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Abstract

In this article, we study germs of holomorphic vector fields which are ”higher order”
perturbations of a quasihomogeneous vector field in a neighborhood of the origin of
Cn, fixed point of the vector fields. We define a ”diophantine condition” on the quasi-
homogeneous initial part S which ensures that if such a perturbation of S is formally
conjugate to S then it is also holomorphically conjugate to it. We study the normal
form problem relatively to S. We give a condition on S that ensure that there always
exists an holomorphic transformation to a normal form. If this condition is not satisfied,
we also show, that under some reasonable assumptions, each perturbation of S admits
a Gevrey formal normalizing transformation. Finally, we give an exponentially good
approximation by a partial normal form.

1 Introduction

The aim of this article is to study germs of holomorphic vector fields in a neighborhood of
a fixed point, say 0, in Cn. Lot of work is devoted to this problem mainly when the vector
field is not too degenerate, that is when not all the eigenvalues of the linear part DX(0)
of X at the origin are zero. In this situation, the aim is to compare the vector field to its
linear part. One way to achieve this, is to transform the vector field “as close as possible”,
in some sense, to its linear part by mean of regular change of variables.

In this article we shall focus on vector fields which are degenerate and which may not
have of nonzero linear part at the origin.

We shall be given a “reference” polynomial vector field S to which we would like to
compare a suitable perturbation of it. This means that we would like to know if some of
the geometric or dynamical properties of the model can survive for the perturbation. For
instance, the model S1 = y ∂

∂x and S2 = y ∂
∂x + x2 ∂

∂y are quite different although they have
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the same linear part at the origin of C2. In fact, for S1, each point of {y = 0} is fixed
whereas the ”cusp” {2x3 − 3y2 = 0} is globally invariant by S2.

In this article, we shall assume that the unperturbed vector field S is quasihomoge-
neous with respect to some weight p = (p1, . . . , pn) ∈ (N∗)n. This means that each variable
xi has the weight pi while ∂

∂xi
has the weight −pi. Hence, the monomial xQ is quasihomoge-

neous of quasidegree (Q, p) :=
∑n
i=1 qipi. In particular, the vector field S =

∑n
i=1 Si(x) ∂

∂xi
is quasihomogeneous of quasidegree s if and only if Si is a quasihomogeneous polynomial of
degree s+ pi.

We shall then consider a germ of holomorphic vector field X which is a good
perturbation of a quasihomogeneous vector field S, this means that the smallest
quasidegree of nonzero terms in the Taylor expansion of X − S is greater than s. In the
homogeneous case (p = (1, . . . , 1)), a linear vector field S is quasihomogeneous of degree
0 and a good perturbation is a nonlinear perturbation of S (i.e. the order at 0 of the
components of X − S is greater or equal than 2).

We shall develop an approach of these problems through normal forms. By this,
we mean that the group of germs of holomorphic diffeomorphisms (biholomorphisms) of
(Cn, 0) acts on the space of vector fields by conjugacy : if X (resp. Φ) is a germ of vector
field (resp. biholomorphism) at 0 of Cn, then the conjugacy of X by Φ is Φ∗X(y) :=
DΦ(Φ−1(y))X(Φ−1(y)). A normal form is special representant of this orbit which satisfy
some properties. Although, the formal normal form theory of vector fields which are non-
linear perturbations of a semi-simple (resp. nilpotent, general ) linear vector field is well
known [Arn80] (resp. [CS86, Bel79, Mur03]), it is much more difficult to handle the problem
when the vector field doesn’t have a nonzero linear part. It might also be useful in problem
with parameters to consider some of the parameters as a variable with a prescribed weight.

First of all, we shall define a special hermitian product 〈., .〉
p,δ

on each space Hδ of
quasihomogeneous vector fields of quasidegree δ (see (3)). It’s main property is that the
associated norm of a product is less or equal than the product of the norm. Let us consider
the cohomological operator :

d0 : Hδ → Hs+δ
U 7→ [S,U ]

where [., .] denotes the usual Lie bracket of vector fields. We emphasize that, contrary to
the case where S is linear (s = 0), d0 doesn’t leave Hδ invariant. Let d∗0 : Hδ+s → Hδ be
the adjoint of d0 with respect to the hermitian product. An element of the kernel of this
operator will be called resonant or harmonic. The first result we have is the following :

Formal normal form transformation (see proposition 4.4) :
There exists a formal change of coordinates tangent to Id at the origin, such that, in the
new coordinates, X − S is resonant.

This means that there exists Φ̂ ∈ (C[[x1, . . . , xn]])n such that Φ̂(0) and DΦ̂(0) = Id and
d∗0(Φ̂∗X − S) = 0. When S is linear, this corresponds to classical normal forms [Arn80,
Mur03]. In the homogeneous case, the first result in this direction is due to G. Belitskii
[Bel79, Bel82] using a different scalar product. In the quasihomogeneous case, a general
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scheme has been devised by H. Kokubu and al.[KOW96] to obtain a unique normal form.
This scheme can be combined with our definition.

One of the main novelty of this article is to consider the Box operator

�δ : Hδ → Hδ
U 7→ �δ(U) := d0d

∗
0(U)

which is self-adjoint and which spectrum is non-negative. Its nonzero spectrum is com-
posed of the (squared) small divisors of the problem. These are the numbers that
we need to control. For instance in the homogeneous case, if S =

∑n
i=1 λixi

∂
∂xi

, then the
eigenvalues of �k−1 is the set of |(Q,λ)− λi|2, where Q ∈ Nn, |Q| = k and 1 ≤ i ≤ n.

For each quasidegree λ > s, let us set

aδ := min
λ∈Spec(�δ)\{0}

√
λ.

Then, we shall construct inductively a sequence of positive numbers ηδ from the aδ’s (see
(12)). We shall say that S is diophantine if there exists positive constants M, c such
that ηδ ≤ Mcδ. Being diophantine a quantitative way of saying the the sequence {aδ}
doesn’t accumulate the origin too quickly. Hence, we have defined a small divisors con-
dition for quasihomogeneous vector fields. For instance in the homogeneous case,
S =

∑n
i=1 λixi

∂
∂xi

is diophantine if it satisfies Brjuno’s small divisors condition [Bru72] :

(ω) −
∑
k≥1

lnωk
2k

< +∞,

where
ωk := inf{|(Q,λ)− λi| 6= 0, Q ∈ Nn, 2 ≤ |Q| ≤ 2k, 1,≤ i ≤ n}.

Rigidity theorem (see theorem 5.8) :
In the general quasihomogeneous case, assume that the quasihomogeneous vector field S is
diophantine. Let X be a good holomorphic deformation of S. If X is formally conjugate to
S then it is holomorphically conjugate to it.

For instance in the homogeneous case and if S =
∑n
i=1 λixi

∂
∂xi

, this is the classical
Siegel-Brjuno linearization theorem : if S satisfies the diophantine condition (ω) and if an
holomorphic nonlinear perturbation X is formally linearizable, then X is holomorphically
linearizable.

Assume that the ring of polynomial first integrals of S is generated by some quasiho-
mogeneous polynomials h1, . . . , hr. Let us denote I (resp. Î) the ideal they generate in the
ring of germs of holomorphic functions at the origin (resp. formal power series). The germ
of the variety Σ = {h1 = · · · = hr = 0} at the origin is invariant by the flow of S. Does a
good perturbation of S still have an invariant variety of this kind ?

Invariant variety theorem (see theorem 5.6) :
In the general quasihomogeneous case, assume that the quasihomogeneous vector field S is
diophantine. Let X be a good holomorphic deformation of S. Essentially, if X is formally
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conjugate to S modulo Î then it is holomorphically conjugate to S modulo I.

This means that there exists a germ of holomorphic diffeomorphism Φ such that

Φ∗X = S +
n∑
i=1

gi(x)
∂

∂xi
, with gi ∈ I.

