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Abstract

In this article, we study germs of holomorphic vector fields which are ”higher order”
perturbations of a quasihomogeneous vector field in a neighborhood of the origin of
C", fixed point of the vector fields. We define a ”diophantine condition” on the quasi-
homogeneous initial part S which ensures that if such a perturbation of S is formally
conjugate to S then it is also holomorphically conjugate to it. We study the normal
form problem relatively to S. We give a condition on S that ensure that there always
exists an holomorphic transformation to a normal form. If this condition is not satisfied,
we also show, that under some reasonable assumptions, each perturbation of S admits
a Gevrey formal normalizing transformation. Finally, we give an exponentially good
approximation by a partial normal form.

1 Introduction

The aim of this article is to study germs of holomorphic vector fields in a neighborhood of
a fixed point, say 0, in C". Lot of work is devoted to this problem mainly when the vector
field is not too degenerate, that is when not all the eigenvalues of the linear part DX (0)
of X at the origin are zero. In this situation, the aim is to compare the vector field to its
linear part. One way to achieve this, is to transform the vector field “as close as possible”,
in some sense, to its linear part by mean of regular change of variables.

In this article we shall focus on vector fields which are degenerate and which may not
have of nonzero linear part at the origin.

We shall be given a “reference” polynomial vector field S to which we would like to
compare a suitable perturbation of it. This means that we would like to know if some of
the geometric or dynamical properties of the model can survive for the perturbation. For
instance, the model S; = y% and Sy = y% + m28% are quite different although they have
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the same linear part at the origin of C2. In fact, for Si, each point of {y = 0} is fixed
whereas the ”cusp” {22% — 3y? = 0} is globally invariant by Ss.

In this article, we shall assume that the unperturbed vector field S is quasihomoge-
neous with respect to some weight p = (p1,...,pn) € (N*)". This means that each variable
x; has the weight p; while 8%1- has the weight —p;. Hence, the monomial z€ is quasihomoge-
neous of quasidegree (Q,p) := Y_i*; ¢;p;- In particular, the vector field S = >, Si(:c)a%i
is quasihomogeneous of quasidegree s if and only if .5; is a quasihomogeneous polynomial of
degree s + p;.

We shall then consider a germ of holomorphic vector field X which is a good
perturbation of a quasihomogeneous vector field S, this means that the smallest
quasidegree of nonzero terms in the Taylor expansion of X — S is greater than s. In the
homogeneous case (p = (1,...,1)), a linear vector field S is quasihomogeneous of degree
0 and a good perturbation is a nonlinear perturbation of S (i.e. the order at 0 of the
components of X — S is greater or equal than 2).

We shall develop an approach of these problems through normal forms. By this,
we mean that the group of germs of holomorphic diffeomorphisms (biholomorphisms) of
(C™,0) acts on the space of vector fields by conjugacy : if X (resp. ®) is a germ of vector
field (resp. biholomorphism) at 0 of C™, then the conjugacy of X by & is ¢, X(y) :=
D®(®1(y)) X (®~1(y)). A normal form is special representant of this orbit which satisfy
some properties. Although, the formal normal form theory of vector fields which are non-
linear perturbations of a semi-simple (resp. nilpotent, general ) linear vector field is well
known [Arn80] (resp. [CS86, Bel79, Mur03]), it is much more difficult to handle the problem
when the vector field doesn’t have a nonzero linear part. It might also be useful in problem
with parameters to consider some of the parameters as a variable with a prescribed weight.

First of all, we shall define a special hermitian product (., .>p’ s on each space H; of
quasihomogeneous vector fields of quasidegree § (see (3)). It’s main property is that the
associated norm of a product is less or equal than the product of the norm. Let us consider
the cohomological operator :

do:Hs — Hets
U — [SU]

where [.,.] denotes the usual Lie bracket of vector fields. We emphasize that, contrary to
the case where S is linear (s = 0), dy doesn’t leave Hs invariant. Let dfj : Hsrs — Hs be
the adjoint of dy with respect to the hermitian product. An element of the kernel of this
operator will be called resonant or harmonic. The first result we have is the following :

Formal normal form transformation (see proposition 4.4) :
There exists a formal change of coordinates tangent to Id at the origin, such that, in the
new coordinates, X — S is resonant.

This means that there exists ® € (C[[z1,...,x,]])" such that ®(0) and D®(0) = Id and
d(”;((i)*X —S) = 0. When S is linear, this corresponds to classical normal forms [Arn80,
Mur03]. In the homogeneous case, the first result in this direction is due to G. Belitskii
[Bel79, Bel82] using a different scalar product. In the quasihomogeneous case, a general



scheme has been devised by H. Kokubu and al.[KOW96] to obtain a unique normal form.
This scheme can be combined with our definition.
One of the main novelty of this article is to consider the Box operator

Os:Hs — Hs
U — O5(U) = dodi(U)

which is self-adjoint and which spectrum is non-negative. Its nonzero spectrum is com-
posed of the (squared) small divisors of the problem. These are the numbers that
we need to control. For instance in the homogeneous case, if S = Y"1 )\iibiaixi, then the
eigenvalues of (1 is the set of [(Q,\) — \;|?, where Q € N*, |Q| =k and 1 <i < n.

For each quasidegree A > s, let us set

as = min
A€Spec(s)\{0}

Then, we shall construct inductively a sequence of positive numbers 7 from the as’s (see
(12)). We shall say that S is diophantine if there exists positive constants M, ¢ such
that n; < Mc®. Being diophantine a quantitative way of saying the the sequence {as}
doesn’t accumulate the origin too quickly. Hence, we have defined a small divisors con-
dition for quasihomogeneous vector fields. For instance in the homogeneous case,
S=> )‘iwia%i is diophantine if it satisfies Brjuno’s small divisors condition [Bru72] :

where
wg := inf{|(Q,\) — \i| #0,Q € N",2 < |Q| < 2%,1, <4 <n}.

Rigidity theorem (see theorem 5.8) :

In the general quasihomogeneous case, assume that the quasihomogeneous vector field S is
diophantine. Let X be a good holomorphic deformation of S. If X is formally conjugate to
S then it s holomorphically conjugate to it.

For instance in the homogeneous case and if S = >, )‘ixi%’ this is the classical
Siegel-Brjuno linearization theorem : if S satisfies the diophantine condition (w) and if an
holomorphic nonlinear perturbation X is formally linearizable, then X is holomorphically
linearizable.

Assume that the ring of polynomial first integrals of S is generated by some quasiho-

mogeneous polynomials hy, ..., h,. Let us denote Z (resp. 7 ) the ideal they generate in the
ring of germs of holomorphic functions at the origin (resp. formal power series). The germ
of the variety ¥ = {h; = --- = h, = 0} at the origin is invariant by the flow of S. Does a

good perturbation of S still have an invariant variety of this kind ?

Invariant variety theorem (see theorem 5.6) :
In the general quasihomogeneous case, assume that the quasihomogeneous vector field S is
diophantine. Let X be a good holomorphic deformation of S. Essentially, if X is formally



conjugate to S modulo 7 then it is holomorphically conjugate to S modulo T.

This means that there exists a germ of holomorphic diffeomorphism ® such that

2, X =5+ gi(x)

=1

i, with ¢g; € 7.

8$i

Hence, in the new holomorphic coordinate system, ¥ is an invariant variety of X since
giix = 0. The diophantine condition can eventually be relaxed a little bit taking into
account the ideal Z. For instance in the homogeneous case and if S = Y"1 | \izim— 8 , this
was proved by L. Stolovitch [Sto94].

What happens if instead of accumulating the origin, the sequence of the spectrum ag
tends to infinity with 6 ? Let us set v := max (1, =52).
Poincaré’s domain like theorem (see theorem 6.2) :
Assume that there exists a constant M such that for all § > s,

min VA > M(§—s).
A€ Spec(Ts)\{0}
Then, any holomorphic good perturbation of S is holomorphically conjugate to a normal
form.

For instance in the homogeneous case, if S = > 1" | \izio— a belongs to the Poincaré’s
domain [Arn80] then the convex hull of the \; in the complex plane doesn’t contain the
origin. This implies that |[(Q,\)| > €|Q| from which we infer that [(Q,\) — \i| > €'|Q] if
|Q| is large enough. We refer to [Sto00, Sto08] for recent results and overview about the
problem of holomorphic conjugacy to a normal form when S is a linear diagonal vector field.

Let f = > genn f@x? be a formal power series of C" and o > 0. We say that f is
a-Gevrey if for all Q € N, |fo| < M AQl(1QIN®. As we know from the linear diagonal
case, normalizing transformations (that is formal transformation to a normal form) usu-
ally diverge. How bad can be this divergence 7 We show that is the spectrum of [J is of
Siegel type, then, at worst, there exists a formal Gevrey normalizing transformation :

Gevrey formal normal form theorem (see theorem 6.4):
Assume that there exists a positive constants M and nonnegative T such that for all § > s,

M

min
A€ Spec(Ts)\{0}
Then any good holomorphic perturbation of S admits a formal }3(5—1— 7)-Gevrey normalizing
transformation to a p(b 4 7)-Gevrey formal normal form. Here, p = max;p; and b is a
positive number depending only on p.

In the homogeneous case with S a linear vector field, this result was proved (but not
stated!) by G. Iooss and E. Lombardi [IL05]. This kind of result was obtained in very
peculiar case. Namely, in the case of two-dimensional saddle-node (resp. resonant saddle),
X is a suitable perturbation of x% + yQ% (resp. px% — qm% + qup—l-l 0 ) (these are not



quasihomogeneous), the Gevrey character with respect to y (resp. to the monomial z7yP)
was obtained by J. Ecalle [Eca], J. Martinet and J.-P. Ramis [MR82, MR83, Mal82] and S.
Voronin [Vor81] (see also [IY08] for a general overview). In this case, there is no small divisor
(i.e. 7 =0). For general n-dimensional 1-resonant saddle, there are usually small divisors;
the results was devised by J. Ecalle [Eca92], by L. Stolovitch [Sto96] and B. Braaksma and
L. Stolovitch [BS07]. In the case of the ”"cusp”, S = 2ya%C + 3z28% (p = (2,3)), a normal
form of vector fields tangent to the cusp was given by F. Loray. A very precise study of
this case with sharp estimates of the Gevrey order was done by M. Canalis-Durand and R.
Schéfke [CDS04]. T. Gramchev and M. Yoshino studied the cohomological equation (i.e.
the linearized equation of the conjugacy equation) of a pair of commuting 4-dimensional
vector fields having linear part with a Jordan block [YGOS].

By applying a polynomial change of coordinates ¥s_, of some quasidegree § — s, one can
transform the perturbation X into a normal form S + Ng up to some quasiorder ¢, that is
(Us_5)«X —(S+Ns) is of quasiorder greater than §. Hence, the norm of (¥s_).X —(S+Ns)
on a ball of radius ¢ centered at the origin is bounded by a power of €. Nevertheless,
the formal normalizing diffeomorphism ¢ we obtained from the previous theorem allow us
to obtain much better estimate, that is an exponentially small estimate. Namely, let us
consider the “twisted ball” B, = {(37 ps|xi|>/P)'/? < e}.

Exponentially small approximation by a partial normal form theorem (see the-
orem 6.11):
For each € > 0 sufficiently small, there exists a quasidegree 0opr such that

A
’qh,s < M exp <_5b)

for some exponent b that depends on T, the order of small divisors. Here, | X||gne is a
“twisted norm” of the vector field X that measure its size on the twisted ball B..

H(‘Pam)*X — (S +Niuw)

Some of these results were announced in [LS09].

2 Notations

Let us set some notation which will be used throughout this article.
e X, denotes the C-space of formal vector fields on C™,
e X, denotes the C-space of germs of holomorphic vector fields on (C",0),
e O, denotes the ring of formal power series in C™,
e O, denotes the ring of germs at 0 of holomorphic functions in C".

Let Q = (q1,-..,qn) € N™". Let |Q| := ¢1 + -+ + g be the length of Q. As usual, if
= (x1, - ,2n), 29 denotes the monomial x{* - - - x4, Let n, k € N with k < n, we denotes
by CF .= ﬁlk), the binomial coefficients.



3 Quasihomogeneous vector fields and polynomials

3.1 Definitions and notations

Let p = (p1,...,pn) € (N*)" be such that the largest common divisor of its components
p1 A -+ Apy is equal to 1. Let us denote by

" 0
Rp = Z pzxz%
=1 ¢

n
the p-radial vector field C". Let @ = (q1,...,qn) € N". Let (Q,p) stand for Y ¢;p;. A
i=1
polynomial will be called quasihomogeneous of degree ¢ if it can written as a finite sum

> por©.

(Q.p)=6

n
with complex coefficients. It is equivalent to say that the Lie derivative R,(f) := > pixi%
i=1 !

§f since R,(29) = (Q,p)x%. The integer § = (Q,p) is the p-degree of quasihomogeneity
(or p-quasidegree) of z9. When there is no confusion possible, we shall omit the
reference to p, which is fixed once for all. Let us define

D = max p; = min p;.
p 1§ignp’ p 1§7L§npz

Let us define A to be the totally ordered set of p-quasihomogeneity degree of polynomials;
that is to say A = {91, 02,03, ...} where d; < dy < d3 < ---. It is the set
A={deN/d=(a,p), with o € N"}.

An element of A will be called a quasidegree.

For § € A, we shall denote by Py the vector space of p-quasihomogeneous polynomials

of degree 0. If 6 ¢ A, we set Ps := {0}. Hence, for any 6 € N,

Ps = {f e Clz], f(z) = Z foQ} if 6 € A, Ps:={0} otherwiwse.
(Qp)=0

n
A vector field X = > Xi% is quasihomogeneous of quasidegree § > 0 if, for each
i=1 !
1 <i < n, X; is belongs to Psip,. It is equivalent to say that [R,, X] = X where [., ]
denotes the Lie bracket. In other words, x; has weight p; and % has weight —p;.

We shall denote by A the totally ordered set of p-quasihomogeneity degree of non zero
polynomial vector fields. As a set, we have the quality

A={6e€Z/5=06—p;,withdeA,1<i<n}.

For 6 € A, we shall denote by Hs the complex vector space of p-quasihomogeneous polyno-
mials of quasidegree 0. If § € A, we shall set Hs := {0}.



Remark 3.1. Observe that if 6 € A, then there emists 1 < Jo < n such that pj,+6 € A, but
it may happen that for some 1 < j <n, pj+6 ¢ A which simply means that any polynomial

n
vector fields X = 3 Xi% belonging in Hs has a j-th component X; which is equal to 0.
i=1 !

Remark 3.2. There is only a finite number of elements of A which are negative. In fact,
if 6 € A, then § > —p; for some i.

The sets A and A do not contain in general all the integers. However we have the
following lemma (inspired by a remark of J.-C Yoccoz) :

Lemma 3.3. Let p = (p1,...,pn) € (N*)™ as above.
(a) There exists &g such that for every 6 > g, § belongs to A.
(b) We have A D A.

(c) A is stable by multiplication by any nonnegative integer and by addition which is
usually not true for A.

Proof. The following proof of (a) is due to Marc Revesat : let N > 0 be an integer. Then,
we can write it as N = pju1 + ... + pruy,, where the u;’s are integers. For all ¢, there exists
an integer k; such that 0 < p;u; + kip1...pn < P1...pn. Let us set v; = p1...pi—1Pi+1D0n,
k=ki+ ..+ k,. Hence we have : N + kpy...p, = p1v1 + ... + ppv, with 0 < p;v; < p1...pn.

