let t−1(0) = {P1, P2} and t−1(∞) = {P3, P4} in C3(k̄), so that D3 = P1 + P2 + P3 + P4. Then
the map on Emin, Qi 7→ [13(yi − y)], is 3-to-1, and by explicit calculation the image is the set
[13 (D3 + P1 + P3),

1
3(D3 + P1 + P4),

1
3 (D3 + P2 + P3),

1
3(D3 + P2 + P4)] ⊂ Pic(C3,Q.D3)[3]. Using

Lemma 7.3, this proves the statement for points of canonical height 1
3 and 1. It remains to consider

the points of canonical height 2
3 .

From the Mordell-Weil lattice, there are 36 points of canonical height 2/3 in E(k̄(t)). By
explicit calculation (the points Qi generate the Mordell-Weil group), the points of canonical height
2/3 come in two types: there are 18 such integral points (x(t), y(t)) with (deg x,deg y) = (1, 2) and
18 integral points with (deg x,deg y) = (2, 3) and x(0) = y(0) = 0. On each Gal(k̄/k)-invariant set,
the map Q 7→ 1

2 div(xQ−x)+ (2∞− 0) is 2-to-1 onto the even theta characteristics, excluding the
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even theta characteristic 2∞−0 (there are 22−1(22+1)−1 = 9 such even theta characteristics). The
3-descent map on the points of canonical height 2/3 maps onto the set T = {±[13(P1−P2)],±[13 (P3−
P4)]} ⊂ Pic(C3,Q.D3)[3], and these maps induce a bijection between the set of points of canonical
height 2/3 and the product T × {even theta characteristics on C2 excluding [2∞− 0]}. Then the
corresponding entries in Theorem 1.2 follow from the same reasoning as in the proof of Lemma 7.3.

In the case of type (1, 1, 1, 0, 0), using Lemma 7.1 and a change of variable (over k), we may
assume that f has the form f = at2(t+1), a ∈ k∗. Then we find 6 points of the form (− 3

√
at,

√
at) ∈

E(k̄(t)) (for the 6 possible choices of the roots), each of canonical height 1
6 , and 6 points of the

form

λt((3 3
√
at, 3

√
−3at)) =

(

−
3
√
a(3t+ 4)

3
,

√
−3a(9t+ 8)

9

)

,

each of canonical height 1
2 . It follows from Table 2 that these are all of the points of canon-

ical heights 1
6 and 1

2 . On the other hand, from (13), 2(#Pic(C2,Q.D2)[2] \ {0}) ≤ 6 and
3(#Pic(C3,Q.D3)[3] \ {0}) ≤ 6, and this case of Theorem 1.2 follows from Lemma 7.3. Note
this case could also be stated in terms of the number of cube roots of a in k and the number of
square roots of a and −3a in k.

The remaining cases of Theorem 1.2 involve types (2, 0, 0, 1, 0), (3, 0, 1, 0, 0), (4, 1, 0, 0, 0), and
(6, 0, 0, 0, 0). In each case, using Lemma 7.1 and a change of variables, we may assume that f is
squarefree, 2 ≤ deg f ≤ 6. Except for the case of type (3, 0, 1, 0, 0) and points of canonical height
1, all of these statements follow from Theorem 7.4, Theorem 7.9, Lemma 7.7, Lemma 7.11, and
Lemma 7.8, with the following additional notes:

(i) Type (2, 0, 0, 1, 0), deg f = 2: From the Mordell-Weil lattice, there are 6 points of canonical
heights 1

3 and 1, and so
√
−3Emin is the set of points of canonical height 1. Then the

statements for points of canonical height 1 follow from Lemma 7.3.

(ii) Type (3, 0, 1, 0, 0), deg f = 3: We have g(C2) = g(C3) = 1, and from Lemma 7.7, W 3

2

(C2)[2]\
{0} = Pic(C2,Q.D2)[2] \ Pic(C2)[2].

(iii) Type (4, 1, 0, 0, 0), deg f = 4: We have g(C2) = 3 and g(C3) = 1. In this case, by Lemma 7.8,
the effective theta characteristics on C2 coincide with the odd theta characteristics on C2,
and 1

2KC2
is an odd theta characteristic. For points of canonical height 1, we note that

W3(C2)[2] \W2(C2)[2] can be identified with the even theta characteristics in Pic(C2). From
Lemma 7.11, we have W 4

3

(C3)[3] \ {0} = Pic(C3,Q.D3)[3] \ Pic(C3)[3].

(iv) Type (6, 0, 0, 0, 0), deg f = 5, 6: We have g(C2) = 4 and 1
2KC2

is a vanishing even theta
characteristic (the unique vanishing even theta characteristic by Lemma 7.8). SoW3(C2)[2]\
{0} may be identified with the set of odd theta characteristics in Pic(C2).