Hence, in the new holomorphic coordinate system, Σ is an invariant variety of X since
gi|Σ = 0. The diophantine condition can eventually be relaxed a little bit taking into
account the ideal I. For instance in the homogeneous case and if S =

∑n
i=1 λixi

∂
∂xi

, this
was proved by L. Stolovitch [Sto94].

What happens if instead of accumulating the origin, the sequence of the spectrum aδ
tends to infinity with δ ? Let us set ν := max

(
1, max pi

2

)
.

Poincaré’s domain like theorem (see theorem 6.2) :
Assume that there exists a constant M such that for all δ > s,

min
λ∈Spec(�δ)\{0}

√
λ ≥M(δ − s)ν .

Then, any holomorphic good perturbation of S is holomorphically conjugate to a normal
form.

For instance in the homogeneous case, if S =
∑n
i=1 λixi

∂
∂xi

belongs to the Poincaré’s
domain [Arn80] then the convex hull of the λi in the complex plane doesn’t contain the
origin. This implies that |(Q,λ)| ≥ ε|Q| from which we infer that |(Q,λ) − λi| ≥ ε′|Q| if
|Q| is large enough. We refer to [Sto00, Sto08] for recent results and overview about the
problem of holomorphic conjugacy to a normal form when S is a linear diagonal vector field.

Let f̂ =
∑
Q∈Nn fQx

q be a formal power series of Cn and α > 0. We say that f̂ is
α-Gevrey if for all Q ∈ Nn, |fQ| ≤ Mc|Q|(|Q|!)α. As we know from the linear diagonal
case, normalizing transformations (that is formal transformation to a normal form) usu-
ally diverge. How bad can be this divergence ? We show that is the spectrum of � is of
Siegel type, then, at worst, there exists a formal Gevrey normalizing transformation :

Gevrey formal normal form theorem (see theorem 6.4):
Assume that there exists a positive constants M and nonnegative τ such that for all δ > s,

min
λ∈Spec(�δ)\{0}

√
λ ≥ M

(δ−s)τ .

Then any good holomorphic perturbation of S admits a formal p̄(b̃+ τ)-Gevrey normalizing
transformation to a p̄(b̃ + τ)-Gevrey formal normal form. Here, p̄ = maxi pi and b̃ is a
positive number depending only on p.

In the homogeneous case with S a linear vector field, this result was proved (but not
stated!) by G. Iooss and E. Lombardi [IL05]. This kind of result was obtained in very
peculiar case. Namely, in the case of two-dimensional saddle-node (resp. resonant saddle),
X is a suitable perturbation of x ∂

∂x + y2 ∂
∂y (resp. px ∂

∂x − qx
∂
∂x + xqyp+1 ∂

∂y ) (these are not
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quasihomogeneous), the Gevrey character with respect to y (resp. to the monomial xqyp)
was obtained by J. Ecalle [Eca], J. Martinet and J.-P. Ramis [MR82, MR83, Mal82] and S.
Voronin [Vor81] (see also [IY08] for a general overview). In this case, there is no small divisor
(i.e. τ = 0). For general n-dimensional 1-resonant saddle, there are usually small divisors;
the results was devised by J. Ecalle [Eca92], by L. Stolovitch [Sto96] and B. Braaksma and
L. Stolovitch [BS07]. In the case of the ”cusp”, S = 2y ∂

∂x + 3x2 ∂
∂y (p = (2, 3)), a normal

form of vector fields tangent to the cusp was given by F. Loray. A very precise study of
this case with sharp estimates of the Gevrey order was done by M. Canalis-Durand and R.
Schäfke [CDS04]. T. Gramchev and M. Yoshino studied the cohomological equation (i.e.
the linearized equation of the conjugacy equation) of a pair of commuting 4-dimensional
vector fields having linear part with a Jordan block [YG08].

By applying a polynomial change of coordinates Ψδ−s of some quasidegree δ−s, one can
transform the perturbation X into a normal form S +Nδ up to some quasiorder δ, that is
(Ψδ−s)∗X−(S+Nδ) is of quasiorder greater than δ. Hence, the norm of (Ψδ−s)∗X−(S+Nδ)
on a ball of radius ε centered at the origin is bounded by a power of ε. Nevertheless,
the formal normalizing diffeomorphism Φ we obtained from the previous theorem allow us
to obtain much better estimate, that is an exponentially small estimate. Namely, let us
consider the “twisted ball” B̃ε = {(

∑n
i=1 pi|xi|2/pi)1/2 < ε}.

Exponentially small approximation by a partial normal form theorem (see the-
orem 6.11):
For each ε > 0 sufficiently small, there exists a quasidegree δopt such that∥∥∥(Φδopt)∗X −

(
S +Nδopt

)∥∥∥
qh,ε

< M exp
(
−A
εb

)
for some exponent b that depends on τ , the order of small divisors. Here, ‖X‖gh,ε is a
“twisted norm” of the vector field X that measure its size on the twisted ball B̃ε.

Some of these results were announced in [LS09].

2 Notations

Let us set some notation which will be used throughout this article.

• X̂n denotes the C-space of formal vector fields on Cn,

• Xn denotes the C-space of germs of holomorphic vector fields on (Cn, 0),

• Ôn denotes the ring of formal power series in Cn,

• On denotes the ring of germs at 0 of holomorphic functions in Cn.

Let Q = (q1, . . . , qn) ∈ Nn. Let |Q| := q1 + · · · + qn be the length of Q. As usual, if
x = (x1, · · · , xn), xQ denotes the monomial xq11 · · ·xqnn . Let n, k ∈ N with k ≤ n, we denotes
by Ckn := n!

k!(n−k)! the binomial coefficients.
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3 Quasihomogeneous vector fields and polynomials

3.1 Definitions and notations

Let p = (p1, . . . , pn) ∈ (N∗)n be such that the largest common divisor of its components
p1 ∧ · · · ∧ pn is equal to 1. Let us denote by

Rp :=
n∑
i=1

pixi
∂

∂xi

the p-radial vector field Cn. Let Q = (q1, . . . , qn) ∈ Nn. Let (Q, p) stand for
n∑
i=1

qipi. A

polynomial will be called quasihomogeneous of degree δ if it can written as a finite sum∑
(Q,p)=δ

pQx
Q.

with complex coefficients. It is equivalent to say that the Lie derivativeRp(f) :=
n∑
i=1

pixi
∂f
∂xi

=

δf since Rp(xQ) = (Q, p)xQ. The integer δ = (Q, p) is the p-degree of quasihomogeneity
(or p-quasidegree) of xQ. When there is no confusion possible, we shall omit the
reference to p, which is fixed once for all. Let us define

p̄ := max
1≤i≤n

pi p := min
1≤i≤n

pi.

Let us define ∆ to be the totally ordered set of p-quasihomogeneity degree of polynomials;
that is to say ∆ = {δ1, δ2, δ3, . . .} where δ1 < δ2 < δ3 < · · · . It is the set

∆ = {d ∈ N/ d = (α, p) , with α ∈ Nn}.

An element of ∆ will be called a quasidegree.

For δ ∈ ∆, we shall denote by Pδ the vector space of p-quasihomogeneous polynomials
of degree δ. If δ 6∈ ∆, we set Pδ := {0}. Hence, for any δ ∈ N,

Pδ :=
{
f ∈ C[x], f(x) =

∑
(Q,p)=δ

fQx
Q
}

if δ ∈ ∆, Pδ := {0} otherwiwse.

A vector field X =
n∑
i=1

Xi
∂
∂xi

is quasihomogeneous of quasidegree δ ≥ 0 if, for each

1 ≤ i ≤ n, Xi is belongs to Pδ+pi . It is equivalent to say that [Rp, X] = δX where [., .]
denotes the Lie bracket. In other words, xi has weight pi and ∂

∂xi
has weight −pi.

We shall denote by ∆̃ the totally ordered set of p-quasihomogeneity degree of non zero
polynomial vector fields. As a set, we have the quality

∆̃ = {δ̃ ∈ Z/δ̃ = δ − pi,with δ ∈ ∆, 1 ≤ i ≤ n}.