Let us assume that N > np;...p,. Therefore, according to previous computations, we
have N + kpi...pn, = p1v1 + ... + ppv, < np1...pn. Hence, k is negative. We obtain the
result by changing, for instance, v1 in v1 — kps...p,. Then observing that for any § € A,
6 = (a,p) = (@ +ej,p) — pj where a € N" and e; is the j-th vector of the canonical basis
of R™, we get that A D A holds. Finally statement(c) readily follows from the definition of
A. O

Proposition 3.4. Let k,¢ € Z be two integers.

(a) Let f,g be two quasihomogeneous polynomials belonging respectively to Py and Py.
Then, fg belongs to Prie.

(b) Let f be a quasihomogeneous polynomial belonging to Py and let X be a quasihomo-
geneous polynomial vector field belonging to Hy. Then,

(i) the Lie derivative X (f) belongs to Prie;
(ii) fX belongs to Hyte-

(c) let S,U be two quasihomogeneous vector fields belonging to respectively in Hy and Hy.
Then,

(i) DS.U belongs to Hy+e;
(ii) the Lie bracket [S,U] belongs to Hyts-

Proof. The proof readily follows from the definition of P, and H, observing that if f lies in
Pj. then ng] lies in Pp_p;. O



3.2 Decomposition of functions and vector fields as sum of homogeneous
and quasi homogeneous components.

Let f € C[[z1,- - ,xy]] be a formal power series function. Hence f reads
flx) = Z fo 2@ where fg € C.
QeN"

Classically, f admits a unique decomposition as a sum of homogeneous polynomials, fe ,
of different degree r, i.e.

F=for  where fo,(x)= Y fqa©

7‘20 ‘Q|:r

where |Q| = q1 + -+ + gn. In a similar way, f admits a unique decomposition as a sum of
quasihomogeneous polynomials fs5 of different quasidegree 9, i.e.

=3t with  fs(z)= > fq 2%

den (Qp)=6

We shall say that f is of p-order dy if fs, # 0 and f5 = 0 for all quasidegree 6 < dg. Let
1 be a quasidegree. We shall define the p-quasijet of f to be

JHf) = Y s

SEA, 6<p

Furthermore, if f is a germ of holomorphic function at the origin of C™, we will denote by
{f}u := f. the quasihomogeneous component of degree x in the Taylor expansion of f at
the origin.

Finally, f admits a unique decomposition as a sum of polynomials f5, which are simul-
taneously quasihomogeneous of quasidegree § and homogeneous of degree 7, i.e.

f= Z Z f5,7“ with f5,7“(1') = Z fQ JTQ.

ol gr<g Q="
- (Qp)=0

plQl.

Any formal vector field V' can be written as an element of (C[[z1, - ,x,]])". Hence it
can be decomposed along the quasihomogeneous filtration :

V=> Vs

where Vs is a quasihomogeneous vector field of quasidegree §. By definition, we have
Vs=>1m", Viﬁa%i with V; s € Psyp,. We recall that Psy,. is equal to {0} when § +p; ¢ A.



Moreover, each quasihomogeneous component Vs can be decomposed into homogeneous
components Vs, of degree r:

Vsi= > Vs, with Vs, (z)= Y Vjga®

SuSrsar |Ql=r
(Q.p)=6+p;
where _
5 min{d + p; |_5+pi €A} and 8% — max{d+p; | § + p; € A}‘ )
p p
Moreover, for any ¢ > 1 and for any homogeneous polynomial ¢ € (Clzy,--- ,z,])? of
degree 7, there exists a unique r-linear, symmetric, operator ¢ : (C")" — C? such that
¢(z, -+ ,x) = ¢(x) where x = (x1, -+ ,x,) (see for instance the book of Cartan [Car67]).
——
7 times

Moreover, for every z(¥) € C™ with 1 < ¢ < r, b is given by

1 1
¢(l‘(1), . ,{E(T)) _ ﬁng)(O)'[x(l)’ . ’x(r)] = ﬁAx(l) .. .AI(T)¢

where Apo(z) = ¢(z + h) — ¢(x) and where one check that A ) A m@(x) does not
depend on x [Car67].

The homogeneous and quasihomogeneous components of sum, products and derivatives
of formal functions and vector fields can be computed with the standard rules (see Lemma
A.1, A.2 in appendix A). Computation of quasihomogeneous components of the composition
of a function or a vector field by a vector field is given by the following lemma :

Lemma 3.5 (Components of the composition). Let f € C[[z1, - zy]] and U,V € (C[[x1, - - z,]])".
Then,

(a‘> {f o U}ls’ = Z .]’F(S,T‘(Uélv e U(ST)7
§<8’, £<r<d
S+61++6p=5"

(b) {VoUls = )Y Vsr(Us,, -+ Us,).
§<5, §.<r<6*
d+01+-+0r=0"

where §, and 6* are defined in (1).

The proof of this Lemma is given in appendix A.

3.3 Hermitian product for quasi homogeneous polynomials and vector
fields

We shall provide on Clzy, ..., z,] an hermitian product suitable for the grading into quasi-
homogeneous space. Moreover, on each Ps, this hermitian product will induce a submulti-
plicative norm, i.e. a norm such that the norm of the product of two function is less or equal
to the product of the norms. There are several ways for defining such an inner products
with this property (see appendix A subsection A.2). In this paper, we choose one possible
way given by the two following definitions :



e for quasi homogeneous functions f, g € Ps we define the inner product given by

(D

(£:9),5= > fago =5 where (@) =(a)" (&)™ (2)
QeN"
(Q.p)=5
Let |.|5 be the associated norm. If p = (1,...,1) (i.e. in the homogeneous case), this
is the Fischer scalar product [Sha89, Fis17, IL05]. Hence, we have
(o40) [ S R=Q 3)
’ D0 0 otherwise

e for quasi homogeneous vector field of degree delta § € A we define the associated
inner product and norm given by

n

-—_ . . 2 D - . 2
UV = Vi, and U= D000, @

1=
A SR
where U = ZUi%EHé and V = ZV;%GH5
i=1 ! i=1 '
One of the main features of these hermitian products is its good behavior with respect
to the product. More precisely, we have
Proposition 3.6 (submultiplicativity of the norms).

(a) Let f,g be p-quasihomogeneous polynomials of 6,0' respectively. Then,
| fql

p,5+5/ S ‘f‘p76 ’g’p’[S/ °

(b) Let f5, be a function from C"™ to C. We assume that fs, is simultaneously quasihomo-
geneous of degree 6 and homogeneous of degree r. Denote by fs, the unique r-linear,
symmetric form such that f5,.(X, -+, X) = f5.(X) where X = (x1,...,2,). Let Us,

—_———

r times
be a p-quasihomogeneous vector field of degree 6;, i =1,...,r.

Then, ﬁ,r(Udl, ..., Us,) is p-quasihomogeneous de degree § + 61+ - - -+ 9, and we have

| forUsi, - Us,)

< Ni(fs,) ||Us - ||Us, 5
eatts, (for) WUsill,, 5 - WUs. L 5. (5)

with N1(Rs,) :== Y |ﬁ;’r(ei1, -+ ,ei)| where (e, -+ ,ey) is the canonical basis of C™.
1<ip<n
1<t<r
(c) Let Rs, be a vector field of C* which is simultaneously quasihomogeneous of degree §
and homogeneous of degree r. Denote by Rs, the unique r-linear, symmetric operator
such that Rs, (X, - ,X) = Rs,(X). Let Us, be a p-quasihomogeneous vector field of
—_————

r times
degree 6;, 1 =1,...,71.

10



Then, Rg,T(U(;l, ..., Us,) is p-quasihomogeneous de degree § + 61+ - - -+ 0, and we have

|Bsr(Us, -, Us,)

T

< Noi(Rsy) ||Us - ||Us, . 6
s S Naa(Rs) sl s, ©

~ n ~ 2 ~ ~
with No1(Rsy) == | > (Nl(R(;’r’j)) where Rs, j is the j-th components of Rs, in
i=1
the canonical basis of C".

(d) Let U and N be two p-quasihomogeneous vector fields of quasi degree 6 and « respec-
tively. Then DU.N is a p-quasihomogeneous vector field of degree § + a satisfying

=\v - D
HDU.NHp’Ha <n(d+p) HU”p,a HNHp}a where v :=max(1, %)

v

< My 6 ||UHP75 ||N||p’a when 6 > 0 where M, = n sup (5%5
dEA

In the homogeneous case, this result is due to G. Iooss and E. Lombardi [IL05][lemma
A.8]. The proof of this proposition is given in appendix A, subsection A.2.

Finally, the convergence of a formal power series is linked with the growth of the norms

of its quasihomogeneous components. More precisely we have :

Proposition 3.7.

(a) For a formal power series f, the following properties are equivalent:

(i) f is uniformly convergent in a neighborhood of the origin,
(ii) There exists M, R > 0 such that for every § € A, \f5|p6 < %.

(iii) There exists M, R > 0 such that for every 6 € A and r > 0, Nl(f(;,,) < %.

(b) For a formal vector field, V', the following properties are equivalent:

(i) V is uniformly convergent in a neighborhood of the origin,

(ii) There exist M, R > 0 such that for every § € A, HV5Hp6 < %

(iii) There exist M, R > 0 such that for every § € A and r > 0, Ng,l(%r) < %.

In the homogeneous case, this result is due to H. Shapiro [Sha89][lemma 1]. The proof
of this lemma is given in appendix A, subsection A.2.

Lemma 3.8. Let f = > 5cn fo = 2 gen ancQ be a formal power series. If there exists a
constant C' such that, for all § € A, |fs|ps < CO(81)P, then f is a (pb)-Gevrey formal power
series. This means that there exists a positive constant D such that |fo| < CIQI(|QNP* for
all multiindices Q € N™,

The proof of this lemma is given in the appendix A.

11



4 Normal forms for perturbation of quasihomogeneous vec-
tor fields

4.1 Good perturbations

Let p = (p1,...,pn) € (N*)" be fixed such that the largest common divisor of its components
p1 A -+ Apy is equal to 1. Let n > 2 be an integer. Let S be a quasihomogeneous vector
field of C™ of quasidegree s. We are interested in suitable holomorphic perturbations of S.

Definition 4.1. Let X be a germ of holomorphic vector field at the origin of C™. We shall
say that X is a good perturbation of S if the Taylor expansion of X — S at the origin is
of quasiorder greater than s.

Example 4.2. Let us consider the germ of vector field at the origin of C?

0 0
X =2y + pr(m))% — nxn_la—y

where U(0) = 1. This example were considered by Cerveau and Moussu [MC88]. Let us

define S = 2ya% —nx”flag. If n = 2m is even, then it is (1, m)-quasihomogeneous of degree

m— 1. If n = 2m + 1 is odd, then it is (2,n)-quasihomogeneous of degree n — 2. In both
case X 1is good perturbation of S whenever 2p > n.

4.2 Formal normal form of a good deformation

In this section, we shall define of formal normal form of a good perturbation of a quasiho-
mogeneous vector field S.

Let 6 € A. Let us define the coboundary operator dy : Hs — Hsis to be the linear
map

dO(U) = [57 U]

where [.,.] denotes de Lie bracket of vector fields.
For any quasidegree av € A such that o > s, we consider the selfadjoint operator

o : Ha — Ha
U — 0OuU :=dodyU

where djj denotes the adjoint operator of dy relatively to the scalar product |.|,s (defined
by (2)). Let S, := spec (O, ) be its spectrum. It is included in the nonnegative real axis.

Definition 4.3.

(a) We shall say that a vector field of H, is resonant (or harmonic) if it belongs to the
kernel Ker O, of O,,.

(b) A formal vector field will be said resonant if all of its quasihomogeneous component
are resonant.

(¢) A good perturbation X = S+ R of S is a normal form relatively to S if R is resonant.

12



Proposition 4.4. Let S be a p-quasihomogeneous vector field of C*. Let X := S+ R be a
good holomorphic perturbation of S in a neighborhood of the origin of C™ (i.e. the order of
R at the origin is greater than s).

Then, X can be formally normalized or equivalently partially normalized at any finite
quasiorder. More precisely we have, the two following equivalent statements:

(a) (Formal normal form) there exists a formal diffeomorphism ® tangent to the iden-
tity which conjugate X to a formal normal form; that is &, X — S is resonant. More-
over, there exists a unique normalizing diffeomorphism ® = 1Id +U such that U has a
zero projection on the kernel of dg =[S, .].

(b) (Partial Normal Form) for every o € A, there exists a polynomial diffeomorphism

tangent to identity ®;1 = Id + U, where U, = Y. Us, with Us € Hs N (Ker do)*
0<é<a—s
such that
(Po)s(X) =S+ Ny +Reow, where Ny= Z N5, Nse€ Kerls = Kerd3|H6,
s<o<a

(7)

and where R4 is of quasiorder > «.

Remark 4.5. Observe that in the expansions of Ny and Uy, given in statement (b), Us = 0
and N5 =0 for 6 ¢ A since Hs = {0}.

Proof. Firstly, observe that (a) follows directly from (b). Then, for proving (b), a basic
identification of the quasihomogeneous components for § € A with s < § < « in (7) with
X =S+ R leads to

{Na+18, ua]}5 = {R(d + Un) — DUa No + S(1d +Uy) — 5 - DS.Z/{a}E (8)

Hence, using proposition 3.4, lemma 3.5 and (18), we get the following hierarchy of coho-
mological equations in Hs for § € A with s < < a:

Ns 4+ do(Us—s) = K 9)

where K5 depends only on R, S which are given and on Ng and Ug_, for s < 8 < 0 (the
explicit formula of K which is useless here is given in section 6 : see (23)). So the hierarchy
of equations (9) for s < 6 < a can be solved by induction starting with the smallest ¢ € A
greater than s.

If6—s ¢ A, then Hs_, = {0}. Hence, dgj3¢; , = 0 so that K; € Ker dSng = Hs. Hence,
ifd—s¢ A, we set Us_s := 0 and N5 := K5 € Ker dj.
If § —se A (and § € A), then let us decompose Hj along the direct sum

1 1
Hs = Im doypy, P Ker dgjp, = Tm O P Ker O,

where Im dop; = Im Us and Ker dS\Hg = Ker Us. Then, denoting 7s the orthogonal
projection onto (Ker d§)* = (Ker Os)*, the cohomological equation (9) is equivalent to

Ns = (Id — ms)(Ks) € Ker d(§|H57 do(Us—s) = m5(Ks) € Im dO\Ha_s‘ (10)
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Then since dy induces an isomorphism from Ker (doméﬁ)L on to Im dyy, _, there exists a
unique Us_; € (Ker (dO\H(g_S))J‘ such that do(Us—s) = ms(Ks) € Im dojp, - O

n

Example 4.6. Let S = > )\ixi% be a linear diagonal vector field. It is (1,...,1)-
i=1 ‘

quasihomogeneous of degree 0. An easy computation shows that (ads)* = adg where

_ n _
S =3 )\1%% Hence, Ker (ads)* = Ker adg. Moreover, the spectrum of Os is the
i=1 ‘

set /(@) — A% Q €N, |Q| =6 +1,1<i <n}.