Finally, we consider the case of type (3, 0, 1, 0, 0) and canonical points of height 1. It is possible
to give an argument along the lines of the proofs of Theorem 7.4 and Theorem 7.9, but instead we
can simply appeal to the casem = 2 of [Shi05, Th. 8.2(iv)] which states that in this case there are 24
integral points in E(k̄[t]) of canonical height 1 of the form (x(t), y(t)), degt x(t) = 2,degt y(t) = 3.
By Theorem 6.11(ii) the map

{

P ∈ E(k̄(t)) | ĥ(P ) = 1
}

→ Pic(C3)(k̄)[3] \ {0}
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is 3-to-1 onto its image. Since g(C3) = 1 and #Pic(C3)(k̄)[3] − 1 = 8, the map is onto, with the
preimage of a point a set of the form {P, ζ3P, ζ23P}. If ĥ(P ) = 1, then P, ζ3P, ζ

2
3P are easily seen

to be inequivalent modulo 2E(k̄(t)), and from the form of the points the image of the descent map
lands in Pic(C2)(k̄)[2] \ {0} ⊂ Pic(C2,Q.D2)(k̄)[2]. As g(C2) = 1 and #Pic(C2)(k̄)[2] − 1 = 3, it
follows that we have a bijection

{

P ∈ E(k̄(t)) | ĥ(P ) = 1
}

→ (Pic(C2)(k̄)[2] \ {0}) × (Pic(C3)(k̄)[3] \ {0})

which induces a bijection

{

P ∈ E(k(t)) | ĥ(P ) = 1
}

→ (Pic(C2)[2] \ {0}) × (Pic(C3)[3] \ {0}).

For P ∈ E(k̄(t)), ĥ(P ) = 1, the image of the set {P,−P} is of the form

{pt} × {nontrivial cyclic subgroup of Pic(C3)(k̄)[3]} \ {0}.

It follows that

#{P ∈ E(k̄(t)) | x(P ) ∈ k[t], ĥ(P ) = 1} = 2(#Pic(C2)[2] − 1)·
(#nontrivial k-rational cyclic subgroups of Pic(C3)(k̄)[3]).

Remark 9.1. We show in detail how to use our results to derive Theorem 1.2 of [Bre91], excluding
the information on exceptional integral points and the explicit formulas for the integral points.

Suppose f(t) ∈ Q[t] is a squarefree cubic. Following Bremner [Bre91], for a cubic g(t) =
at3 + bt+ c, we write f ∼ g if there exists, α, d, e ∈ Q, αd 6= 0, such that

f(dt+ e) = at3 + α4bt+ α6c.

Let C3 be the elliptic curve over Q defined by C3 : y
2 = f(t). It is well-known that C3[3] 6= {0}

if and only if C3 has a Weierstrass model of the form y2 = x3 + (6uv + 27v4)x + u2 − 27v6

for some u, v ∈ Z (see, e.g., [GST12]). Considering the cases v = 0 and v 6= 0 separately and
writing λ = u/v3, equivalently, C3[3] 6= {0} if and only if C3 has a Weierstrass model of the form
y2 = x3 + (6λ+ 27)x + λ2 − 27 or of the form y2 = x3 + λ2 for some λ ∈ Q.

Suppose now that we are in the first case of (1). Then since a ∈ Q∗3, we have f(t) ∼ −t3+bt+c
for some b, c ∈ Q. Then from the above (replacing x by −x) we find that the first case of (1)
occurs if and only if

f(t) ∼ −t3 − (6λ+ 27)t+ λ2 − 27

or

f(t) ∼ −t3 + λ2

for some λ ∈ Q. Replacing λ by −(λ + 5) in the first expression above, these parametrizations
yield precisely the union of the cases (i) a), b) and (ii) a), b) in [Bre91, Theorem 1.2] (depending
on whether 2λ is a perfect cube), which are exactly the cases of [Bre91, Theorem 1.2] where there
is a pair of points in E(Q[t]) of canonical height 1

2 .
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Now suppose that we are in the first case of (2). Then using C3[3] 6= {0}, by the same argument
(but no longer assuming a is a perfect cube) we easily find

f(t) ∼ at3 + a3(6λ+ 27)t+ a4(λ2 − 27)

or

f(t) ∼ at3 + a4λ2

for some a ∈ Q∗ and λ ∈ Q. For the first case above, we compute twice the discriminant

2∆at3+a3(6λ+27)t+a4(λ2−27) = −54a10(λ+ 5)(λ + 9)3,

which agrees with 2∆f up to a 6th power. Then in this case, 2∆f is a perfect cube if and only if
2a(λ+ 5) = u3 for some u ∈ Q∗. Solving for a and substituting, we have

f(t) ∼ u3

2(λ+ 5)
t3 +

u9

8(λ+ 5)3
(6λ+ 27)t+

u12

16(λ + 5)4
(λ2 − 27)

∼ 1

2(λ+ 5)
t3 +

u8

8(λ+ 5)3
(6λ+ 27)t+

u12

16(λ + 5)4
(λ2 − 27)

∼ 1

2(λ+ 5)
t3 +

1

8(λ+ 5)3
(6λ+ 27)t+

1

16(λ + 5)4
(λ2 − 27)

∼ λ′t3 − 3λ′2(λ′ + 1)t− λ′2(8λ′2 − 20λ′ − 1)/4

where λ′ = − 1
2(λ+5) (and we replaced t by −t) in the last line. The parametrization in the last

line is the union of the cases (i) a) and (ii) d) in [Bre91, Theorem 1.2] (the case depending on
whether λ′ is a perfect cube).

Finally, when f(t) ∼ at3 + a4λ2, we similarly find that 2∆f is a perfect cube if and only if 2aλ
is a perfect cube. Solving for a as above, by similar calculations we find that f(t) ∼ λ′t3 +16(λ′)2

for some λ′ ∈ Q∗, which is the union of the cases (i) b) and (ii) g) in [Bre91, Theorem 1.2] (the
case depending on whether λ′ is a perfect cube). Thus, in agreement with [Bre91, Theorem 1.2],
we find that there is a pair of points in E(Q[t]) of canonical height 1 precisely in cases (i) a), b)
and (ii) d), g) in [Bre91, Theorem 1.2].
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