For δ ∈ ∆̃, we shall denote by Hδ the complex vector space of p-quasihomogeneous polyno-
mials of quasidegree δ. If δ 6∈ ∆̃, we shall set Hδ := {0}.
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Remark 3.1. Observe that if δ ∈ ∆̃, then there exists 1 ≤ j0 ≤ n such that pj0 +δ ∈ ∆, but
it may happen that for some 1 ≤ j ≤ n, pj +δ /∈ ∆ which simply means that any polynomial

vector fields X =
n∑
i=1

Xi
∂
∂xi

belonging in Hδ has a j-th component Xj which is equal to 0.

Remark 3.2. There is only a finite number of elements of ∆̃ which are negative. In fact,
if δ ∈ ∆̃, then δ ≥ −pi for some i.

The sets ∆ and ∆̃ do not contain in general all the integers. However we have the
following lemma (inspired by a remark of J.-C Yoccoz) :

Lemma 3.3. Let p = (p1, . . . , pn) ∈ (N∗)n as above.

(a) There exists δ0 such that for every δ ≥ δ0, δ belongs to ∆.

(b) We have ∆̃ ⊃ ∆.

(c) ∆ is stable by multiplication by any nonnegative integer and by addition which is
usually not true for ∆̃.

Proof. The following proof of (a) is due to Marc Revesat : let N > 0 be an integer. Then,
we can write it as N = p1u1 + ...+ pnun, where the ui’s are integers. For all i, there exists
an integer ki such that 0 ≤ piui + kip1...pn < p1...pn. Let us set vi = p1...pi−1pi+1pn,
k = k1 + ...+ kn. Hence we have : N + kp1...pn = p1v1 + ...+ pnvn with 0 ≤ pivi < p1...pn.

Let us assume that N ≥ np1...pn. Therefore, according to previous computations, we
have N + kp1...pn = p1v1 + ... + pnvn < np1...pn. Hence, k is negative. We obtain the
result by changing, for instance, v1 in v1 − kp2...pn. Then observing that for any δ ∈ ∆,
δ = (α, p) = (α+ ej , p) − pj where α ∈ Nn and ej is the j-th vector of the canonical basis
of Rn, we get that ∆̃ ⊃ ∆ holds. Finally statement(c) readily follows from the definition of
∆.

Proposition 3.4. Let k, ` ∈ Z be two integers.

(a) Let f, g be two quasihomogeneous polynomials belonging respectively to Pk and P`.
Then, fg belongs to Pk+`.

(b) Let f be a quasihomogeneous polynomial belonging to Pk and let X be a quasihomo-
geneous polynomial vector field belonging to H`. Then,

(i) the Lie derivative X(f) belongs to Pk+`;

(ii) fX belongs to Hk+`.

(c) let S,U be two quasihomogeneous vector fields belonging to respectively in Hk and H`.
Then,

(i) DS.U belongs to Hk+`;

(ii) the Lie bracket [S,U ] belongs to Hk+`.

Proof. The proof readily follows from the definition of Pk and H` observing that if f lies in
Pk then ∂f

∂xj
lies in Pk−pj .
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3.2 Decomposition of functions and vector fields as sum of homogeneous
and quasi homogeneous components.

Let f ∈ C[[x1, · · · , xn]] be a formal power series function. Hence f reads

f(x) =
∑
Q∈Nn

fQ xQ where fQ ∈ C.

Classically, f admits a unique decomposition as a sum of homogeneous polynomials, f•,r,
of different degree r, i.e.

f =
∑
r≥0

f•,r where f•,r(x) =
∑
|Q|=r

fQ xQ.

where |Q| = q1 + · · · + qn. In a similar way, f admits a unique decomposition as a sum of
quasihomogeneous polynomials fδ of different quasidegree δ, i.e.

f =
∑
δ∈∆

fδ with fδ(x) =
∑

(Q,p)=δ

fQ xQ.

We shall say that f is of p-order δ0 if fδ0 6= 0 and fδ = 0 for all quasidegree δ < δ0. Let
µ be a quasidegree. We shall define the µ-quasijet of f to be

Jµ(f) :=
∑

δ∈∆, δ≤µ
fδ.

Furthermore, if f is a germ of holomorphic function at the origin of Cn, we will denote by
{f}µ := fµ the quasihomogeneous component of degree µ in the Taylor expansion of f at
the origin.

Finally, f admits a unique decomposition as a sum of polynomials fδ,r which are simul-
taneously quasihomogeneous of quasidegree δ and homogeneous of degree r, i.e.

f =
∑
δ∈∆

∑
δ
p
≤r≤ δ

p

fδ,r with fδ,r(x) =
∑
|Q|=r

(Q,p)=δ

fQ xQ.

In the last decomposition of f , r belongs to
[
δ
p ,

δ
p

]
, since for every Q ∈ Nn, p|Q| ≤ (Q, p) ≤

p|Q|.

Any formal vector field V can be written as an element of (C[[x1, · · · , xn]])n. Hence it
can be decomposed along the quasihomogeneous filtration :

V =
∑
δ∈∆̃

Vδ

where Vδ is a quasihomogeneous vector field of quasidegree δ. By definition, we have
Vδ =

∑n
i=1 Vi,δ

∂
∂xi

with Vi,δ ∈ Pδ+pi . We recall that Pδ+pj is equal to {0} when δ + pj /∈ ∆.
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Moreover, each quasihomogeneous component Vδ can be decomposed into homogeneous
components Vδ,r of degree r:

Vδ =
∑

δ∗≤r≤δ∗
Vδ,r with Vj,δ,r(x) =

∑
|Q|=r

(Q,p)=δ+pj

Vj,Q xQ

where
δ∗ :=

min{δ + pi | δ + pi ∈ ∆}
p̄

and δ∗ :=
max{δ + pi | δ + pi ∈ ∆}

p
. (1)

Moreover, for any q ≥ 1 and for any homogeneous polynomial φ ∈ (C[x1, · · · , xn])q of
degree r, there exists a unique r-linear, symmetric, operator φ̃ : (Cn)r → Cq such that
φ̃(x, · · · , x︸ ︷︷ ︸

r times

) = φ(x) where x = (x1, · · · , xn) (see for instance the book of Cartan [Car67]).

Moreover, for every x(`) ∈ Cn with 1 ≤ ` ≤ r, φ̃ is given by

φ̃(x(1), · · · , x(r)) =
1
r!
Dr
xφ(0).[x(1), · · · , x(r)] =

1
r!

∆x(1) · · ·∆x(r)φ

where ∆hφ(x) = φ(x + h) − φ(x) and where one check that ∆x(1) · · ·∆x(r)φ(x) does not
depend on x [Car67].

The homogeneous and quasihomogeneous components of sum, products and derivatives
of formal functions and vector fields can be computed with the standard rules (see Lemma
A.1, A.2 in appendix A). Computation of quasihomogeneous components of the composition
of a function or a vector field by a vector field is given by the following lemma :

Lemma 3.5 (Components of the composition). Let f ∈ C[[x1, · · ·xn]] and U, V ∈ (C[[x1, · · ·xn]])n.
Then,

(a) {f ◦ U}δ′ =
∑

δ≤δ′, δ
p
≤r≤ δ

p

δ+δ1+···+δr=δ′

f̃δ,r(Uδ1 , · · ·Uδr),

(b) {V ◦ U}δ′ =
∑

δ≤δ′, δ∗≤r≤δ∗
δ+δ1+···+δr=δ′

Ṽδ,r(Uδ1 , · · ·Uδr).

where δ∗ and δ∗ are defined in (1).

The proof of this Lemma is given in appendix A.