Example 4.7. Let S = ya% in C?. It is (1,1)-quasihomogeneous of degree 0. The adjoint
of the Lie derivative is L* = 338%; the adjoint of the Lie bracket with S is

_xf)‘vz) 9
dy ) oy’

Its formal kernel is the C|[x]]-module generated by the radial vector field R = x% —I—ya% and
xa%. According to [IL05][p.36], the spectrum of Oy_1 is composed of the following numbers'

0, k+1, (a«a—1D(B+1), a(B+2), a=1,....k,a+[B=kFk.
An easy computation shows that the non-zero eigenvalues of Oi_1 are > k — 1.

A similar definition of normal form of perturbation of homogeneous vector fields was
given by G. Belitskii [Bel79, Bel82] using a different scalar product. Another definition of
normal form of perturbation of quasi-homogeneous vector fields was given by Kokubu and
al. [KOW96]. It is a general scheme to provide a unique normal form. This scheme can
be combined with our technics to provide a unique normal form as well.

The perturbation of a nilpotent linear vector field has been treated by R. Cushman and
J.A Sanders [CS86] using slo-triple representation. Computational aspects with another
definition of normal forms in any dimension was done by L. Stolovitch [St092]. Two dimen-
sional aspects were initiated by R. Bogdanov and [Bog79] and F. Takens [Tak74]. Analytic
conjugacy of perturbations of a nilpotent 2-dimensional to such a normal form was obtained
in [SZ02, Zol06]

For very particular examples of .S in dimension 2, normal forms has been obtained by
V. Basov (see [Bas06] and references therein). When the perturbation of S = ya% + an%
is tangent to the germ of 22 = 3 at the origin, then a formal normal form of vector fields
tangent to the cusp has been devised by F. Loray [Lor99]. It is described in terms of a
basis of the local algebra of the function 22 — 3. This work has been improved by E. Paul
[Pau04].

4.3 Vector fields with symmetries

In this section, we show how to adapt our normal form scheme in order to study vector
fields that preserve a differential form or vector fields that are reversible. We shall show that
we need to consider restrictions of the cohomological operator dy to some subspace of the

Lin fact, it is the spectrum of dido that is computed there.
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space of quasihomogeneous vector fields with range in another subspace of a space of quasi-
homogeneous vector fields. On these subspaces, we shall consider the induced hermitian
product.

e Vector fields leaving a differential form invariant

One may be interested in studying vector fields leaving invariant a polynomial differ-
ential form w (i.e. the Lie derivative Lxw = 0) such as a symplectic or a volume
form, for instance. First of all, we have to check that w is also p-quasi-homogeneous
(with the same p as for the vector fields). This means that Lr,w = dw for some inte-
ger d. For instance, let w = Y"1 | dz; A dy; be the standard symplectic form of C2".
Let ¢; (resp. ;) be the weight of x; (resp. y;). If ho denotes a p-quasi-homogeneous
polynomial of C?". In order that the associated Hamiltonian vector field

" Ohg O Ohy O

; B 8yz 69@ + 8.%'2 8yi

be also p-quasihomogeneous, it is necessary and sufficient that ¢; +r; = ¢; + r;, for
all 4, 5.

In this situation, it is sufficient to work on the space H;,, = {X € Hs | Lx(w) = 0}
of quasi-homogeneous vector fields preserving the form w instead of Hs. Indeed,

the Lie bracket of the two vector fields preserving w still leaves it invariant since
Ligy)(w) = LsLy(w) — Ly Ls(w) = 0. Moreover, the flow exp(tX) of a vector field

X that preserve w leaves w invariant : % = exp(tX)*(Lxw) = 0. Hence,
we can consider the restriction maps do : Hsw — Hetsw, dp @ Hsrw — Hsw and
the box operator [ : Hs,, — Hs.. The scheme goes as follow : assume that X is
normalized up to order § — 1 and that Lxw = 0. Let us conjugate X by expUs_g
where Ly, w = 0 and Us_; is quasi-homogeneous of order § —s. As above, one has to
solve the cohomological equation of the form Ns+ do(Us_s) = Ks. Since w is p-quasi-
homogeneous, it is easy to see that Kj leaves w invariant (see [Fra80] for a similar
problem). Hence, we can appply our scheme on the spaces Hs,,. As a consequence, if
S and its good perturbation X preserve w, then there is formal transformation (fixing
w) into a normal form (an element of Ker dp*) which leaves invariant w.

e Reversible vector fields

Let R : C* — C™ be a linear map such that R?> = Id. A vector field Z is said to
be reversible if it satisfies to Z(Rz) = —RZ(x). Let U be a germ of holomorphic
(or formal) vector field such that R.U(x) = U(Rx) at the origin (a point at which
it vanishes). Then, one can show that the transformation y = x + U(z) conjugate
a reversible vector field to a reversible vector field. As for the case of differential
form, we require a compatibilty condition on R with respect to the weight p. Namely,
we assume that the linear vector field Rx is p-quasihomogeneous of quasidegree 0.
This implies that a formal vector field is reversible if and only if each of its quasiho-
mogeneous component is reversible. Let us consider the space of quasihomogeneous
transformations

75 :={U € Hs | RU(x) =U(Rx)}
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and the spaces of quasihomogeneous reversible vector fields
Rs:={U € Hs | RU(x) = —U(Rx)}.
If S is reversible, then dy : 75 — Rsys. In fact, we have
R[S, U)(x) = RDS.U — RDU.S=—-DS(Rx)RU — DU(Rx)R.S
= —DS(Rzx)U(Rx)+ DU(Rz)S(Rzx) = —[S,U](Rzx)

Hence, we will consider the operator dfj : Rsys5 — 75 as well as the box operator
O : 7s — 75. The normal form scheme goes as in the general case except that in
equation (9), N5 + do(Us—s) = K5, we have K5, Ns € Rs and Us_s € T5_.

4.4 Spectral properties of []

Lemma 4.8.

(a) Let fx € Hsia which belong to the A-eigenspace of the operator Osiq, A being a
nonzero eigenvalue of Osiq. Let vy be such that Ogyqvy = fr (i.e. fr = Avy) and let
us set Uy 1= dyvy € Ho. Then, we have

1
0, , = 7 15l o (11)

Moreover, if X and X are two different nonzero eigenvalues of Ugyq, then Uy and Uy
are orthogonal.

(b) Let f € Hats belongs to Im dojn, = Im Oy and let U € Hy be such that U €

Im d(§|Ha+S = (Ker d0|HQ)L and dy(U) = f. Then
[ pp—
pa min v\ p,ats
AESat:\{0}

where Sq1s = spec Ugts-

Proof. (a) : In fact, we have

={for) gps = % (Fxs )

D,0+s

(Ux,Uy)

Do (dgua, dyuy)

oo = <d0d61}/\,11)\>

p,0+58
since f) = Avy. About the second point, we have

=\ (v, v\) =0.

<U)\7U/\’> p.ats

oo (dgua, dyv)

P (va, dodyvn)

D,0+5

(b) : Let f € HatsNIm dyjpy, and let U € H,, be such that U € Im Ao, = (Ker dO‘HQ)J-

and do(U) = f. Then there exits v € (Ker dSIHMs)L such that df(v) = U. Hence,
Ua4sv = f. Since Oy 45 is a self adjoint operator, we have the spectral decomposition

Hota = P Ker (Ald — Oags).
)\GSQJ,_S
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Moreover, since f € Im dg3, = Im Ogpys, v € (Ker de ) and O,4sv = f, we also
have the spectral decompositions

f= @ I v= @ U, Oatsvr = fa.

AESa+s\{0} AESa+s\{0}

Then, using (a) and setting Uy = d{j(vy), we finally obtain

2
1
11, = 3> Mo, < 3 30, < | s | 1]
AESa+s\{0} AeSa+s\{0} Aesglf?\{o}

5 Rigidity of quasihomogenous vector fields

Let Z be a quasihomogeneous ideal of O, generated by quasihomogeneous polynomials
h1,...,h, of p-quasidegree eq,..., e, respectively. We shall denotes 7 =7 ® O, its formal
completion, that is the ideal in the ring of formal power series On generated by the h;’s.
Let us denote by M; the operator of multiplication by h; in On (M; will also denote the
multiplication operator, componentwise, on the space of formal vector field fn) Let us
denote by M = M X, + - -+ + M, X, (resp M = M, + -+ /\/lré?n) the submodule of
germs of holomorphic (resp. formal) vector fields at the origin which components belong to
the ideal generated by the h;’s.

Let 6 € A, let us set Mg :== M N'Hs. Let Vs be the orthogonal complement of My in H

1 ~
and let 771 be the projection onto Vs : Hs = Vs @ M. We shall denote V := @ Vs as
seA
well as

W= {U € (Ker do)* | [S,U] € V}.

Lemma 5.1. With the notation above, we have Vs = ﬂ Ker Mz|H where Mz|H5+

denotes the adjoint operator of My, : Hs — Hate, with respect to the famzly of hermitian
products (., )p -

Proof. Let v € V5. By definition, we have, for all w; € Hs_e,, (v, Mjw; + - - -+ M,w,) = 0.
In particular, we may chose w; = Mv for all i. We obtain 0 = || Mjv||?+---+ || Mv|?. O

Let § € A such that § > s. Let us denote by os,\z the set of nonzero eigenvalues of Us
for which there exists an associated (quasihomogeneous of degree §) eigenvector which is
orthogonal to M. Let us set

ag = min V),
AEos AT
as well as
min{d +p; | § +p; € A} and 5% — max{d +p; | § +p; € A}

Oy 1= —
p p
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Let us set

AT :=AN (A —5), At = AN (A+s), 0p:=max(min 0,1).
dEA—

The integer dy is the smallest positive integer of A~. Let us define the sequence of positive
real numbers {775}66A—QN*U{0} as follow : 9 = 1 ; for any positive 6 € A~ (i.e.d > dyp),

*

As+675 = max max N5, N5, (12)
s<u<s+6, peA 61+ +0r+u=s+6 "
Lo <r<p*
where if ;4 = s then the maximum is taken over the r-tuples (d1,...,d,) of nonnegative

integers such that at least, two of the §;’s are positive. Moreover, the maximum is taken
over the indices d; (resp. p) which belong (A~ NN*) U {0} (resp. A). It can happen that
do = 1.

Remark 5.2. The sequence n;s is well defined by induction since the mazimum only involves
terms ng’s with d < 9.

Definition 5.3. The quasihomogeneous vector field S will called diophantine with re-

spect to the ideal 7 if the formal power series 5. n52° converges in a neighborhood
5>0, seA

of the origin in C; that is to say that there exists ¢, M > 0 such that ns < Mc®. We shall

say that S is diophantine is it is diophantine with respect to the zero ideal T = {0}.

Example 5.4. Let return to example 4.6 where S is linear and diagonal. It is known
[Sto94][lemma 2.3] that S is diophantine in the above sense if and only if it satisfies Brjuno

condition : In
n Wk+1
(@) Sy )
k>0

where
wp = inf {|(QA) = Nl £0, i =1,...,n, Qe N", 2 <[Q| < 2F}.

Definition 5.5. Let S be quasihomogeneous and let X be a good holomorphic perturbation
of S at the origin. We shall say that X 1is formally (holomorphically) conjugate to S
along 7 (resp. I) if there exists a formal (resp. germ of holomorphic) diffeomorphism
d (resp. ®) such that ®,X — S € M (resp. ®,.X —S € M), i.e. in the new formal
(resp. holomorphic) coordinates, X equals to the sum of S and a formal vector field which
components belong to the ideal 7 (resp. T).

Theorem 5.6. Let us assume that the quasihomogeneous vector field S is diophantine with
respect to . Let X be a good holomorphic perturbation of S at the origin of C™. We assume
that X 1is formally conjugated to S along 7 (by the mean of a formal diffeomorphism of the
form Id+ U, with U € W) Then, X is holomorphically conjugate to S along T.

Corollary 5.7. Under the assumptions of the theorem, there exists a good holomorphic
change of coordinates in which the germ at the origin of the zero locus ¥ := {x € C", hy(z) =

- = hy(x) = 0} at 0 is an invariant analytic set for X. Moreover, in these new coordi-
nates, the restriction X to % equals to the restriction of S to X.
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Theorem 5.8. If the quasihomogeneous vector field S is diophantine and if the holomorphic
good perturbation X is formally conjugate to S, then X is holomorphically conjugate to S.

Proof. We apply theorem 5.6 to the ideal Z = {0}. Moreover, we can assume that the
normalizing diffeomorphism reads ® := I + U with U € (Ker dp)*. In fact, if &, X = S
then for any V' commuting with S, we have

(expV)S=5+[V,5]+ %[V, V.S +---=5.
O

The remaining of the section is devoted to the proof of the theorem 5.6.

First of all, let us write the conjugacy equations between the vector fields X = S + R
and X' := ®,X = S + R where the formal diffeomorphism is written as ! = Id +
U where U € V stands for a formal vector field of positive quasiorder. Since, we have
D(®)(d1)X(®~1) = X’ we have X (I +U) = D(I + U)X'. Therefore, we obtain

R +[S,U] = R(Id+U)— DU.R (13)
+S(Id+U) — S — DS.U.

For any positive integer § such that s + 6 € A, let us project this equation onto the
orthogonal space Vs to M1 in Hsys5 and let us denote 7. this projection. Assume that
® conjugates X to S along M. This means that R’ belongs to M. Therefore, we have

S,U] = 771 ([S,U]) = 770 (R(Id+ U) + S(Id+ U) — S — DS.U). (14)

The first equality is due to the fact that U € W whereas the second is due to the fact that
DU.R' € M. We recall that Us denotes the quasihomogeneous component of (the Taylor
expansion at the origin of) U of quasidegree § of U. We emphasize that both side of the
equation are reduced to zero if § ¢ A. So, we will consider the case where s+ 8 € A
and § € A. We recall that

AT:=An(A-s), AT:=AnN(A+5s).

By assumption, Us has also a zero projection on the kernel of the operator dy. Since we
have

i
Hs = Ker dj @Im ds\st’

then we can write Us = djvs4s for some v € H,1s. Moreover, we can assume that v has a
zero projection onto Ker dj. The latter is nothing but the kernel of O = dpdj. In fact, if
Ovsts = 0 then 0 = (Ov, v)p’s+5 = |d§vsys|?, the converse being obvious. Let us decompose
vs+s along the eigenspaces de [gys. Let A be an eigenvalue of g1 s and let 7wy be the
projection on the associated eigenspace. We shall say that A is quasihomogeneous of
quasidegree s + ¢ if [J has an A-eigenvector in Hsy5. We shall denote by w5, 4\7 the
projection onto the subspace of H,is generated by the eigenvectors of U5y which are

orthogonal to M. Since [S,Us| = dod§vsys, then, we have

7rs+57\IO7TIL(dOdSUs+5) = 7rs+6,\IO7TIi ( Z /\'U)\) = Z )\U)\,

A€o s\T A€oy 5\T
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where we have set vy := m)(v). We recall that o5, ;\7 denotes the set of nonzero eigenvalues
of s s for which there exists an associated (quasihomogeneous of degree 0 + s) eigenvector
orthogonal M. s. We can assume that vy = 0. Therefore

> Aoy =mgszonr(RIdA+U) + S(Id+U) — S — DS.U).

)‘605+5,\I

Let us set Uy := djvy and let us denote by Us the sum of the Uy’s where A ranges over
Osts7- According to the first point of lemma 4.8, we have [|[Ux||> = A[v,[|>. According to
the second point,

2

Z Ay,

Aeas+6’\z

2
2 2 2 2 : 2 : 2
— — l] > m l?

)‘eas+§,\1 )‘eas+§,\1

p,s+0

Therefore, we obtain

(Aemm w) |Usl, ; < lImsts 0 7z (R(Td+ U) + S(Id+ U) = § = DST)| . (15)

S+N\T p,s+o

Let us estimate the right handside of last inequality. First of all, we have

Imors 0wz (R(Id+U) + S(Id+U) = S = DSU)| .,
< [{RUId+U) +SId+U) - S = DSUbprll -

Then, let us decompose R into quasihomogeneous component R = 2>: R,. First of
nu>s
all, for any d € N, every quasihomogeneous polynomial of quasidegree d is either 0 or a

polynomial of degree < d/p and of order > d/p. In fact, if d € A, then we have d =
a1p1 + -+ + appy for some o = (a1,...,a,) € N*. Hence, pla] > d > p|al. On the other
hand, if 4 € A, the ith coordinate of the vector field R, is quasihomogengous of quasidegree
i+ pi. Hence, it is 0 if g+ p; € A. Otherwise, it’s a polynomial of degree < (u+ p;)/p and
of order > (1 + p;)/p. Therefore, R, can be written as a sum of homogeneous vector fields

R,= > Rur

px <r<p*

where R, is an homogeneous vector field of degree r (i.e. each component is an homoge-
neous polynomial of degree r or 0). We recall that we have set

~ min{u+p; | p+p; € A}
- an

* o

d = maxiptpi | ptpi € A
p p

Let RH,T be the associated r-linear map. Therefore, the (s+0)-quasihomogeneous component
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of R(Id + U) in its Taylor expansion at 0 is

pu>s

{RUd+U)}aps = {Z Ry(Id + U)}
s+9

o
= > > Ry, (Id+U,...,Id+ )

H>8 T= s

r times s+6

= Z Z Z Ru,r(Uép"'?Utsr)

K>S T=[tx §1+++0r+pu=5+0

where the d;’s are nonnegative elements of A~ = AN (A —8), u € A is greater than s and
where we have set Uy := Id. Moreover, in the first sum of the last equality, u is less or
equal than s + 9.

Moreover, according to proposition 3.6 and proposition 3.7, there exists positive con-

stants M and p such that, for all i > s belonging to A, for all p, < r < p*, we have

M
< — HU51 ||p,(51 U ||U6THP76T °

| Byur (Us, -, Us,) <=
porte Aot P

As a consequence, we obtain the following estimate :

s+§ p*

M
KR+ DYsrall, s <D >0 > Sl WU, (16)
K>S T=[x §1+++6p+pu=5+0

On the other hand, we have

where S, is a r-linear map. Therefore, we have

DS(z)U = Z rSer(z,...,2,0).
———

*
S+ STSS r-1 times

Hence, the s+ d-quasihomogeneous term in the Taylor expansion of S(I+U)—S — DS(x)U
is

(SU+U)~S—DS@)U} 5= > > S Usy, ..., Us,) (17)
$x<r<s* §14-+6,=0
(01, ,0r)EQ
where o,
Q, = {(51, ...,0p) € (A*) / at least, two of the index are positive}. (18)

Therefore, we obtain the following estimate

(st +v)=s-DS@UY,,| <M 3 S UL, I
p75+5 5 <T<S* 514 _ b,01 DP,0r

* STS 1+ F+8-=0

(613“'767')697'
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where M’ denote a constant depending only on S.
Let us define the sequence {Jg}(;EA,mN*U{O} of positive numbers defined by ¢ := ||1d||p,0

and if § € A~ is positive,

s+6 p* M
!
=YY Y Doy M Y Y oo
H>ST=[bx §1+4-+0r+p=5+0 $x<r<s* §14-+6.=6

(61, ,0r)EQr

where, in the first sum, the §;’s are nonnegative elements of A~ and the w’s are elements
of A. This sequence is well defined. In fact, since pu > s, then the d;’s are all less than ¢ in
the sum.

Lemma 5.9. For all nonnegative § € A~ NN* U {0}, we have |Us||,s < ns50s.

Proof. We prove it by induction on nonnegative elements of A~ U {0}. For § = 0, this is
obviously true since 19 = 1 and ¢ = [|Id||p,0. Let us assume that the lemma is true for all
0 < ¢ <§in A™. According to estimates (15) and (16), we have

s+6 p*

) M
( min ﬁ) U6l < 32> > FHU&HP)%...||U5THP75T

A€o 4 5\T [1>8 T=Hs 81440yt =546
/
M3 3 U 1T

55 <r<s* §y+4--+8,=0

(01,707 )EQy
s+6 p* M
<SS Y M
H>S T=[x §14+-+6p+pu=5+0
/
+M Z Z N5:068, " " 15,06,
5x<r<s* §y+4--+8,.=6
(01,707 )EQy
< *
>~ max B max s ...776T os-
s<pU< 548, peA S1++ortu=s+8
pxe <r<p*

The second inequality is a consequence of the induction assumption. The last one gives the
desired result. O

Lemma 5.10. The formal power series o(t) := > oit' converges in a neighborhood
i€ A—U{0},i>0
of the origin of C.

Proof. First of all, we notice that we have

*

(Si:si Z %051..-05T:M§{<W)#*+“'+(J(t))u*}ﬁ |
s

B>8 T=[x 01+++0r+pu=s+0 P p>s P

Let us set

Puz)= % <z> and Flzty=M Y By(2)t (19)

uEA,p,>s
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The power series F' defines a germ of holomorphic function at the origin of C? which satisfies
to F(z,0) = 0. Then, the coefficient of #° is the Taylor expansion of F(o(t),t) at the origin
of C is given by

H>s H>s

{F(o(t),)}s = M{ZPM@W—S} =M{Z{PM<o<t>>}5_u+st6—#+5t#—s}
1 é

o+s

= MY (B0t

pn>s

On the other hand, let us set

s*

P(z):= Y (¢ — o —rop (2 00)). (20)

T=8x%

We have P(op) = 0 and DP(0g) = 0. Then, we notice that

{Plo(t)}s =M S o505,
N Wiy
(51>"' 767‘)€QT

where €, is given by (18). Let us set G(z,t) := F(z,t) + P(z). Therefore, we have
o5 = {F(a(t),t) + P(o(t))}s-

As a consequence, the power series o(t) is solution of the problem G(o(t),t) = (o(t)—00)
together with o(0) = 0g. Since D.G(0¢p,0) = 0, then, according to the implicit function
theorem, this problem has a unique holomorphic solution satisfying the same initial condi-
tion. O

Remark 5.11. The order of F'(z,t) at t =0 is 5 := max(ming_z - 6, 1).

Therefore, according to the diophantiness property of S, there exists M,c¢ > 0 such
that ns < Mc for all positive § € A. Moreover, according to the previous lemma and
to proposition 3.7, there exists M’,d > 0 such that o5 < M’d’ for all positive § € A~.
Hence, according to lemma 5.9, we have, for all positive § € A~ ||Us]l,.s < Mc for some
positive constants M and c. Therefore, according to proposition 3.7, U is holomorphic in a
neighborhood of the origin in C™. This concludes the proof of the main theorem.

6 Conjugacy to normal forms and approximation up to an
exponentially small remainder

In this section we shall study the conjugacy problem to normal form. We shall show that if
the ”small divisors” are actually big, then there is a convergent normalizing transformation.
On the other hand, we shall show that, if the "small divisors” are not too small then there
exists a formal normalizing transformation which is not worst than Gevrey. From this, we
will be able to obtain an optimal choice of the quasidegree o of normalization such that
discrepancy between the partial conjugate and the partial normal form of quasidegree « is
exponentially small in some twisted ball.
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6.1 Normalization and cohomological equations

Let S be a p-quasihomogeneous vector field of C". Let X := S+ R be a good holomorphic
perturbation of S in a neighborhood of the origin of C" (i.e. the quasiorder of R at the
origin is greater than s). Proposition 4.4 ensures that for every a € A with o > s,
there exists a polynomial diffeomorphism tangent to identity ®,! = Id + U, where U, =

> Us, with Us € Hg such that (®4)«(X) = S+Ny+Roq, where Ny = > Nj, Ns €

0<i<a—s s<o<a
Ker Ogs, and where R., is of quasiorder > . We recall that in the expansions of N, and U,,,

Us=0and Ns =0foré ¢ A since Hs = {0}. A basic identification of the quasihomogeneous
components for § € A with s < § < « leads to

{Nat15, ““]}5 = { RO +Uy) — DUy Ny + S(1d +Un) — S — DS.Ua}é (21)

Hence, using proposition 3.4, lemma 3.5 and (18), we get the following hierarchy of coho-
mological equations in Hs for § € A with s < < a

N5+ do(Us—s) = Ks (22)
with
pw* ~
K(S = Z Z Z Ru,r(Uél,“-»U&-) - Z DU61'N52
p>s, pEA TR b1t byt p=0 S1+82=6
5120 (51>0, 52>8,62€A (23)

S*
+ Z Z SO7T(U517"')U5T)
T=8% 8y 46y +5=0
(61, ,6r)EQ

where by convention Uy = Id and where €, is given by (18). Moreover, if not specified, the
d;’s belong to A~ = AN (A — s) in the previous sums.

Then, observe that (23) ensures that K5 depends only on R and S which are given and
on Ng and Ug—s for s < 8 < 4. So the hierarchy of equations (22) for s < J < a can be
solved by induction starting with the smallest § € A greater than s.

Let us denote 75 the orthogonal projection on (Ker [s)t = (Ker daHé)L = Im dopp; .-
Since N5 € Ker [y, (22) is equivalent to

Ns = (Id — ms)(Ky), do(Us—s) = m5(Ks). (24)
Remark 6.1. Observe that if 6 — s ¢ A, Us_s =0 and N5 = Kj since Hs_s = {0}.
To compute by induction upper bounds of Ng and Us_g, we use the normalized norms
vs =0, Vs = \|N6Hp’5 for6 e A, §> s,

up = HUOHp,o = HIde,o = \/ﬁ +o ﬁ7 us = ||U6Hp75 for s € A, 5 > 0.

We set ug =0if § + s & A and v, = 0. Then, since 75 is orthogonal and using lemma 4.8,
we deduce from (24) that, for all § € A,

vs = ||N5||p’5 < HK5||p76a Us_s < (25)

1
— || K, .
Kl
A€spec Us\{0}
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Finally, the submultiplicativity of the norms given by proposition 3.6, we get that there
exist M > 0 such that for every 6 € A with § > s,

|55l 5 < ks (26)
with
Ugy * - Us, 1,2
ké _ M( Z Z 1T+ Z 5inax( 2)u51V5*51 + Z Uy - - - u(gT) (27)
p>s, peA  pa<r<pt 1<01<0—s—1_ se ST
1ttt =6 S d14-+0r+s=8
14O tp 51€AT, §—51€A (1617“.7&)65%

where in the first and the last sums, the ;’s belong to A~ and where €, is defined by (18).

6.2 Convergent conjugacy to a normal form
Let us set )
v = max (1, %) )
Theorem 6.2. Assume that there exists constant ¢ > 0 such that for all § € AT,

min VA > ¢ (8~ 5)”.
A€spec Us\{0}

Then, any good holomorphic perturbation X of S is holomorphically conjugate to a normal
form.

Proof. Let us set 49 = 1 and if § € AT with § > s

.,
~ uO
(U S > (p) bt Y st Y vv)
p>s, peA  pxSr<p 1<61<6—s—1_ 51 <r<s*
d1+-+0r+u=4 S1EA—, 5—6,€A 01+++++0r+5=6
1€ s 1€ (61,---,6T)€QT

Here, we have set M := max (Mcuo, ]‘f—oc, M e -1 Mcué*_l). We claim that

Vs < UQ Vo—s, (6 - S)Vu5—s < U V5—s- (28)

Let us prove these inequalities by induction on § > s. This is obviously true for § = s.
According to equations (27) and (26), we have for 6 > s

T
)
(5—8)VU5SSM< > > (p) VooVt D, W Ve-s-st D, Var-- e
u>s, }LEZ M <r<p* 1<61<6—5—1_ Se <r<s*
814+t p=0 §1€A~, 5-61€A 814+ +s=6
! ! (01, ,0r) €Dy

where, in the first and the last sum, we have used the fact that, if 6; > s, us,—s < (0; —
5)Vus;—s < ug v5,—s as well as ug < ugyg. Therefore, we obtain (6 — s)"us—s < v5—s. In the

i—s X

same way, we have v5 < vs_s. Let us define the formal power series

i€AN(A—s),i>0
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Let G(z,t) := F(z,t) + P(z) be the function defined by equation (19) and (20) where, in
these formulNas, p is replaced by p/ug, M by M’ and o by 1.
Let 6 € A such that § > s. As we have seen above, we have

5§ wpr r
S X% (%) M T e = (GO0}

[>8 T=[lx 814+ +p+ =0 p S« Sr<s”
S1+++0p+5=6
(617'“ 767‘)EQT

where, in the first sum, the §;’s are nonnegative elements of A~ and the p’s are elements
of A. We recall that {G(y(t),t)}s_s denotes the coefficient of °=* in the Taylor expansion
at the origin of the formal power series G((t),t). Furthermore, we have,

S Aave-si—s = {(v(1) = 15—y

1§~51§57571~
0EAT, -0 EA

Hence, ~(t) is solution of the holomorphic implicit function problem:

G(y(1), 1) + (v(t) = 1)* = 4(t) — 1

with initial condition (0) = 1. Since G(1,0) = 0 and D,G(1,0) = 0, v is the unique
holomorphic solution of this problem. Therefore, for all positive § € AT, we have us < 75 <
C°. Hence, the formal power series S Us converges in a neighborhood of the origin, that is
to say the normalizing transformation ®~! is holomorphic in an neighborhood of the origin
of C™.

O

Remark 6.3. If S is a diagonal linear vector field, then the situation described by the
previous theorem corresponds to the Poincaré domain [Arn80]. In fact, by definition, the
closed convex hull of the eigenvalues \; in the complex plane does not contain the origin.
Hence, if Q € N™ is such that |Q| = q1+- - -+qy is large enough, then |1 A1+ - -+ quAn—Ni| >
mlQl.

6.3 Formal Gevrey conjugacy to a normal form

Assume that S satisfies the following Siegel type condition : there exists ¢ > 1 and 7 > 0
such that for every 6 € A with § > s, we have

1
— < i A. 2
(5 — S)T o C)\Gsp(rerclgllg\{\o/; ( 9)

Our aim is to is to show that both vs and us_s admit Gevrey estimates. Namely we prove
in this section the following result :

Theorem 6.4. Assume that S satisfies (29). Any good holomorphic perturbation of S
admits a formal transformation to a formal normal form both of which are ﬁ(% +7)-Gevrey

power series where dp := max(ming.z - d,1) and a := max (17 [(ﬁ;I)D'
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The following lemma gives such an estimate using a common majorizing power series.