3.3 Hermitian product for quasi homogeneous polynomials and vector
fields

We shall provide on C[x1, . . . , xn] an hermitian product suitable for the grading into quasi-
homogeneous space. Moreover, on each Pδ, this hermitian product will induce a submulti-
plicative norm, i.e. a norm such that the norm of the product of two function is less or equal
to the product of the norms. There are several ways for defining such an inner products
with this property (see appendix A subsection A.2). In this paper, we choose one possible
way given by the two following definitions :

9



• for quasi homogeneous functions f, g ∈ Pδ we define the inner product given by

〈f, g〉
p,δ

=
∑
Q∈Nn

(Q,p)=δ

fQ.gQ
(Q!)p

δ!
where (Q!)p = (q1!)p1 · · · (qn!)pn ; (2)

Let |.|p,δ be the associated norm. If p = (1, . . . , 1) (i.e. in the homogeneous case), this
is the Fischer scalar product [Sha89, Fis17, IL05]. Hence, we have

〈
xR, xQ

〉
p,δ

:=

{
(r1!)p1 ···(rn!)pn

δ! if R = Q
0 otherwise

(3)

• for quasi homogeneous vector field of degree delta δ ∈ ∆̃ we define the associated
inner product and norm given by

〈U, V 〉
p,δ

:=
n∑
i=1

〈Ui, Vi〉p,δ+pi and ‖U‖2
p,δ

:=
n∑
i=1

|Ui|2p,δ+pi (4)

where U =
n∑
i=1

Ui
∂
∂xi
∈ Hδ and V =

n∑
i=1

Vi
∂
∂xi
∈ Hδ.

One of the main features of these hermitian products is its good behavior with respect
to the product. More precisely, we have

Proposition 3.6 (submultiplicativity of the norms).

(a) Let f, g be p-quasihomogeneous polynomials of δ, δ′ respectively. Then,

|fg|
p,δ+δ′

≤ |f |
p,δ
|g|

p,δ′
.

(b) Let fδ,r be a function from Cn to C. We assume that fδ,r is simultaneously quasihomo-
geneous of degree δ and homogeneous of degree r. Denote by f̃δ,r the unique r-linear,
symmetric form such that f̃δ,r(X, · · · , X︸ ︷︷ ︸

r times

) = fδ,r(X) where X = (x1, . . . , xn). Let Uδi

be a p-quasihomogeneous vector field of degree δi, i = 1, . . . , r.

Then, f̃δ,r(Uδ1 , . . . , Uδr) is p-quasihomogeneous de degree δ+ δ1 + · · ·+ δr and we have∣∣∣f̃δ,r(Uδ1 , . . . , Uδr)∣∣∣
p,δ+δ1+···+δr

≤ N1(f̃δ,r) ‖Uδ1‖p,δ1 · · · ‖Uδr‖p,δr (5)

with N1(R̃δ,r) :=
∑

1≤i`≤n
1≤`≤r

∣∣f̃δ,r(ei1 , · · · , eir)∣∣ where (e1, · · · , en) is the canonical basis of Cn.

(c) Let Rδ,r be a vector field of Cn which is simultaneously quasihomogeneous of degree δ
and homogeneous of degree r. Denote by R̃δ,r the unique r-linear, symmetric operator
such that R̃δ,r(X, · · · , X︸ ︷︷ ︸

r times

) = Rδ,r(X). Let Uδi be a p-quasihomogeneous vector field of

degree δi, i = 1, . . . , r.
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Then, R̃δ,r(Uδ1 , . . . , Uδr) is p-quasihomogeneous de degree δ+δ1 + · · ·+δr and we have∥∥∥R̃δ,r(Uδ1 , . . . , Uδr)∥∥∥
p,δ+δ1+···+δr

≤ N2,1(R̃δ,r) ‖Uδ1‖p,δ1 · · · ‖Uδr‖p,δr . (6)

with N2,1(R̃δ,r) :=
√

n∑
j=1

(
N1(R̃δ,r,j)

)2
where R̃δ,r,j is the j-th components of R̃δ,r in

the canonical basis of Cn.

(d) Let U and N be two p-quasihomogeneous vector fields of quasi degree δ and α respec-
tively. Then DU.N is a p-quasihomogeneous vector field of degree δ + α satisfying

‖DU.N‖
p,δ+α

≤ n(δ + p)ν ‖U‖
p,δ
‖N‖

p,α
where ν := max(1, p̄2)

≤Mp δ
ν ‖U‖

p,δ
‖N‖

p,α
when δ > 0 where Mp = n sup

δ∈∆̃

(
δ+p
δ

)ν

In the homogeneous case, this result is due to G. Iooss and E. Lombardi [IL05][lemma
A.8]. The proof of this proposition is given in appendix A, subsection A.2.

Finally, the convergence of a formal power series is linked with the growth of the norms
of its quasihomogeneous components. More precisely we have :

Proposition 3.7.

(a) For a formal power series f , the following properties are equivalent:

(i) f is uniformly convergent in a neighborhood of the origin,

(ii) There exists M,R > 0 such that for every δ ∈ ∆, |fδ|p,δ ≤
M
Rδ

.

(iii) There exists M,R > 0 such that for every δ ∈ ∆ and r ≥ 0, N1(f̃δr) ≤ M
Rr .

(b) For a formal vector field, V , the following properties are equivalent:

(i) V is uniformly convergent in a neighborhood of the origin,

(ii) There exist M,R > 0 such that for every δ ∈ ∆̃, ‖Vδ‖p,δ ≤
M
Rδ

.

(iii) There exist M,R > 0 such that for every δ ∈ ∆̃ and r ≥ 0, N2,1(Ṽδr) ≤ M
Rr .

In the homogeneous case, this result is due to H. Shapiro [Sha89][lemma 1]. The proof
of this lemma is given in appendix A, subsection A.2.

Lemma 3.8. Let f =
∑
δ∈∆ fδ =

∑
Q∈N fQx

Q be a formal power series. If there exists a
constant C such that, for all δ ∈ ∆, |fδ|p,δ ≤ Cδ(δ!)b, then f is a (p̄b)-Gevrey formal power
series. This means that there exists a positive constant D such that |fQ| ≤ C |Q|(|Q|!)p̄b for
all multiindices Q ∈ Nn.

The proof of this lemma is given in the appendix A.
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4 Normal forms for perturbation of quasihomogeneous vec-
tor fields

4.1 Good perturbations

Let p = (p1, . . . , pn) ∈ (N∗)n be fixed such that the largest common divisor of its components
p1 ∧ · · · ∧ pn is equal to 1. Let n ≥ 2 be an integer. Let S be a quasihomogeneous vector
field of Cn of quasidegree s. We are interested in suitable holomorphic perturbations of S.

Definition 4.1. Let X be a germ of holomorphic vector field at the origin of Cn. We shall
say that X is a good perturbation of S if the Taylor expansion of X −S at the origin is
of quasiorder greater than s.

Example 4.2. Let us consider the germ of vector field at the origin of C2

X = (2y + xpU(x))
∂

∂x
− nxn−1 ∂

∂y

where U(0) = 1. This example were considered by Cerveau and Moussu [MC88]. Let us
define S = 2y ∂

∂x−nx
n−1 ∂

∂y . If n = 2m is even, then it is (1,m)-quasihomogeneous of degree
m − 1. If n = 2m + 1 is odd, then it is (2, n)-quasihomogeneous of degree n − 2. In both
case X is good perturbation of S whenever 2p > n.

4.2 Formal normal form of a good deformation

In this section, we shall define of formal normal form of a good perturbation of a quasiho-
mogeneous vector field S.

Let δ ∈ ∆̃. Let us define the coboundary operator d0 : Hδ → Hs+δ to be the linear
map

d0(U) = [S,U ]

where [., .] denotes de Lie bracket of vector fields.
For any quasidegree α ∈ ∆̃ such that α > s, we consider the selfadjoint operator

�α : Hα → Hα
U 7→ �αU := d0d

∗
0U

where d∗0 denotes the adjoint operator of d0 relatively to the scalar product |.|p,δ (defined
by (2)). Let Sα := spec (�α) be its spectrum. It is included in the nonnegative real axis.

Definition 4.3.

(a) We shall say that a vector field of Hα is resonant (or harmonic) if it belongs to the
kernel Ker �α of �α.