Lemma 6.5. Let {ﬂg,s}éezm( , be the sequence defined by induction with By = 1

and for 6 € AT, § > s,

A+s), 6>

'
By —M’( S 0% (“) 8,
u>s, pEA px <r<p*
61++6r+M:6
+ > 61(d1—1)--- (61 —a+1)Bs, Bs—s—s5, + > Bs, .- ﬂ&)
1<61<d—s—1 5. <r<s*
s1€AN(A—s), 6—51€A 01440 +s=0

(517"' 757")697"

where a 1is the smallest integer larger or equal to v = max(1, g) and where in the first and
last sums the 0;’s belong to A~, Q, is given by (18) and s* is defined by (1). Here, we

have set M’ := max (Mcuom, Af—oc, Mcu(s]*_l,McuS**l) with m = sup Mﬁ Then
seA
for every § € AT with § > s,
vs < ug ((6 — )17 Bs—s, us—s < ug ((6 =) Bs—s. (30)

Remark 6.6. § € At if and only if 6 —s € A~.
Proof. The proof is made by induction. We first observe that (30) holds for 6 = s since
Bo =1 and vy = 0.

Then, let 6 > s and assume that (30) holds for every « € AT satisfying s < a < 4. Our
aim is now to prove that (30) holds for §. We proceed in several steps.

Step 1. We start with us_s. Using (26) and (27), we get

Us—s Mc(5—s)T 9 ca T

< 1 (6 — 61 — s)!

up((6 — s))T = wl(=9)7 1§51§7ﬁ01 51551@573751((51) (60— s))
SEiic= Y S (M) Bs B, (G117 (07

pn>s, ,U,EZ Hae ST <p*
Ot +0p+p=4

+ N S (o) By B, ()T (1)

«<r<s*
S14- A0 4s=0
(61, 16,)EQ
< Mcup m > 61(61—1)---(0 —a+1)Bs5,85—s—6(Ds—s6,,6-5-6,)"
1<6, <8 —s—1
'
+He 2 (%’) Bs, -+ Bs, (Ds—s.51,-.5.)"

u>s, pEA P ST <p*
S1 A6 tp=5

—i—McmaX((uo)S**l,uS*_l) > Bsi - Bs, (Ds—ssy,6.)"
S <r<s*

01++++0p+5=6
(61, ,0r)EQr

516!
where Ds_s 5, ... 5, (51—5—1)!'

27



Step 1.1 Observe that if we set M’ = max (Mcuom, Af—(f, Mcu(s)*_l, Mcug*fl) then Mcugm <
M, ]\u/[—(f < M, Memax((ug)® 1 ug=™) < M.

Step 1.2 Then, in the first sum of (31), Ds_s5, 5—s—5, = 51(!((55__;’__1‘3})! = (‘;5_15
é

1<6 <6—s—1. B
Step 1.3 Our aim is now to prove that for every index in the second sum of (31), Ds_g 5, ... 5, <
1. For that purpose when need to distinguish three cases.

case 1: 7> 2 and 6; > 1,1 < j < r. It is proved in [ILO5], p.20, that for r > 2, 6; > 1,
and 01+ -+ 6, =d Dy, ... 5, < 1. So, in the second sum of (31) for r > 2 and §; > 1, we

have
(0 —p—1)
(0—s—1)!

< 1 holds since

Ds s, 6. = Ds—1u.51,- 6, <1

since 01 +---4+ 0, =90 —pand s < u < 9.

case 2. In the second sum of (31), if » = 1 (which implies 6; = § — ) or if all the indexes
vanishes except one, then

_ (5= p)!
Di-stuoede = 5 —5 =11 S |

since p > s.

case 3. Finally, if some indexes ¢; vanish in the second sum of (31), then the computation
of the corresponding Ds_s s, ... 5, can be made by removing these indexes, i.e. by decreasing
r.

So, for every index in the second sum of (31), Ds_s 5, ... 5, < 1.

Step 1.4 Finally, in the third sum of (31), Ds_s, ... 5, < 1 still holds for the same reasons
as above, observing that in this case there are at least two positive indexes d;, i.e case 2 is
not possible in the third sum..

Gathering the results of substeps 1.1,---,1.4, we can conclude that

Us—s < M/

where M’ = max (Mcuo, J\f—;, Mcug*fl, Mcug*_l) does not depend on §.
Step 2 The the computation of the upper bound for vy is performed exactly in the same

way. [

Remark 6.7. If the good perturbation is a formal a-Gevrey power series, then the estimate
! Y

p—l,« of |[Rur| has to be changed to p%(r!)o‘. Then, inequality (26) is changed to ||K6||p5 <
(6*1)%ks. Since 0* < %, then according to proof in section A.4, we have (§*)* < (5+p)'Z.

Hence, using lemma 6.8, we obtain estimates of the form

Vs, us—s < MCO((5 — s))2 " %0
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for some positive constants M, C. According to lemme 3.8, the formal normalizing trans-
formation and the normal form are both ]5(% + 7+ 5)-Gevrey.

In the homogeneous case, p = (1,..., 1),7the formal normalizing transformation and the
normal form are both (o + 7 + 1)-Geuvrey.

6.3.1 Gevrey estimates for the 3;’s

Let us define the formal power series

Bl)y:== >, Bt

ieAN(A—s),i>0

We recall that By = 1. Let dy be the order of 3 — [y at the origin. We recall that
do := max(ming_z - 6, 1) from remark 5.11 and a := max (1, {@D
Lemma 6.8. The formal power series 3 is a (%)-Gem’ey power series. More precisely,

there exists positive constants Mg and C' such that 3; < MgC[(i — 60)!1%/%, for all integers
i > 0o that belong to A™.

Remark 6.9. With no loss of generality we can assume that Mg is large enough so that

Mjs > 1 and 2220 > 1 hold.

Let G(z,t) := F(z,t) + P(z) as defined by equation (19) and (20) where, in these
formulas, p is replaced by p/uo, M by M’ and o¢ by 1.
Let 6 € A such that § > s. As we have seen above, we can write

5§ u* r
SN M () G BB = (GO0}

f>8 =[x 5+ +5p+p=0 s.<r<s*
8140 +5=0
(01,67 )EQy

where, in the first sum, the d;’s (resp. ) are nonnegative elements of A~ (resp. A). We
recall that {G(B(t),t)}s_s denotes the coefficient of t°~* in the Taylor expansion at the
origin of the formal power series G(5(t),t). On the other hand, we have

2 00 =1)- (01— a+ 1) fsss = {ﬂt“daﬂ}a .

dte
_ 1§~(51§5—S -
01EAN(A—s), 6—61EA

Hence, according to the definition of the sequence {f5_s} scA+ s> in lemma 6.5, the formal
power series 3(t) satisfies to the following differential equation

e

Bt) — Bo = M(B(t) - Bo)t" 2

+G(B(1),1) (32)

Let us set

B(t) = Bo + tOB(t).
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We have B(0) = (35, # 0 and Gy = 1. We have

do(top(r)) ML) 51 U(B(1))
2N AT —1)--. — 1)poo—t 2T
Jia IE:O: Codo(do — 1)+ (0o — 1+ 1)t Jpa

Then, B satisfies the following differential equation

min(a,do) a—l
t% B = M Btoo+a [ > Cloo(Bo—1)--+ (60— 1+ 1)t50’lw + G(B(1),1).

-1
P dte

Dividing by M B leads to the the equation

min(a,do)

t%B — G(1+t%B(t),t)

a—I1
toota Z CLoo(dp — 1) - (5o—l+1)t50*17d d(Bl(t))

te—

= G(B(t),t) := Va5

and G(z,t) is holomorphic in a neighborhood of (8s,,0). We have
G(1+t*B(t),t) = F(1,t) + t* BD,F(1,t) + O(t*°)

since G(z,t) = F(z,t) + P(z) and D,P(1) = 0. We recall that the order of F'(1,t) at t =0
is dg according to remark 5.11. Let us set
%z — G(1 + 1%z 1)

too M 2

G'(z,t) :=

This function is holomorphic in a neighborhood of (fs,,0). Moreover, by construction, we
have lim;_,q FAY) _ = Bs 55, Hence, we have G’ (B5450) = 0. Furthermore, we have

%0
oG' 1 oG
_ 460 _ do do do
t Maz (2,t) = (t P — (1 +t%z,t)z -G+t z,t))

= 217 (t‘SOZ(DzF(l +1%2,t) + D, P(1 +1%2)) — G(1 + t"z, t))
8G’ F
2 B0 = ) 1 T (g 0

Hence, B(t) is solut1on of the following differential equation

min(a,do) ol
¢ { lg Cado(o —1) -~ (60 — 1 + 1)t501ddt(£fm = G/ (B(t),1). (33)

Let us consider the Newton polygon of the linearized of the differential operator (33) at B:

min(a,do)

L"Lﬂ =t |: Z C[lldo((so — 1) C (5 iy 1)t50 ld (1/])

dira—!

=0

It is the convex hull of {0} U {(u,v) € R?|u < a,v =a+dy — 1 — (a —1) = dp}. It contains
only one positive (not infinite) slope : %0.
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According to the main theorem of [Mal89] (or theorem A.2.4.2 of [Sib90][p.209], which
are both nonlinear versions of theorem 1.5.17 of [Ram84]), then either B is holomorphic in a
neighborhood of the origin or B is a (%)—Gevrey power series. Therefore, By, < M ck(k!)a/ %
for some constants. The shift in the factorial in the bound of 3 is only due to the formula
B(t) = 1+t B(t).

Therefore, we obtain an estimate of the form ||Usps < 05(5!)T+% and || Ns|lps <

o (6!)T+% for some constant C' > 0. We just conclude using lemma 3.8.

6.4 Optimal partial normal form with exponentially small remainder

This section is devoted to the proof of theorem 6.11 below which ensures that an optimal
choice of the quasiorder « of the partial normal form given by proposition 4.4 enables to
obtain an exponentially small remainder.

To state a precise theorem, we need to introduce the following ” quasi norms”: for z € C",
let us define

n 1/2
dp() = <ZP¢\$¢|2/’”> :
i=1

Then, for f a complex-valued function defined in a neighborhood of the twisted ball d,(z) <
€ we shall set

[flghe == sup |f(2)].

dp(z)<e
If X is a vector field defined in a neighborhood of the “twisted ball” d,(x) < €, we shall set
"1
2 2
||X||qh,€ = Z %‘X”qh,‘e
i=1
The subscript gh stands for quasihomogeneous as these norms are adapted to quasiho-
mogeneous objects.

Remark 6.10. Before stating the theorem, we recall that lemma 3.3-(a),(b) ensures that
A contains all the sufficiently large integers. In other words, there exists o, such that for
every a € N, if a > 0, then a belongs to A.

Theorem 6.11. Let S be a p-quasihomogeneous vector field of C*. Let X = S+ R
be a good holomorphic perturbation of S in a neighborhood of the origin of C" (i.e. the
quasiorder of R at the origin is greater than s). Proposition 4.4 ensures that for every
a € A, there exists a polynomial diffeomorphism tangent to identity @gl = I1d + U, where
U, = Y. Us, with Us € Hs such that
0<é<a—s
((I)a)*(X) =S +Na + 7—\"/>om

where N, = 5. Ns, N5 € KerUgs, and where R-q is of quasiorder > «.
s<o<a

Assume that there exist ¢ > 1 and 7 > 0 such that for every § € A with § > s, we have
1
min VA

A€spec Us\{0}

<c(d—9)". (34)
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Then, there exists 0 > 4, Moy, > 0, wopt > 0 and g9 > 0 such that for every e €0, o],
Qopt = {W} + s — 2 satisfies

Qopt > 8 and Qopt > O, (35)
and
_ Wopt,
||R>aopt”qh7€ < Mopre  €° (36)

where % =7+ % and 0, 1is defined in remark 6.10.

Proof. The proof of this theorem is based on the following proposition which is proved in
appendix B .

Proposition 6.12. Let K > 2 and v > 2 be fized such that

p(K) <1 with  pi(K) =“°Mﬁim”2k+6o (1)

and )
2M ?
X <1 with X = (ﬁ%) .
C p
where a, dp, C and Mpg are defined in lemma 6.8.
Then there exist Mp > 0, such that for every € €]0,1] and every a € A with o > s
satisfying
Ce ——M—, (37)

we have

Roallane < Mr (€2 (@ =5+ 2)F Ao+ (£)") (38)

where Ay =1 if > a and Ay = (o — s)l_“_% otherwise.

We now prove theorem 6.11 in the case % > a. The other case can be deduced from

this one by an appropriate change of the value of M and C. The key idea is to choose an
appropriate value aept for a in (38) and to show using Stirling formula that for this value
of a the upper bound is exponentially small.

So, we choose apt such that

Qopt —S+2 = {(,),chg)b} (39)

which ensures that agp; — s < R C GRG and so that (37) is satisfied. Moreover, observe that

for e sufficiently small, (35) is satisfied. Then we compute the upper bound given by the
right hand side of (38) with this choice of .. For that purpose let us denote

opt+1
Dy = (Ce) o ((aop — s +2))F,  Dyo= (%)™
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Let us denote z = (Ce)’, Mg = sup
keN kk+2 e”

Mg < oo holds. Then, using (39) we Check

O < 1ol e ({[aer] + 10 [ser] - [y )

and observe that Stirling formula ensures that

= (k] + 3 ] + )
s—1

Sxe exp ({ sk | + 5 b (k) + [k %)
s—1

= e (=[] (14 m22") ) ex (310 ()
] (14 m(K)"))

~ (L] +1) (1 + 1n(7K)b))

_ 1+ln(vK)b)

z(vK)b

Il
8
w
(NI
B
e
@
e
i)
7 N N —

Hence (LK)
1/b s—3 _w . 1+ In(yK
D1 < MS (C&) 24/ ")/K e b with w1 = W

Hence,
1 _ w2 L In K
——e = wi Wy = ———.
‘T (KO

Observing that wy > wy, we can conclude that (36) holds with wep; = we and

Ml/b VYK sup {(Cs) “Se })

Ks=2 €€]0,1]

Mopt = Mz max (

O

It might be useful to consider in some problems, parameters as variables to which one
prescribe a weight. This has been done implicitly in [IL04] for instance.

7 Computations and example

Let p = (p1,...,pn) € (N*)™. Let S be a quasihomogeneous vector field of quasidegree s and
let Hs be the space of quasihomogeneous vector fields of quasidegree § > s. We recall that
for each positive quasidegree k, the map dy : Hy — Hyys is defined to be do(U) = [S, U]
where [.,.] denotes the Lie bracket of vector fields.
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7.1 Computation of d; and U
Let U € Hs and V € Hsys. We write U = 7" Uia%i‘ We have

- d
do(U) =D (S(Uy) — U(Si)) 5. (42)
i=1 g
where S(U;) == 377, SngU; denotes the Lie derivative of U; along S. We have

(do(U), V>p75+s = Z (S(U;) = U(S), V;>p,6+s+pi

i=1
= Y WS Oy, ~ VD W,
= Z (Us, S (Vi)>p,5+pi - Z <Uja <a$> Vz>
=1 J=1 J p.0+p;
“ " /0S;\*
= Ui, S*(V;) — J) V
Bluso-£ ()
B = p,0+p;
Hence, we can write dj in a matrix form as
«_ (051\" 952 \* 9Sn \*
5 _(671) —(52) - () 14
as * 99 \* 9Sn " .
I
as1\* Sn—1\* o« .asn ¥ :
- (52) o ) s -8\
Let us set A4; := § — gi?. The operator dodj can be viewed as a matrix (P;;)i<ij<n of

differential operators defined as follow :

05;\* 0S; " 0S; /08 \*
7 0i,3:55 s <0xz) G:Ujs + kzz:l oxy, <8azk

where §; ; = 1 if ¢ = j and 0 otherwise.

In the homogeneous case, that is p = (1,...,1), the adjoint operator, with respect the
the hermitian product (.,.), (see section A.2), of the multiplication by w; is 8%1" Hence,
the adjoint operator with respect to (., '>p5

is equal to :L';.‘| Hy = %8%1' Hence, the adjoint
operator S* of the Lie derivative along S is defined S* : P,y — P with

S0 = gy LS G0

. ., _ QI
Here, if S;(x) = Z\Q|:s+1 si,QxQ then Sz(a%) = Z\Q|:s+1 si,an—Q.

34



7.2

Example

In this section we shall completely treat the case where S = x28% + mya%, p = (1,1) and
2 2
s = 1. We have S|*Hn =1 (m% + y%aﬁ =: LA Ifv e H,_ then,

(a)

" A-22 20 v
ndo(vle%ergy):( 0" 8ya> (U; :

—n
oz
The resonances

Let us compute the kernel of dj. Let (vi,v2) be a couple of formal power series of
order > 3 such that d§(v1,v2) = 0. Then,

(/1——5%)v2 = 0
(A-28)wm = %2

First of all, for any (p,q) € N? with p+q > 3, we have A(zPy?) = p(p+q — 1)zP~ 1y
Hence, a formal power series f of order > 3 such that A(f) = 0 is of the form f(y).
Since (A — %)(mpyq) = p(p + q — 2)zP~ 14, any formal power series f of order > 3
such that (A — 8%)(f) = 0 is the form f(y).

As a consequence, we have vy = f(y) for some power series f = 373 fry* and

(A— 28%)1)1 = 8—5. Let us write v1 = >, ;>3 V1 p,q2Py?. Then, we have

ST vipgpp+q—3)2P Yy =" fori(g + Dyl
p+q>3 q>2

This means that vy, = %fqﬂ if ¢ > 2, v1pq With p+¢q = 3 or p = 0 is unspecified
and(ﬂ;::O

Finally, any holomorphic perturbation X = S + R of S of quasiorder > 1 (i.e the
components of R are of order > 2) admits a formal normal form of the type :

dzr 7

dat 2+ Py(r,y) + oy 5 fernt® + ha(y) (43)
k>3

dy

= = Y feaytt

k>3

for some power series ha of order > 4, some numbers f; and some homogeneous
polynomial P3 of degree 3.

”The small divisors”
Let us consider the differential operators A;(f) := S(f)—2xf and A2(f) := S(f)—=af.
We have, if f,, € Hy, nAj(f) := A(fa) — 2% and nA5(fa) := A(fn) — %=, Then, if

V € H,_1 then
A1Ar Ao 2
ndody(v) = (L T ) ()
—yAT A2A5+yz, ) \Va
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For each n > 3, the 1-dimensional vector space generated by x”a% is left invariant by
dodj; and we have

ndgdé(xna%) =n(n—2)(n— 3):1:"8%.
For each @ = (p,q) € N? with p > 1, the vector subspace Eg generated by e1 g =
:Upyq% and ez g = :Upfly“la% is invariant by dod. Its restriction to it given in the
basis {e1,g,e2,0} by

ndodty . (vw) = (P2 =379 —(g+Dp-3+0) v
POl —plp—=3+q) (p-Dp+q—2°+(¢g+1)) \w)"

Its smallest eigenvalue for @Q = (p,n — p) is

nA_(n,p) = (p—3)n*+ 3n(l—2p)+ (6p—3)
—(1/2)\/9 + 72p + (31 + 12p)n? — 30n(1 — 2p) — 1003 + n?

Since 1 < p < n, then for large enough n, we have

9+ 72p+ (31 + 12p)n® — 30n(1 — 2p) — 100> +n* < 94 72n + (31 + 12n)n?
—30n 4 60n* — 100> + n*
< %n‘l.

Hence, we have

nA_(n,p) > n? (p —1 (1 + %))
+5n(1—2p) + (6p — 3) =: 9(p)

Let us find the smallest value of this lower bound g(p) when p ranges from to 2 to n,
n being a large enough fixed integer. We have ¢/(p) = n? —5n+6 = (n —2)(n — 3)
which is positive if n > 3. Hence, g is an increasing function of p. Finally, we have
for n large enough and n > p > 2,

o

nA_(n,p) >n? (2 - ) —Bn4(12-3) (44)

and
nA_(n,1) = —5n + 9 + n?. (45)

Moreover, we have H, = @©,_1Ep,—p & (Cx”a% &) Cy”a% and dod{](yna%) = 0. As
consequence, there exists a positive constant M such that, if n is large enough, then
minyegpec, {0} VA = My/n.
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A Inner products and analyticity

A.1 Decomposition as sum of quasihomogeneous components

This subsection is devoted of the computations of homogeneous and quasi homogeneous
components of products, derivatives and composition of functions and vector fields.

Lemma A.1 (Components of the product). Let f, g € Cl[x1,---zy,]] and U, S € (C[[z1,- - zn]])".
Then,

(a) {fg}-,r = > fer1Gers; {fV}O,T = > fer Ve

r1+ro=r r1+ro=r
(b) {fg}5 = Z f&lgég, {fV}5 = Z f51%2;
61+02=6 01+02=9

Lemma A.2 (Components of the derivatives). Let f € Cl[x1,- - 2,]] and U, S € (C[x1, - -z, ]])".
Denote by S(f) the Lie derivative of f along S and by [S,U] the Lie brackets of S and U.
Then,

@) {S(N}er =2 Seri(forn)s {DSUler =3 DSeriUsry, (U, Slter = 2 [SerisUspol;

ritra=r+l ri+re=r+1 ri+ro=r+1
d) {S(Nts= X S5.(fs;), {DSU}s= > DSs.Us,, {[US]}s= > [55.Us):
01+02=0 61+02=4 61+02=4

Proof. The proofs of the above three lemmas follow directly from definition and from propo-
sition 3.4 0

The following lemma gives a characterization of quasihomogeneous polynomial and vec-
tor fields of given quasidegree. This characterization happens to be very convenient to
compute the quasihomogeneous components of compositions.

Lemma A.3. Let us define tP.x := (tPrzyq,...,tPnx,). Then, a polynomial P is p-quasi-
homogeneous of degree § if and only if P(tP.x) = t°P(x). Furthermore, a vector field is
p-quasihomogeneous of degree & if and only if X (tP.x) = t°(tP.X (x)).

Proof. The proof is immediate. O

Lemma A.4 (Components of the composition). Let f € C[[z1,---zy]] and U,V € (Cl[x1, - - - z,]])".
Then,

(a‘) {f © U}(S’ = Z f§,T(U517 T U5T)7
6<d!, S<r<t
P P
614+ 8 =0
(b) {V e U}(S/ = Z %,T(U(sp e U5r)7
6<8, 5. <r<o*
5161+t 8r=0

where 05 and 0* are defined in (1).
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Proof. The proof is based on the characterization of the §- quasihomogeneous components
given by lemma A.3. Indeed, using that fs is quasihomogeneous of quasidegree J and that
fs,r is r-linear, we have

Jo) ) = 3 f((3 vat))

JEA deA

- S (3 )

deA deA

= Y O6(3 )

deA deA

- Y Y fh(z U5, (@), , Y 17 Us, (x))

deA <r< S1EA SrEA

Bl

<$
P

= Z Z Z t6+61+m+6rﬁ5ﬂ“ (U51 ($)7 ) Uér ($))

deA d<p<d 5 L 5EA

3
I3 |

Hence, N
{foUls = > fs5.0(Usys -+ Us,).
6<6’, S<r<®
P "p
0+01++-+06,=6"
For vector fields the proof is the same. O

A.2 Inner products for quasihomogeneous polynomials and vector fields

In this section, to avoid any confusion we denote by Ps(C™) the space of p-quasihomogeneous
polynomials from C" to C of quasidegree § and by Hs(C™) the space of p-quasihomogeneous
vector fields of quasidegree § in C™.

In a similar way, let us denote by P;(C") the space of standard homogeneous polyno-
mials from CV to C of degree d and by Hy(C") the space of standard homogeneous vector
fields of degree d in CV.

The aim of this subsection is to build on Ps(C™) and H;s(C") inner products which lead
to norms such that the norm of the product is less or equal to the product of the norms. In
the homogeneous case for Ps(CY) and Hs(CY), the Fisher’s inner products (-, ")y given by

R'if R=Q
<x - >H . { 0 otherwise where Rl = 7! if R= (ri,... ) (46)

for monomials and by

En: Uy Vily (47)

Jj=1

n n
for polynomial vector fields U = " U j% and V = > Vj%, lead to multiplicative norms
j=1 J=1
given by
(9, D)y
s

|65 =
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One can check that

<£ (36)79(37)> = (f(2). 2j9(x),,

In the homogeneous case, p = (1,...,1). Let f € Hs_1, g € Hy, then we have

(@if,9),5 = f< zif, 9)y ;. <f gg); (6;!1)! <f’ gj)

p,0—1

In the quasihomogeneous case, a natural idea to build inner products which lead to
multiplicative norms is based on the following proposition:

Proposition A.5. Let N be and integer and s be a morphism of algebra from Clxy,- - , xp]
to Clzy,--- ,xn] which is injective (i.e. Kers = 0) and which maps Ps(C") into Ps(CN)
for every 6 € A. Then,

(a) The bilinear form (f, g}p = (s(f),s(9)); is an inner product on Ps(C");

1,
(b) the renormalized norm \f|p6 YA f> L satisfies for every f € Ps and g € Py

1ol srs <15 19l 5 (48)

p,0+8

(c) Let f5, : C* — C be szmultaneously quasthomogeneous of degree § and homogeneous of

degree . Denote by fgr the unique r-linear, symmetric form such that fgr( ce,x) =
H,_/

r times
fsr(x) where v = (z1,...,2,). For 1 < £ < r, let Us, be a p-quasihomogeneous
vector field of quasidegree 0;. Then, f5,(Us,,...,Us,) is p-quasihomogeneous de degree
0+ 061+ ---+ 6, and we have

| for(Usi, - Us,) Ni(For) UL oMU, - (49)
P,6+01++0r p,01 p,0r
with
n 8 2 n 9
2 — P — .
HUHp,é N ZUlaxi Z‘Uﬁ|p,5+pi
i=1 i=1
and
f(ST‘ . Z ‘f(ST €1y "7ei,~)
1<ip<n
1<(<r
where (e1,--- ,ey) is the canonical basis of C".

(d) Let Rs, be a vector field of C*. We assume that Rs, is simultaneously quasihomoge-
neous of degree 0 and homogeneous of degree r. Denote by Rs, the unique r-linear,
symmetric operator of C" such that Rs,(z,--- ,x) = Rsr(x) where x = (z1,...,2p).

———

r times
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For 1 < £ < r, let Us, be p-quasihomogeneous vector field of degree 6,. Then,
Rs,(Us,,-..,Us,) is p-quasihomogeneous de degree § + 01 + - - - + 0, and we have

Hé67r(U517 ceey Uér)

< No1(R e _
‘p,6+61+-..+6r < Noa(Bsr) HU&al,él HU(STHp,ér (50)

n
Nai(Rs,) =, ZN% Rs )
j=1

where ]A?:M’j is the j-th components of Rir in the canonical basis of C™.

with

Proof.
(a) : Property (a) directly follows from the fact that s is linear and injective.

(b) : using that s is a morphism of algebra and that the renormalized norm for homogeneous
(¢, ¢>

polynomials |¢|ms = is multiplicative we get

!fg!p’m,:\S(fg)\mw:IS(f)S(g)!HﬁM,SIS(f)!Hﬁ 5@l =115 19l 5

Hence the renormalized norm for quasihomogeneous polynomial is multiplicative.
(c) : The proof is made in three steps.
Step (c)-1 : Explicit formula for f&,w For 1 < ¢ < n, let 2 be a vector of C" with

z® = (:BSZ), e ,:c$f)). Then denoting by (e;)1<i<n the canonical basis of C", we get

For(@®, o 2™y = 3 xz(ll)...xz(,:)ﬁsm(em... Lei).

1<ip<n

1<4<r
since ﬁ;ﬂ« is r-linear. Hence, for z = (21, , x,),
f5,r(x) = f5,T($7 e a$) = Z Ly « xirsz,T(eil’ e 76ir)'
1<ig<n
1<e<r

Then since the quasi degree of x;, - - - ;, is p;; + -+ p;, and since fs, is of quasi degree §
we get that for every z(©) € C", we have

- 1 R
For@®W, oz = S e (e, ).
1<ip<n, 1<t<r
Piq + - +pi. =0

Step ¢-2 : Quasidegree of f5,(Us,, - ,Us,).. For 1 < ¢ <r, let Us, be in Hs,. Denote by
Us, i the i-th coordinate of Us, in the canonical basis of C". Then, Us,; belongs to Ps, 4,
and Uy, i, - - - Us, ;, belongs t0 Ps, 1...45,+p,, +--+p,, - Hence since

f(s,T‘(U51a"'7U6r) = Z U(51,i1 "'U(sr,’ir f(s,T(eil"" 7eiT) (51)
1<ip<n, 1<l<r
Piq ++pi. =0
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fN};’T(U(;l, ..., Us,) belongs to Py with §' := 81 + -+ + 9, + 0.

Step ¢-3 : Majorization of ‘ﬁT(U(sl, ...,Us.)| . Using (51), (48) and observing that for a
p.o’

n
. 0
polynomial vector field U = ]gl Ujgg; € Hs we have \U; \p, HUH we get,
’f(S,T(U(Sl?""U(Sr) 5 < ' Z |f5,7"(ei17"' €i,)| |U517i1|p751+p1 “‘U(Sr’ir|p,6r+pr
p, 1<ip<n, 1<0<r
Piy - pip =0
< Y e WUl 10,

1<ig<n, 1<U<r
pil ++Pw =0

= Ni(fsn) W, U

n
(d) : For a polynomial vector field Rs, := R(;,m»%, (d) ensures that for every 1 < j < n,
i=1
Rsyj(Usy, - -, Us,) belongs to Ps, y...45,464+p; and that

RiraUsi oo V)| < NiBor) s, sl g

where ¢’ = 61 + --- + 6, + §. Hence, R;T(U(;l, ..., Us,) belongs to Hs and we have

T

Z ‘Rgm (Us,,...,Us,) ?

HE(S’T(U(S“ ., Us,) /
0,0’ +p;

2 D - ...
1 (R67T7J) || U(sl ||p,51 || U(Sv ||p,(57

<
Il
_

IN
M: H

= Noa(Bsr) WU 5,105l
O

The following lemma and corollary give four examples of morphism of algebra from
P5(C™) into Ps(CY) which lead to four different inner products on P5(C"). The first example
is the one used throughout this paper (see (2), Lemma A.5 and (52)).