(b) A formal vector field will be said resonant if all of its quasihomogeneous component
are resonant.

(c) A good perturbation X = S+R of S is a normal form relatively to S if R is resonant.

12



Proposition 4.4. Let S be a p-quasihomogeneous vector field of Cn. Let X := S +R be a
good holomorphic perturbation of S in a neighborhood of the origin of Cn (i.e. the order of
R at the origin is greater than s).

Then, X can be formally normalized or equivalently partially normalized at any finite
quasiorder. More precisely we have, the two following equivalent statements:

(a) (Formal normal form) there exists a formal diffeomorphism Φ̂ tangent to the iden-
tity which conjugate X to a formal normal form; that is Φ̂∗X − S is resonant. More-
over, there exists a unique normalizing diffeomorphism Φ = Id + U such that U has a
zero projection on the kernel of d0 = [S, .].

(b) (Partial Normal Form) for every α ∈ ∆̃, there exists a polynomial diffeomorphism
tangent to identity Φ−1

α = Id + Uα where Uα =
∑

0<δ≤α−s
Uδ, with Uδ ∈ Hδ ∩ (Ker d0)⊥

such that

(Φα)∗(X) = S +Nα +R>α, where Nα =
∑

s<δ≤α
Nδ, Nδ ∈ Ker �δ = Ker d∗0|Hδ ,

(7)
and where R>α is of quasiorder > α.

Remark 4.5. Observe that in the expansions of Nα and Uα given in statement (b), Uδ = 0
and Nδ = 0 for δ /∈ ∆̃ since Hδ = {0}.

Proof. Firstly, observe that (a) follows directly from (b). Then, for proving (b), a basic
identification of the quasihomogeneous components for δ ∈ ∆̃ with s < δ ≤ α in (7) with
X = S +R leads to{

Nα + [S,Uα]
}
δ

=
{
R(Id + Uα)−DUα.Nα + S(Id + Uα)− S −DS.Uα

}
δ

(8)

Hence, using proposition 3.4, lemma 3.5 and (18), we get the following hierarchy of coho-
mological equations in Hδ for δ ∈ ∆̃ with s < δ ≤ α:

Nδ + d0(Uδ−s) = Kδ (9)

where Kδ depends only on R, S which are given and on Nβ and Uβ−s for s < β < δ (the
explicit formula of Kδ which is useless here is given in section 6 : see (23)). So the hierarchy
of equations (9) for s < δ ≤ α can be solved by induction starting with the smallest δ ∈ ∆̃
greater than s.

If δ−s 6∈ ∆̃, then Hδ−s = {0}. Hence, d0|Hδ−s ≡ 0 so that Kδ ∈ Ker d∗0|Hδ = Hδ. Hence,

if δ − s /∈ ∆̃, we set Uδ−s := 0 and Nδ := Kδ ∈ Ker d∗0.

If δ − s ∈ ∆̃ (and δ ∈ ∆̃), then let us decompose Hδ along the direct sum

Hδ = Im d0|Hδ−s

⊥⊕
Ker d∗0|Hδ = Im �δ

⊥⊕
Ker �δ

where Im d0|Hδ−s = Im �δ and Ker d∗0|Hδ = Ker �δ. Then, denoting πδ the orthogonal
projection onto (Ker d∗0)⊥ = (Ker �δ)⊥, the cohomological equation (9) is equivalent to

Nδ = (Id− πδ)(Kδ) ∈ Ker d∗0|Hδ , d0(Uδ−s) = πδ(Kδ) ∈ Im d0|Hδ−s . (10)
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Then since d0 induces an isomorphism from Ker (d0|Hδ−s)
⊥ on to Im d0|Hδ−s , there exists a

unique Uδ−s ∈ (Ker (d0|Hδ−s))
⊥ such that d0(Uδ−s) = πδ(Kδ) ∈ Im d0|Hδ−s .

Example 4.6. Let S =
n∑
i=1

λixi
∂
∂xi

be a linear diagonal vector field. It is (1, . . . , 1)-

quasihomogeneous of degree 0. An easy computation shows that (adS)∗ = adS̄ where

S̄ =
n∑
i=1

λ̄ixi
∂
∂xi

. Hence, Ker (adS)∗ = Ker adS̄. Moreover, the spectrum of �δ is the

set {|(Q,λ)− λi|2, Q ∈ Nn, |Q| = δ + 1, 1 ≤ i ≤ n}.

Example 4.7. Let S = y ∂
∂x in C2. It is (1, 1)-quasihomogeneous of degree 0. The adjoint

of the Lie derivative is L∗ = x ∂
∂y ; the adjoint of the Lie bracket with S is

(adS)∗v = −x∂v1

∂y

∂

∂x
+
(
v1 − x

∂v2

∂y

)
∂

∂y
.

Its formal kernel is the C[[x]]-module generated by the radial vector field R = x ∂
∂x +y ∂

∂y and
x ∂
∂y . According to [IL05][p.36], the spectrum of �k−1 is composed of the following numbers1

0, k + 1, (α− 1)(β + 1), α(β + 2), α = 1, . . . , k, α+ β = k.

An easy computation shows that the non-zero eigenvalues of �k−1 are ≥ k − 1.

A similar definition of normal form of perturbation of homogeneous vector fields was
given by G. Belitskii [Bel79, Bel82] using a different scalar product. Another definition of
normal form of perturbation of quasi-homogeneous vector fields was given by Kokubu and
al. [KOW96]. It is a general scheme to provide a unique normal form. This scheme can
be combined with our technics to provide a unique normal form as well.

The perturbation of a nilpotent linear vector field has been treated by R. Cushman and
J.A Sanders [CS86] using sl2-triple representation. Computational aspects with another
definition of normal forms in any dimension was done by L. Stolovitch [Sto92]. Two dimen-
sional aspects were initiated by R. Bogdanov and [Bog79] and F. Takens [Tak74]. Analytic
conjugacy of perturbations of a nilpotent 2-dimensional to such a normal form was obtained
in [SŻ02, Żo l06]

For very particular examples of S in dimension 2, normal forms has been obtained by
V. Basov (see [Bas06] and references therein). When the perturbation of S = y ∂

∂x + x2 ∂
∂y

is tangent to the germ of x2 = y3 at the origin, then a formal normal form of vector fields
tangent to the cusp has been devised by F. Loray [Lor99]. It is described in terms of a
basis of the local algebra of the function x2 − y3. This work has been improved by E. Paul
[Pau04].

4.3 Vector fields with symmetries

In this section, we show how to adapt our normal form scheme in order to study vector
fields that preserve a differential form or vector fields that are reversible. We shall show that
we need to consider restrictions of the cohomological operator d0 to some subspace of the

1in fact, it is the spectrum of d∗0d0 that is computed there.
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space of quasihomogeneous vector fields with range in another subspace of a space of quasi-
homogeneous vector fields. On these subspaces, we shall consider the induced hermitian
product.

• Vector fields leaving a differential form invariant

One may be interested in studying vector fields leaving invariant a polynomial differ-
ential form ω (i.e. the Lie derivative LXω = 0) such as a symplectic or a volume
form, for instance. First of all, we have to check that ω is also p-quasi-homogeneous
(with the same p as for the vector fields). This means that LRpω = dω for some inte-
ger d. For instance, let ω =

∑n
i=1 dxi ∧ dyi be the standard symplectic form of C2n.

Let qi (resp. ri) be the weight of xi (resp. yi). If h0 denotes a p-quasi-homogeneous
polynomial of C2n. In order that the associated Hamiltonian vector field

n∑
i=1

−∂h0

∂yi

∂

∂xi
+
∂h0

∂xi

∂

∂yi

be also p-quasihomogeneous, it is necessary and sufficient that qi + ri = qj + rj , for
all i, j.

In this situation, it is sufficient to work on the space Hδ,ω := {X ∈ Hδ | LX(ω) = 0}
of quasi-homogeneous vector fields preserving the form ω instead of Hδ. Indeed,
the Lie bracket of the two vector fields preserving ω still leaves it invariant since
L[S,Y ](ω) = LSLY (ω) − LY LS(ω) = 0. Moreover, the flow exp(tX) of a vector field
X that preserve ω leaves ω invariant : d exp(tX)∗ω

dt = exp(tX)∗(LXω) = 0. Hence,
we can consider the restriction maps d0 : Hδ,ω → Hδ+s,ω, d∗0 : Hδ+,ω → Hδ,ω and
the box operator � : Hδ,ω → Hδ,ω. The scheme goes as follow : assume that X is
normalized up to order δ − 1 and that LXω = 0. Let us conjugate X by expUδ−s
where LUδ−sω = 0 and Uδ−s is quasi-homogeneous of order δ−s. As above, one has to
solve the cohomological equation of the form Nδ + d0(Uδ−s) = Kδ. Since ω is p-quasi-
homogeneous, it is easy to see that Kδ leaves ω invariant (see [Fra80] for a similar
problem). Hence, we can appply our scheme on the spaces Hδ,ω. As a consequence, if
S and its good perturbation X preserve ω, then there is formal transformation (fixing
ω) into a normal form (an element of Ker d0∗) which leaves invariant ω.

• Reversible vector fields

Let R : Cn → Cn be a linear map such that R2 = Id. A vector field Z is said to
be reversible if it satisfies to Z(Rx) = −RZ(x). Let U be a germ of holomorphic
(or formal) vector field such that R.U(x) = U(Rx) at the origin (a point at which
it vanishes). Then, one can show that the transformation y = x + U(x) conjugate
a reversible vector field to a reversible vector field. As for the case of differential
form, we require a compatibilty condition on R with respect to the weight p. Namely,
we assume that the linear vector field Rx is p-quasihomogeneous of quasidegree 0.
This implies that a formal vector field is reversible if and only if each of its quasiho-
mogeneous component is reversible. Let us consider the space of quasihomogeneous
transformations

Tδ := {U ∈ Hδ | R.U(x) = U(Rx)}
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and the spaces of quasihomogeneous reversible vector fields

Rδ := {U ∈ Hδ | R.U(x) = −U(Rx)}.

If S is reversible, then d0 : Tδ → Rs+δ. In fact, we have

R[S,U ](x) = RDS.U −RDU.S = −DS(Rx)RU −DU(Rx)R.S
= −DS(Rx)U(Rx) +DU(Rx)S(Rx) = −[S,U ](Rx)

Hence, we will consider the operator d∗0 : Rs+δ → Tδ as well as the box operator
� : Tδ → Tδ. The normal form scheme goes as in the general case except that in
equation (9), Nδ + d0(Uδ−s) = Kδ, we have Kδ, Nδ ∈ Rδ and Uδ−s ∈ Tδ−s.

4.4 Spectral properties of �

Lemma 4.8.

(a) Let fλ ∈ Hs+α which belong to the λ-eigenspace of the operator �s+α, λ being a
nonzero eigenvalue of �s+α. Let vλ be such that �s+αvλ = fλ (i.e. fλ = λvλ) and let
us set Uλ := d∗0vλ ∈ Hα. Then, we have

‖Uλ‖p,α =
1√
λ
‖fλ‖p,s+α . (11)

Moreover, if λ and λ′ are two different nonzero eigenvalues of �s+α, then Uλ and Uλ′
are orthogonal.

(b) Let f ∈ Hα+s belongs to Im d0|Hα = Im �α and let U ∈ Hα be such that U ∈
Im d∗0|Hα+s

= (Ker d0|Hα)⊥ and d0(U) = f . Then

‖U‖
p,α
≤ 1

min
λ∈Sα+s\{0}

√
λ
‖f‖

p,α+s

where Sα+s = spec �α+s.

Proof. (a) : In fact, we have

〈Uλ, Uλ〉p,α = 〈d∗0vλ, d∗0vλ〉p,α = 〈d0d
∗
0vλ, vλ〉p,α+s

= 〈fλ, vλ〉p,α+s
=

1
λ
〈fλ, fλ〉p,α+s

since fλ = λvλ. About the second point, we have

〈Uλ, Uλ′〉p,α = 〈d∗0vλ, d∗0vλ′〉p,α = 〈vλ, d0d
∗
0vλ′〉p,α+s

= λ′ 〈vλ, vλ′〉p,α+s
= 0.

(b) : Let f ∈ Hα+s∩ Im d0|Hα and let U ∈ Hα be such that U ∈ Im d∗0|Hα+s
= (Ker d0|Hα)⊥

and d0(U) = f . Then there exits v ∈ (Ker d∗0|Hα+s
)⊥ such that d∗0(v) = U . Hence,

�α+sv = f . Since �α+s is a self adjoint operator, we have the spectral decomposition

Hs+α =
⊕

λ∈Sα+s

Ker (λId−�α+s).
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Moreover, since f ∈ Im d0|Hα = Im �α+s, v ∈ (Ker d∗0|Hα+s
)⊥ and �α+sv = f , we also

have the spectral decompositions

f =
⊕

λ∈Sα+s\{0}
fλ, v =

⊕
λ∈Sα+s\{0}

vλ, �α+svλ = fλ.

Then, using (a) and setting Uλ = d∗0(vλ), we finally obtain

‖U‖2
p,α

=
∑

λ∈Sα+s\{0}
‖Uλ‖2p,α ≤

∑
λ∈Sα+s\{0}

1
λ ‖Uλ‖

2

p,α
≤

 1
min

λ∈Sα+s\{0}

√
λ


2

‖f‖2
p,α+s

.

5 Rigidity of quasihomogenous vector fields

Let I be a quasihomogeneous ideal of On generated by quasihomogeneous polynomials
h1, . . . , hr of p-quasidegree e1, . . . , er respectively. We shall denotes Î = I ⊗ Ôn its formal
completion, that is the ideal in the ring of formal power series Ôn generated by the hi’s.
Let us denote by Mi the operator of multiplication by hi in Ôn (Mi will also denote the
multiplication operator, componentwise, on the space of formal vector field X̂n). Let us
denote by M =M1Xn + · · ·+MrXn (resp M̂ =M1X̂n + · · ·+MrX̂n) the submodule of
germs of holomorphic (resp. formal) vector fields at the origin which components belong to
the ideal generated by the hi’s.
Let δ ∈ ∆̃, let us set Mδ :=M∩Hδ. Let Vδ be the orthogonal complement of Mδ in Hδ
and let πI⊥ be the projection onto Vδ : Hδ = Vδ

⊥⊕
Mδ. We shall denote V̂ :=

⊕
δ∈∆̃

Vδ as

well as
Ŵ :=

{
U ∈ (Ker d0)⊥ | [S,U ] ∈ V̂

}
.

Lemma 5.1. With the notation above, we have Vδ =
r⋂
i=1

Ker M∗i|Hδ+ei where M∗i|Hδ+ei
denotes the adjoint operator of Mi|Hδ : Hδ → Hδ+ei with respect to the family of hermitian
products 〈., .〉

p,.
.

Proof. Let v ∈ Vδ. By definition, we have, for all wi ∈ Hδ−ei , (v,M1wi + · · ·+Mrwr) = 0.
In particular, we may chose wi =M∗i v for all i. We obtain 0 = ‖M∗1v‖2 + · · ·+‖M∗rv‖2.

Let δ ∈ ∆̃ such that δ > s. Let us denote by σδ,\I the set of nonzero eigenvalues of �δ

for which there exists an associated (quasihomogeneous of degree δ) eigenvector which is
orthogonal to Mδ. Let us set

aδ := min
λ∈σδ,\I

√
λ,

as well as

δ∗ :=
min{δ + pi | δ + pi ∈ ∆}

p̄
and δ∗ :=

max{δ + pi | δ + pi ∈ ∆}
p

.
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Let us set

∆̃− := ∆̃ ∩ (∆̃− s), ∆̃+ := ∆̃ ∩ (∆̃ + s), δ0 := max( min
δ∈∆̃−

δ, 1).