Lemma A.6. Let us define
s;: Ps(C") — P(;((Clm)

f — Sl(f)(CCl,l,-.. ’xl’pu',l‘n,l;"'xn,pn) = f((xl,l"'xl,pl)y"' 7(xn,1"'xn,pn)>;
so: Ps(C*) — Ps(C™)

fom s ) = fEl )
s PAC) — P(C)

f = Sg(f)(x17"' y Ly M1, 7 - 777n) = f(xlnfl_l,"‘ ,l‘nﬁg”_l);
sg 0 Ps(C") — Ps(C*H)

f = S4(f)(1,‘17-~~ y Tn,y € ) f(l' 81,1)1 17"' 7-1'77,5%”71);

Then,
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(a) For1 <k <4, s is an injective morphism of algebra. So it induces on Ps an inner

product given by (f,g), = (s(f),s(9))

(b) For every Q = (q1,--- ,qn) and R = (r1,--+ ,my),

< P!+ (Pudn)!
<CCQ,LIZR
(

2 > =dq.r (@) (@) (Q,p) — Q).

where 0g.r == 1 if Q = R and g r := 0 otherwise.

(
(

=0q.r (@) (gn)! ((pr = D)g)!- - (Pn = 1))’
(

The proof of this lemma follows directly from proposition A.5. The details are left to

the reader.

Lemma A.7. Assume that Ps is endowed with the scalar product (-,-) := (-, M
lemma A.6 and that Ps and Hgs are normed with the two corresponding norms.

(a) Let f be in Ps and N in Hy. Then Df.N belongs to Psiq and

max i
‘Df U| p,o+d — mp 5 2

(b) Let U be in Hs and N in Ho. Then DU.N lie in Hsiq and

max(1, )
IDUN ., < mp G+ 7" U ],

1A, s W1, where my =mn.

defined in

Proof. (a) : Proposition 3.4 ensures that D f.N lie in Hs4. Moreover denoting N; := m;(NV)

the jth component of U in C™ we have

. < —_— : <
[DfN p5+a - ; ox; ’N]|p,a+pj -
pota 7 P,0—p;
Then denoting f = > meQ we have
(a,p)=0
2
= | Of (QHP [fol(Q)P &
> 52 B> el o= = 2= 5 DN ek
J=1 p,0—Dpj J=1(Q,p)=0d J (a,p)=6 ’ j=1 3 J

Moreover, we check that



Then, using that for (Q,p) = J, we have p ¢; < p|Q| < § < |Q|p,we that

Dy 2

for pj=1, (£)gs?=0lg| <& <o?
Py -

for p; =2 (£)"q;? =4

for Dj > 3, (%)pj|q]"2 < (515 1 < 515

p]—2 =
q.

J

Hence

<(1.B
DEN],, <nem™CB 7|

(b) : Proposition 3.4 ensures that Df.N lie in Hsyo. Moreover denoting S; := m;(S) the
j-th component of S in C" and using (b), we get

n

2 . CATI2
HDU.NHP’ e = Zl |DUJ.N|p’6+a+pj
j:
- (1,2) 2 2
< 2 2max(1,5 . N
D T o

_ D 2 2
<n? 6+ )2 NP

Hence B
—ymax(1,2
IDN.U| ;. <0 @+py™>ED U N -

A.3 Quasihomogeneous decomposition and analyticity

In subsection 3.2 we introduced several decompositions of a formal power series f €
C[[z1,- - ,xy]] as sum of homogeneous and quasihomogeneous components. We now prove
that f converges uniformly in a neighborhood of the origin if and only if its homogeneous

or quasihomogeneous components grow at most geometrically. In this subsection, we use

the normalized norm |f |p 5= % (see proposition A.5 and lemmas A.6 ). More

precisely we have

Proposition A.8. For a formal power series , f = Y foz? € Cllz1,--+,z,]], the
QEeN™

following properties are equivalent:

(a) f is uniformly convergent in a neighborhood of the origin;

(b) There exists M, R > 0 such that for every Q € N*, |fo| < %.

(¢c) There exists M, R > 0 such that for every @ € N", |f.7,,|O = sup % < %.
T

zeCn
F For(z(1), - 2
(d) There exists M, R > 0 such that for every Q € N", ||| for||l ::SUPW—-7~|£>|T))| <
(&) ecn
v fASSAS
W-

43



(e) There exists M, R > 0 such that for every § € A, ‘f6|p6 < %;

(f) There exists M, R > 0 such that for every § € A and r > 0, Nl(f:;m) < %.

We have a similar proposition for vector fields. Statements (a), (b), (c), (d) are still
equivalent for vector fields. Statements (e) and (f) should be be modified with appropriate
norms for vector fields. More precisely we have

Proposition A.9. For a formal vector field, V € (C[[x1,--- ,zy,]])", the following properties
are equivalent:

(a) V is uniformly convergent in a neighborhood of the origin;

(b) There exists M, R > 0 such that for every § € A, ||V5||p6 < %;

(c) There exists M, R > 0 such that for every § € A and r > 0, Ngl(f/(;,r) < %.

A.3.1 Proof of Proposition A.8

The proof of the equivalence of statements (a),(b),(c),(d) of proposition A.8 which corre-
spond to the homogeneous decompositions is due to H. Shapiro [Sha89]{lemma 1]. The
equivalence of (c¢) and (d) rely on the equivalence of the norms Ho . and || - ]| which can be

found in the book of Cartan [Car67]. More precisely we have

Lemma A.10. For an homogeneous polynomial i of degree r, let us denote by 1; the unique
r-linear form such that for every x € C", (xz,---,x) = ¢(x). Then there exists M > 0
such that for every r > 0 and every homogeneous polynomial ¢ of degree r

9y, < NI < M) [y,

The prof of the equivalence of statements (a) and (e) of proposition A.8 is based on the
following lemma:

Lemma A.11. Let f be in C[lx1, - ,x,]]. The the following properties are equivalent
(a) f is uniformly convergent in a neighborhood of the origin;

(b) F = s1(f) € Cllz11, - ,T1py, 5 Tndy o 5 Tnyp,) 8 uniformly convergent in a
neighborhood of the origin;

(c) There exists M, R > 0 such that for every § € A, ‘fé‘pa < %;

Proof. The proof is performed in three steps.

Step 1. We prove that (a)<(b).
Let us decompose f and F' = s;(f) as sum of monomials. We have

F=20 faa® F=3% foler)® - (21p)" - (o)™ - (21,)" = D FaX”

QeNn QeNn
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with

X = (3;171, e Tlpys s Bl 73;17])”)7
A= (q17 ...... N IPREREEE SQny 7Qn);
p1times pn times
Fa= fq.

Hence, we have |A| = p1g1 + - ppgn = (Q,p). Thus p Q| < [A[ <P |Q|.

Hence, on one hand if f is uniformly convergent in a neighborhood of the origin, then
there exists M, R > 0 such that for every Q) € N"

|A]
1 1
|FA|:\fQ|§M|Q§M<1> .
R RPY

Hence F, is uniformly convergent in a neighborhood of the origin.

On the other hand if F' is uniformly convergent in a neighborhood of the origin, then
there exists M’, R’ > 0 such that for every A € N"

ol 5230 (1) < ()

Hence f, is uniformly convergent in a neighborhood of the origin.

Step 2. 'We prove that (b)=-(c). PropositionA.8-(b) applied to F' = s;(f) ensures that if F
is uniformly convergent in a neighborhood of the origin, then there exists My, Ry > 0 such
that for every 4,

My
‘Fc6|0’5 < R73’

where F,5 is the homogeneous component of F of degree §. Moreover it is proved in
[ILO5][lemma A.5] that

/ <F.5, F06> [ ~n—1
‘F.(S’H,(S = TH S Cg—i-n—l ‘F.(S’O’é

where
ot _E4n=1l_ @Gn-1)(5+1)
Sn=1 7 (p —1)! 8! (n—1)!
Hence, there exists M’ > 0 such that for every 4,
n My 1
! —_—
|Fo6’H75 < M'o2 ng < Mﬁv

n 6
where R is any number in |0, Ry[ and where M = M’'M, sup {(52 (R) . So we can

Ro
620
conclude that if F' is uniformly convergent in a neighborhood of the origin, then there exits
M, R > 0 such that for every 9,

54l = \/(ﬂ(f&)il(f&))H R M%.
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Step 3. We prove that (c)=(b). Assume that there exist M, R > 0 such that for every 9,

1

Then, F' = s1(f) satisfies
1

RS
Moreover it is proved in [IL05|[lemma A.3] that |F.(5|O s |F'5|H§' Hence, propositionA.8-

[Feslyy 5= 1fsl s < M

(b) applied to F' ensures that F' is uniformly convergent in a neighborhood of the origin.
O

To prove statement (f) of proposition A.8, we first need a technical lemma giving the
equivalence of the norms ||| - ||| and Ny(+).

Lemma A.12.
(a) For every r-linear form ¢ : C* — C, we have el < Ni(p) <n"[[|g]]-

(b) For every r-linear operator R : C" — C", we have IIR]|| < Ni(R) < n"|||R]]|.

n
Proof. (a) : For z® =y 951@ e; where (e;)1<i<n is the canonical basis of R” we have
i=1

W, 2Dy = ST Blen, - ve) 95511)955:)
1<e<r
1<ig<n
Using that |z\7] < |2] we get that |@(z®D, -, z™)| < [zO].- |2 Ni(F). Hence
11211 < N1(@).

Reciprocally,
Ni@) = Y @lei, e )l < Yo M@l 1=n"]l|2]]l
1<e<r 1<0<r
1<i<n 1<i<n

(b) :Let us denote R(z®M, .. z(") = > Ri(zM ... 2(M) ¢;. Then using (a) we have

=1
R, O = 3 Rila®, 2P < S RIP VPP
i=1 i=1

< ‘x(1)|2 ... ‘gl;(r)‘2 ZNf(Ei)
i=1
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Hence |||R||| < Nai(R). Reciprocally, using Cauchy schwartz inequality we get

n n 2
NA(R) =S NHE) = Y X (e el
j=1 =1 " 1<u<
’ TS
n ~
SZ( Z 1) ( Z ‘Rj(eiu"'veir)’Q)
Jj=1 Y 1<e<r 1<t<r
1<i,<n 1<i,<n
n
:nrz Z |Rj(eiy, 76'57“)‘2
J=1 1<e<r
1<i,<n
=n" Z |R(€i,, 7617‘)‘2
1<e<r
1<ip<n
2 1112
<n”" [[|R]]

Hence, No1(R) < n” ||| R|]|.
L]

Finally, equivalents of statements (a) and (f) of proposition A.8 directly follows from

Lemma A.13. Let f = Y. foa® € C[[x1, -, xy,]]. Then,
QeN"

(a) for every @ e N, |fo| < ni Nl(ﬁgﬂ,) where r = |Q| and § = (Q,p).
(b) There exists M, R > 0 such that for everyr > 0 and § € A, Nl(ji;m) < Mr”(Zen%)r \f.y,n|0 .

Proof. (a) : Using Cauchy’s formula, for Q = (g1, ,qn), we get

1 2m 2w 0 0 010 i 0
fo / v [ S (€T, @) e e T dp, - dy,
0 0

~ o

[SIh]

Hence, using that |fs5,(z1,--- ,z5)| < ’f‘s”"‘o . (:c% +- 4 x%) and using lemma A.10 and

A.12, we get
1 2 2 - - T
ol < gz [ oo [ ool (VOO o) oy,

Sng|f¢5,r| Sn%|||ﬁ,r||| Sn%Nl(f&,T)'
0,r

(b): Using lemma A.10 and A.12, we get that for every 6,7 > 0
Nu(Fan) <[\ ool | < M7 (20)" | fiel, -

Moreover we have,

qi . .. qr
| fo.r| = sup for (@)l < sup Y !fQI'gCl'’:E|,ﬂ|gc’"| < > fol <> Ifal-

0, n T n
T oeecr |l 2€C" 01=r Ql=r lQl=r
(Q.p)=r (Qp)=r
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Since using Cauchy’s formula we get for any @ such that |Q| =, |fg| < n" \f.,rlo , and

NS
since #{Q/|Q| =} = C’T"_;T%_l (see [ILO5][lemma A.2], we obtain that there exists M’ > 0
such that for every r > 0

_ r r
‘fé,r|0T < C;l+7“}fln2 ’fo,r|0T < M'r""n> ‘f-,r‘mg

3
2

So, we finally obtain that for every §,r > 0, Nl(fM) < Mr™(2en2)"| |f'”"’0r'
A.3.2 Proof of Proposition A.9

The proof of equivalence of statements (a), (c) is exactly the same as for functions. The
equivalence of statements (a) and (b) directly follows from the case of functions. Indeed,

n
0
V= Z ﬂj(V)a— is uniformly convergent in a neighborhood of the origin,
=1 T
& for all 1 < j <n, 7;(V) is uniformly convergent in a neighborhood of the origin,
M.
& for all 1 < j <n, there exits Mj, R; > 0,such that for every 6, |{m;(V)}s4p, < 6+j -,
pote; R, Pi
. ) M
& there exits M, R > 0, such that for every 6 and all 1 < j <n, ’{wj(V)}5+pj < 7k
P,6+p;
. . M
& there exits M, R > 0, such that for every 6 and all 1 < j <n, HV‘SHpa < T

since (V) o1, = m5(V) and Vil ; = 3= m (Vo2
) j= k)

A.4 Proof of lemma 3.8

First of all, using Sterling formula, it is easy to show that there exists a positive constant
C' (depending on p) such that, for all multiindices @ € N,

(plQN! < Cl9l(QInP.

Hence, we have

QP =¢ (P1a1)! -+ (Pngn)!

Furthermore, since 2 = (1 4+ 1)* = 3% _  C1*, we have athl < 9040 We have

(Q,p)! _ P+ (gep2 + - 4 gupn)! (g2p2 + -+ gupn)! (@) (92P2 F -+ Gupn)!

(1) (pngn)!  (21@1)W(@2p2 + - + qnpn)! (P2¢2)'- - (Pngn)! — (P2g2)! - - (Pngn)!

Hence, the same argument by induction, we obtain that there exist a constant C' such that
- ! .
for all multiindices ) € N™, (%75,) < ClQl Let f = > sen fs be a formal power series.
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Let 0 € A and let Q € N" such that (Q,p) = §. By definition of the norm and using the

previous argument, we have
)
Q
p,0 le < Cl ||f5|p,(5

Ifol < ClRlsn® < DIRlQIPYE < EIRlQ|PP

\fol < |fs

Hence, if |fs],5 < D?(6!)" then

for some constants C, D, E.

B Proof of proposition 6.12

Let S be a p-quasihomogeneous vector field of C". Let X := S + R be a good holomorphic
perturbation of S in a neighborhood of the origin of C" (i.e. the quasiorder of R at the origin
is greater than s). Proposition 4.4 ensures that for every o € A, there exists a polynomial

diffeomorphism tangent to identity ®,! = Id + U, where U, = . Us, with Us € Hs
0<d<a—s
such that

((I)a)*(X) =S5 +Na + R>om
where N, = Y. Ns, N5 € Ker s, and where R.,, is of quasiorder > «. The aim of

s<o<a
this appendix is to prove proposition 6.12 which gives a kind of ”gevrey estimates” of the

remainder R... We first check that the remainder is explicitly given by

Lemma B.1.
£aR>a = Q1>a + Qia + Qioﬂ
with
Lo=1d+DlU, =1d+ >  DU;,
0<é<a—s

and

ol = 3 DUs, .Ns,, (53)
01+02>a
0<d1<a—s, (516z*
s<d2<a, 626&

u* -
Qia = Z Z Z Ry (Us,, -, Us, ), (54)

p>s, peA TTHx Sitetortu>a
0<§;<a—s, 6;EA™

s*
X, = > > Ser(Usy,-..,Us,). (55)
r=8x §14-+6pts>a
0<§;<a—s
(01,7 ,0r)EQ
Then to compute upper bounds of E;lQia we introduce the following family of norms
and Banach spaces:
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Definition B.2. For e > 0, let us denote B. the Banach space of all formal vector fields
V =>"5ca Vs of C" such that

é
N(V) = 25 H%Hpﬁ < +o00.
dEA
Remark B.3. Statement (¢) Lemma A.9 ensures that any analytic vector field of C™ belongs
to B. for e sufficiently small.