The integer δ0 is the smallest positive integer of ∆̃−. Let us define the sequence of positive
real numbers {ηδ}δ∈∆̃−∩N∗∪{0} as follow : η0 = 1 ; for any positive δ ∈ ∆̃− (i.e.δ ≥ δ0),

as+δηδ = max
s≤µ≤s+δ, µ∈∆̃

∗
max

δ1+···+δr+µ=s+δ
µ∗≤r≤µ∗

ηδ1 · · · ηδr . (12)

where if µ = s then the maximum is taken over the r-tuples (δ1, . . . , δr) of nonnegative
integers such that at least, two of the δi’s are positive. Moreover, the maximum is taken
over the indices δi (resp. µ) which belong (∆̃− ∩ N∗) ∪ {0} (resp. ∆̃). It can happen that
δ0 = 1.

Remark 5.2. The sequence ηδ is well defined by induction since the maximum only involves
terms ηd’s with d < δ.

Definition 5.3. The quasihomogeneous vector field S will called diophantine with re-
spect to the ideal I if the formal power series

∑
δ>0, δ∈∆̃

ηδz
δ converges in a neighborhood

of the origin in C; that is to say that there exists c,M > 0 such that ηδ ≤ Mcδ. We shall
say that S is diophantine is it is diophantine with respect to the zero ideal I = {0}.

Example 5.4. Let return to example 4.6 where S is linear and diagonal. It is known
[Sto94][lemma 2.3] that S is diophantine in the above sense if and only if it satisfies Brjuno
condition :

(ω) −
∑
k≥0

ln(ωk+1)
2k

< +∞

where
ωk = inf

{
|(Q,λ)− λi| 6= 0, i = 1, . . . , n, Q ∈ Nn, 2 ≤ |Q| ≤ 2k

}
.

Definition 5.5. Let S be quasihomogeneous and let X be a good holomorphic perturbation
of S at the origin. We shall say that X is formally (holomorphically) conjugate to S
along Î (resp. I) if there exists a formal (resp. germ of holomorphic) diffeomorphism
Φ̂ (resp. Φ) such that Φ̂∗X − S ∈ M̂ (resp. Φ∗X − S ∈ M), i.e. in the new formal
(resp. holomorphic) coordinates, X equals to the sum of S and a formal vector field which
components belong to the ideal Î (resp. I).

Theorem 5.6. Let us assume that the quasihomogeneous vector field S is diophantine with
respect to I. Let X be a good holomorphic perturbation of S at the origin of Cn. We assume
that X is formally conjugated to S along Î (by the mean of a formal diffeomorphism of the
form Id+ U , with U ∈ Ŵ). Then, X is holomorphically conjugate to S along I.

Corollary 5.7. Under the assumptions of the theorem, there exists a good holomorphic
change of coordinates in which the germ at the origin of the zero locus Σ := {x ∈ Cn, h1(x) =
· · · = hr(x) = 0} at 0 is an invariant analytic set for X. Moreover, in these new coordi-
nates, the restriction X to Σ equals to the restriction of S to Σ.
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Theorem 5.8. If the quasihomogeneous vector field S is diophantine and if the holomorphic
good perturbation X is formally conjugate to S, then X is holomorphically conjugate to S.

Proof. We apply theorem 5.6 to the ideal I = {0}. Moreover, we can assume that the
normalizing diffeomorphism reads Φ := I + U with U ∈ (Ker d0)⊥. In fact, if Φ∗X = S
then for any V commuting with S, we have

(expV )∗S = S + [V, S] +
1
2

[V, [V, S]] + · · · = S.

The remaining of the section is devoted to the proof of the theorem 5.6.
First of all, let us write the conjugacy equations between the vector fields X = S + R

and X ′ := Φ̂∗X = S + R′ where the formal diffeomorphism is written as Φ̂−1 = Id +
U where U ∈ V̂ stands for a formal vector field of positive quasiorder. Since, we have
D(Φ̂)(Φ̂−1)X(Φ̂−1) = X ′ we have X(I + U) = D(I + U)X ′. Therefore, we obtain

R′ + [S,U ] = R(Id+ U)−DU.R′ (13)
+S(Id+ U)− S −DS.U.

For any positive integer δ such that s + δ ∈ ∆̃, let us project this equation onto the
orthogonal space Vs+δ toMs+δ in Hs+δ and let us denote πI⊥ this projection. Assume that
Φ̂ conjugates X to S along M̂. This means that R′ belongs to M̂. Therefore, we have

[S,U ] = πI⊥([S,U ]) = πI⊥(R(Id+ U) + S(Id+ U)− S −DS.U). (14)

The first equality is due to the fact that U ∈ Ŵ whereas the second is due to the fact that
DU.R′ ∈ M̂. We recall that Uδ denotes the quasihomogeneous component of (the Taylor
expansion at the origin of) U of quasidegree δ of U . We emphasize that both side of the
equation are reduced to zero if δ 6∈ ∆̃. So, we will consider the case where s+ δ ∈ ∆̃
and δ ∈ ∆̃. We recall that

∆̃− := ∆̃ ∩ (∆̃− s), ∆̃+ := ∆̃ ∩ (∆̃ + s).

By assumption, Uδ has also a zero projection on the kernel of the operator d0. Since we
have

Hδ = Ker d0

⊥⊕
Im d∗0|Hs+δ ,

then we can write Uδ = d∗0vs+δ for some v ∈ Hs+δ. Moreover, we can assume that v has a
zero projection onto Ker d∗0. The latter is nothing but the kernel of � = d0d

∗
0. In fact, if

�vs+δ = 0 then 0 = 〈�v, v〉
p,s+δ

= |d∗0vs+δ|2, the converse being obvious. Let us decompose
vs+δ along the eigenspaces de �s+δ. Let λ be an eigenvalue of �s+δ and let πλ be the
projection on the associated eigenspace. We shall say that λ is quasihomogeneous of
quasidegree s + δ if � has an λ-eigenvector in Hs+δ. We shall denote by πδ+s,\I the
projection onto the subspace of Hs+δ generated by the eigenvectors of �δ+s which are
orthogonal to Ms+δ. Since [S,Uδ] = d0d

∗
0vs+δ, then, we have

πs+δ,\I ◦ πI⊥(d0d
∗
0vs+δ) = πs+δ,\I ◦ πI⊥

 ∑
λ∈σs+δ,\I

λvλ

 =
∑

λ∈σs+δ,\I

λvλ,
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where we have set vλ := πλ(v). We recall that σδ+s,\I denotes the set of nonzero eigenvalues
of �δ+s for which there exists an associated (quasihomogeneous of degree δ+s) eigenvector
orthogonal Mδ+s. We can assume that v0 = 0. Therefore∑

λ∈σs+δ,\I

λvλ = πs+δ,\I ◦ πI⊥(R(Id+ U) + S(Id+ U)− S −DS.U).

Let us set Uλ := d∗0vλ and let us denote by Uδ the sum of the Uλ’s where λ ranges over
σs+δ,\I . According to the first point of lemma 4.8, we have ‖Uλ‖2 = λ‖vλ‖2. According to
the second point,∥∥∥∥∥∥

∑
λ∈σs+δ,\I

λvλ

∥∥∥∥∥∥
2

p,s+δ

=
∑

λ∈σs+δ,\I

λ2 ‖vλ‖2p,s+δ =
∑

λ∈σs+δ,\I

λ ‖Uλ‖2p,δ ≥
(

min
λ∈σs+δ,\I

√
λ

)2

‖Uδ‖2p,δ .

Therefore, we obtain(
min

λ∈σs+δ,\I
|
√
λ|
)
‖Uδ‖p,δ ≤ ‖πs+δ ◦ πI⊥(R(Id+ U) + S(Id+ U)− S −DS.U)‖

p,s+δ
. (15)

Let us estimate the right handside of last inequality. First of all, we have

‖πs+δ ◦ πI⊥(R(Id+ U) + S(Id+ U)− S −DS.U)‖
p,s+δ

≤ ‖{R(Id+ U) + S(Id+ U)− S −DS.U}p,s+δ‖
p,s+δ

.