We first prove the following lemma which which gives comparisons of the different norms

Lemma B.4. Let € be fized in ]0,1].

(a) Let f(x1,...,2n) € Ps be a quasihomogeneous polynomial of degree 5. Let F' € Ps(CIPl)
be given by F(X11, -+, Xip, s Xn1, - Xnp,) =s1(f) as defined in lemma A.6.
Then, we have

Flane = sup 1f(@)] < sup [F(X)]. (56)
dp(z)<e | X]|<e

(b) For every f € Ps, |flene <&° |f]p(S holds.

(¢) For every V € Hs,

n

1
2 12 5
Hquh,s i Z:ZI %"/Aqh,s <e ”VHp’(; (57)
holds.
(d) For every V € B,
IV[Ih.e < Ne(V) (58)

holds.

Remark B.5. In fact it is possible to prove more accurate results for statements (a), (b),
(c¢). Indeed, for f € Ps and V € Hs, we have

|flgne = sup |[F(X)],
IXl<e

Flane <115 <Ot Wlanes

IWVllae <8IV </ O spia 1V ghe-

Proof of Lemma B.4. Let f(x1,...,z,) € Ps be a quasihomogeneous polynomial of degree
5. Let F € Ps(CPly be given by F(X11, -+, X1p1, > Xnts s Xnp,) = s1(f) as defined
in lemma A.6

Proof of (a): Let z = (x1,--- ,2,) be in C* and let us denote z, = r,e'% where 1,6, € R.
1 0

1%
Then, setting X ; = (rg) s e 7, we get

f(l'la"' ,IL‘n) :F(Xl,la"' 7X17p17"' aXn,la"' 7Xn,pn)-
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Moreover,
n pPn

Zpk!l“k!”k =3 > X2 = 1X)7

k=1j=1
Thus, if d,(x) < €, then ||X|| < ¢ and

|f(.fl?1,"' ,$n)| = |F(X1,17"' 7X1,p17"' 7Xn717"' 7Xn,pn)| < H;Lﬁp ‘F(X)‘
<e

Hence,
[flgne = sup [f(z)| < sup |[F(X)].
dp(z)<e 1X|l<e
Proof of (b): Let f be in Ps and let us denote F' :=s;(f). The homogeneous polynomial
F e P5(CPl) is an homogeneous polynomial of degree 8. It is proved in [IL05]-Lemma A.3
that

[F(X)]
1E 00,5 := s <
1x11°
Then since ||F|| g5 := [|si(f)||#s == Wsﬁ = \f|p5, using (a) we finally get

[flane < sup [FX)| < [[Fllog € < |Fllms &* =1f] ,
1X([<e P

Proof of (c): Let V be in H;. Using the previous result, we directly get

2 < 2 " g20t) 2 26 2
IV ghe = Z %‘Vﬂqh,s < Z ST |Vi|p,5+p¢ =€ HVHM

i=1 =1

Proof of (d): Let V be in B.. Writing V' as the sum of its quasi homogeneous components,
V=73 Vs we get
seA

Viigne < 3 1Vallgne < DIV ;= Ne(V).
6eA 5€A
Il

Then we prove that L, is invertible and we compute the operator norm of its inverse.

Proposition B.6. Let K > 2 be fized such that

ug Mg, £X (

p(E) <1 with  pi(K) ==& ”Z (k + d0)" %) (59)

where a, 0o and Mg are defined in lemma 6.8.
Then for every e €]0,1[ and every o € A with o > s satisfying
1
Ce < —, (60)
K(a—s)v

we have :
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(a) The operator 1, given by 1,.V = DU,.V maps B. into Be and for every V € B. we
have
Ne(To.V) < pr(K) Ne(V).
(b) The operator L, = 1d + T, is invertible and for for every V € B,

125 Vllgne < No(£3'V) < 1=z Ne(V).

Proof. Statement (b) directly follows from (a) since it ensures that |||7al|£(5.) < p1(K) <1
and so L1 = (Id+ 7,)7! = § (—74)" holds. We now prove statement (a). Observing

n=0
that
,ZZXV = Z -DU51"/527
0<(51§a—s,~5165’
d2EA
recalling that a := max (1, {(F;)D and using Proposition 3.6-(d) we get
N.(T,.V) = > > DU, Vs,| £,
0<61<a—s, 6161_ o1+02=4 p,6
52€Z
§ 1
S D DR L S A
0<51§a—5L516A*
d2€A
< n N(V) (61)
where
1
UL D DR A
0<d1<a—s, 51EA~
Using (30) and Lemma 6.8 and recalling that $ = 7+ 5. we get
NS MMaug Y SHC)T () (61 - 6) >% < MMgug Y (0 (BE.
dp<dri<a-s, 51637 60<d1<a—s, 61€z*

Then for every K > 2 and every ¢, « satisfying (60), we obtain

C(INT s N ®
o< w3t (g) ()
60<d1<a—s, 61EA~
1\%
< a1 —
> My Mpug Z él (K)
50<61<O¢7$ 61€A_
m MBUO "!‘2: (1 )61—50
< o7
51 =3
M, Mau 1\*
< 2PN 46 “<>
- Ko kz:%( + ) 2
= pi(K) (62)
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In conclusion, gathering (61) and (62) we get that for every V € B, every K > 2 and
every ¢, «a satisfying (60),
NoAToV) < pr(K) Na(V).

O]

Before computing upper bounds of £;1Q.,, we prove a last lemma giving an estimates
of the norm of Id + U,,:

Lemma B.7. Let K > 2 be fived such that (59) is satisfied. Then for every e €]0,1] and
every a € A such that a > s satisfying (60), we have

N.(Id + U,) = > us < 2Mgaug.
0<6<a—s, SEA~

Remark B.8. The key point in the above estimate is that the upper bound does not depend
On Q. MOT ON €.

Proof. Using (30) and Lemma 6.8 and recalling that % =7+ % and that Mg > 1, we get
that for every K > 2, every € €]0, 1] and every a € A with a > s satisfying (60), we have

N.(Id+U,) = Z ug
0<6<a—s, SEA—

< ug + Maug 3 (C)2(8)7((5 — Go)1) %o
§0<d6<a—s, S€A—

< Mgug Y (Ce)’(81)3.

0<6<a—s, SEA~

SH T S Ol (e

0<d<a—s, SCA-

< Mpug > (%)6

0<o<a—s, SeA-

< MﬁUO i (%)6 = QMBUO
0=0

We have now enough material to be able to compute an upper bound for La_lQia. We
estimate each of them separately in the three following lemmas.

Lemma B.9. Let K > 2 be fized such that (59) is satisfied. Then, there exists My > 0
such that for every e €]0,1[ and every a € A with o > s, satisfying (60), we have

(a) when%:T—i-%Za,

110 ollgne < Mi(Ce)* ((a+2 — 5)1)7;
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1£a" QL allane < Mi(CE)* (0 42 = 5)1)5 (o — )"+ 75
Proof. Lemma B.7-(b) ensures that
H‘C(;IQia”qh,a < ﬁl(K)NE(Qioc) (63)

So to get the desired result we only need to compute an upper bound of N, ( Q1>a).

Recalling that a := max (1, {@D and using Proposition 3.6-(d), (30) and Lemma 6.8
we get

=

g

NA(QLy) < MMMZu3 S SH(Ce) ()T (81 — 60)) 0 (62 — )1)7 (82 — s — Bo)!) 0

d1+d2>a _
0<d1<a—s, 516~A*
s<da<a, d2€A

< MMGud D 51(C2)HR(5,1(S — )T ((91)!(S2 — 5)) >
d1t+d2>a
0<d1<a—s, 51€~A*
s<d2<a, d2€A

< MMEuR Y 0H(Ce) I TR(81(8y — 5)1)

51—‘,—522&4—1

1< <a—s
s+1<§2<a

In the above estimate, one can obtain a sharper result using a smaller set of index in the
last sum, i.e. {(61,02) € N2/6; +d9 > at, 07 <6 <a—s, sT <dy <al} (a is the small
integer of A greater than a). However, it leads to far more intricate computations, for a

not so better estimate. This is why we have chosen this more rough estimate corresponding
to a larger set of index.

So now, performing the change of indexes (01,02) — (01,0 = 01 + d2) we get that for
every K > 2, every ¢ €]0,1] and every a € A with « > s satisfying (60), we have

a—s d1ta
M< > i 8(Ce)°(611(6 — &1 — s)Y)

o=

7 3 S
My, Mjug 51=1d=a+1
a—s 01+
< (Co LY s3(a1)r S (Ce) (5 — 5y — 5))3
41=1 o=a+1
a—s S14a 1
a 1 (a 0—01—s) \?
< (Ce)ot N st(a)r Y (§) ety (W)
i1=1 o=a+1

Then observing that for 0 < 6 <a—s,a+1<6d < +a, wehave § —d1 —s < a— s and

(65— 81 — 5)!
(a _ 8)57(a+1)

!(a+2—51—5)~-(5—51—5)

<(a+1—-146;—9)!
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we get,

1 a—s 1
Na(Q>a) < < ( a+1 Z (5a(51 a+1 _51 —S)) Z (%)5—(044-1)

27 S
M, Mzup 51=1 S=a+1

<2Ce) Y ot (dil(a+ 101 —s)!)

41=1
When 1 p = a, we obtain
N.(QL) = PN ¥
S < 2(C8) 5;((51+1).(a+1—51_8).)
1
< 2(Ce)t! 2 | TN 1 ’
< 2(Ce) <(a+ —s).) Z i
o= a+2—s
+1 %OL—S 1 b
< 2(Ce) 92— g)! -
e ((a+ ” 5Z1<a+25>
1
:2C€a+1 a+2—5‘b a— S
(Ce) <( )> (04—1—2—5)%
1
(CE)CH_l((O[—i-Q—S)‘)b

since % > a > 1. Hence, when % > a,
1
NE(Qia) <2 Smngu% (C’E)O‘Jrl ((a +2— s)!) b

On the other hand, when % < a we get

Ne(Qa) ot b ol a—s

o=

2(Ce)att ((a +2— s)!) (o — s)oti=%.

This achieves the proof of lemma B.9 with
200, M 5ug

My = P60
L1 pu(K)

O]

Lemma B.10. Let K > 2 be fized such that (59) holds. Then let v > 2 be fized such that

I3 =

oM
q= X <1 with X = ( ﬁUO)
7C p

where C' and Mg are defined in lemma 6.8.

95

(64)



Then there exists My > 0, such that for every e €]0,1] and every o € A with a > s
satisfying

Cec— . (65)

we have

_ a+1
H‘Calgiquhﬁ S M2 (%) ’

Proof. Like for £;1Q! , Lemma B.7-(b) ensures that

1£2' Q@ ollghe < Ty Ne(Q20). (66)

>

So, to get the desired result we only need to compute an upper bound of N-(Q2 ).

According to proposition 3.6 and proposition 3.7, there exists positive constants Mg
and p such that, for all 4 > s belonging to A, for all u, < r < p*, we have

| M

s, Vsl 5 = or e (67)
Hence, using (30) we get

HRM,T(U&, L Us

T

p,01+++0r+p

“*
MR S14-46
N.(Q2,) < Z Z Z e ug, - - ug, e TOrH

s<p Hez T=H 61++6r+ﬂ>g
0<dj<a—s, §;€EA™

w r
Mg uy 5 4.y
S D S S T ) (L
s<p, p€A TTHx Gt tortu>a J=1

OS(SjSOé—S, 5]'€A7
Then lemma 6.8 and remark 6.9 ensure that for every § > 0 lying in d € A*, we have

Bs < MsC®(51)%
Thus, for every for every ¢ €]0,1[ and every a € A with a > s satisfying (65), we have

Maun\" (05)51+~~+6r+u r 1
W) <X 55 (M) T

s<p, p€A TTHE St o tu>a j=1
OS(SJ'SCX—S, 5j€A7

1 £ Mpguo \" 1 Outtortu T 1
< Me Y X () X (K(),,) [T@ne
~ a—s 5
s<p, peA TTHx S1t++ortpu>a v j=1
OS(;J'SO[*S, 6]'GA_
pok 5
M 1 Mgaug T 1
<Y (i) X (M) X% Haw }
2Cla—s)b ) 5 (o >b
s<p, PEA T (517 -0 )ENT J=1
0<d;<a—s
M o w* M ) S\ 7
1 uo 1
< Ka$1§: <1) E ( —= ) E 5'b< 1)
~ \YC(a—s)? = Y(a—s)b
s<p, PEA T=H
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Then, observe that

I
=0 ’Y(O‘_s)b

since v > 2. So, we can conclude
N 2 < Mg 1 " 2Mpuo \"
€(Q>Oé> = Kotl Z ) Z (T)
1C(a=s)b /27,

R
Kot
s<p, pEA T=He

IA
=z
(]
/N
2

2
N——
=
]
VS
[\
JE

IS
N
.

Now, observe that (1) ensures that

Pyloyn and pr<tyl
P D P

I3

. . 2M,
Then, since according to remark 6.9, we can assume that Tﬁuo > 1, we get

*

S (2) < 0 — e+ 1) (220) < (gt Bt
=[x

where x is given by (64) and where

A:<1—1> P and Bz(
p P

+1) xP.

=13
s ilhst

a—sS 1 L ) a—sS 5 % . a—sl 1
Z(‘S!)b( ):Z<(a_s)a) $§1+ZT§§ <

(68)

(69)

Finally, (64), (68) and (69) ensures that that for every ¢ €]0, 1[ and every o € A with a > s

satisfying (65), we have

NAQ) < Y () (An+B)
Ss< [, /LEK

A S (%) (Ap+B)
p=s+1

1
_ +1 B A
= MR qs (H + 4(1(1(1)2) 7]{&4‘1 .

IN

This achieves the proof of lemma B.10 with

_ 1
- 1-pi(K)

My

o7

(70)



Lemma B.11. Let K > 2 and v > 2 be fized such that (59) and (64) holds.

Then there exist Ms > 0, such that for every e €]0,1] and every a € A with o > s
satisfying (65), we have

. a+1
H[’alQiquhﬁ S M3 (%) ’

Proof. The proof is very similar to the one of lemma B.10 and we get an estimate analogous
to (68) which read

* *

M@ < i () 3 (B) < a5 (1) T (22)

T=8x% T=S8x%

The details are left to the reader. This which achieves the proof of lemma B.11 with
S
- 1\° 2Mgug \"
My =Ms (2) 3 (555)

O]

Considering lemma B.1, proposition 6.12 directly follows from lemmas B.9, B.10, B.11.
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