Then, let us decompose R into quasihomogeneous component R =
∑
µ>s

Rµ. First of

all, for any d ∈ N, every quasihomogeneous polynomial of quasidegree d is either 0 or a
polynomial of degree ≤ d/p and of order ≥ d/p̄. In fact, if d ∈ ∆, then we have d =
α1p1 + · · · + αnpn for some α = (α1, . . . , αn) ∈ Nn. Hence, p̄|α| ≥ d ≥ p|α|. On the other
hand, if µ ∈ ∆, the ith coordinate of the vector field Rµ is quasihomogeneous of quasidegree
µ+ pi. Hence, it is 0 if µ+ pi 6∈ ∆. Otherwise, it’s a polynomial of degree ≤ (µ+ pi)/p and
of order ≥ (µ+ pi)/p̄. Therefore, Rµ can be written as a sum of homogeneous vector fields

Rµ =
∑

µ∗≤r≤µ∗
Rµ,r

where Rµ,r is an homogeneous vector field of degree r (i.e. each component is an homoge-
neous polynomial of degree r or 0). We recall that we have set

µ∗ :=
min{µ+ pi | µ+ pi ∈ ∆}

p̄
and µ∗ :=

max{µ+ pi | µ+ pi ∈ ∆}
p

.

Let R̃µ,r be the associated r-linear map. Therefore, the (s+δ)-quasihomogeneous component
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of R(Id+ U) in its Taylor expansion at 0 is

{R(Id+ U)}s+δ =

∑
µ>s

Rµ(Id+ U)


s+δ

=


∑
µ>s

µ∗∑
r=µ∗

R̃µ,r(Id+ U, . . . , Id+ U︸ ︷︷ ︸
r times

)


s+δ

=
∑
µ>s

µ∗∑
r=µ∗

∑
δ1+···+δr+µ=s+δ

R̃µ,r(Uδ1 , . . . , Uδr)

where the δi’s are nonnegative elements of ∆̃− = ∆̃ ∩ (∆̃− s), µ ∈ ∆̃ is greater than s and
where we have set U0 := Id. Moreover, in the first sum of the last equality, µ is less or
equal than s+ δ.

Moreover, according to proposition 3.6 and proposition 3.7, there exists positive con-
stants M and ρ such that, for all µ > s belonging to ∆̃, for all µ∗ ≤ r ≤ µ∗, we have∥∥∥R̃µ,r(Uδ1 , . . . , Uδr)∥∥∥

p,δ1+···+δr+µ
≤ M

ρr
‖Uδ1‖p,δ1 · · · ‖Uδr‖p,δr .

As a consequence, we obtain the following estimate :

‖{R(Id+ U)}s+δ‖p,s+δ ≤
s+δ∑
µ>s

µ∗∑
r=µ∗

∑
δ1+···+δr+µ=s+δ

M

ρr
‖Uδ1‖p,δ1 · · · ‖Uδr‖p,δr (16)

On the other hand, we have

S(x) =
∑

s∗≤r≤s∗
S̃•,r(x, . . . , x︸ ︷︷ ︸

r times

)

where S̃.,r is a r-linear map. Therefore, we have

DS(x)U =
∑

s∗≤r≤s∗
rS̃•,r(x, . . . , x︸ ︷︷ ︸

r-1 times

, U).

Hence, the s+δ-quasihomogeneous term in the Taylor expansion of S(I+U)−S−DS(x)U
is

{S(I + U)− S −DS(x)U}s+δ =
∑

s∗≤r≤s∗

∑
δ1+···+δr=δ

(δ1,··· ,δr)∈Ωr

S̃•,r(Uδ1 , . . . , Uδr) (17)

where
Ωr =

{
(δ1, . . . , δr) ∈

(
∆̃−

)r
/ at least, two of the index are positive

}
. (18)

Therefore, we obtain the following estimate∥∥∥{S(I + U)− S −DS(x)U}s+δ
∥∥∥
p,s+δ

≤M ′
∑

s∗≤r≤s∗

∑
δ1+···+δr=δ

(δ1,··· ,δr)∈Ωr

‖Uδ1‖p,δ1 · · · ‖Uδr‖p,δr
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where M ′ denote a constant depending only on S.
Let us define the sequence {σδ}δ∈∆̃−∩N∗∪{0} of positive numbers defined by σ0 := ‖Id‖p,0

and if δ ∈ ∆̃− is positive,

σδ :=
s+δ∑
µ>s

µ∗∑
r=µ∗

∑
δ1+···+δr+µ=s+δ

M

ρr
σδ1 · · ·σδr +M ′

∑
s∗≤r≤s∗

∑
δ1+···+δr=δ

(δ1,··· ,δr)∈Ωr

σδ1 · · ·σδr

where, in the first sum, the δi’s are nonnegative elements of ∆̃− and the µ’s are elements
of ∆̃. This sequence is well defined. In fact, since µ > s, then the δi’s are all less than δ in
the sum.

Lemma 5.9. For all nonnegative δ ∈ ∆̃− ∩ N∗ ∪ {0}, we have ‖Uδ‖p,δ ≤ ηδσδ.

Proof. We prove it by induction on nonnegative elements of ∆̃− ∪ {0}. For δ = 0, this is
obviously true since η0 = 1 and σ0 = ‖Id‖p,0. Let us assume that the lemma is true for all
0 ≤ δ′ < δ in ∆̃−. According to estimates (15) and (16), we have(

min
λ∈σs+δ,\I

√
λ

)
‖Uδ‖p,δ ≤

s+δ∑
µ>s

µ∗∑
r=µ∗

∑
δ1+···+δr+µ=s+δ

M

ρr
‖Uδ1‖p,δ1 · · · ‖Uδr‖p,δr

+M ′
∑

s∗≤r≤s∗

∑
δ1+···+δr=δ

(δ1,··· ,δr)∈Ωr

‖Uδ1‖p,δ1 · · · ‖Uδr‖p,δr

≤
s+δ∑
µ>s

µ∗∑
r=µ∗

∑
δ1+···+δr+µ=s+δ

M

ρr
ηδ1σδ1 · · · ηδrσδr

+M ′
∑

s∗≤r≤s∗

∑
δ1+···+δr=δ

(δ1,··· ,δr)∈Ωr

ηδ1σδ1 · · · ηδrσδr

≤

 max
s≤µ≤s+δ, µ∈∆̃

∗
max

δ1+···+δr+µ=s+δ
µ∗≤r≤µ∗

ηδ1 · · · ηδr

σδ.
The second inequality is a consequence of the induction assumption. The last one gives the
desired result.

Lemma 5.10. The formal power series σ(t) :=
∑

i∈∆̃−∪{0},i≥0

σit
i converges in a neighborhood

of the origin of C.

Proof. First of all, we notice that we have

δ+s∑
µ>s

µ∗∑
r=µ∗

∑
δ1+···+δr+µ=s+δ

M

ρr
σδ1 · · ·σδr = M

δ+s∑
µ>s

{(
σ(t)
ρ

)µ∗
+ · · ·+

(
σ(t)
ρ

)µ∗}
δ+s−µ

.

Let us set

Pµ(z) :=
µ∗∑
r=µ∗

(
z

ρ

)r
and F (z, t) = M

∑
µ∈∆̃,µ>s

Pµ(z)tµ−s. (19)
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The power series F defines a germ of holomorphic function at the origin of C2 which satisfies
to F (z, 0) = 0. Then, the coefficient of tδ is the Taylor expansion of F (σ(t), t) at the origin
of C is given by

{F (σ(t), t)}δ = M

∑
µ>s

Pµ(σ(t))tµ−s

δ

= M

∑
µ>s

{Pµ(σ(t))}δ−µ+st
δ−µ+stµ−s


δ

= M
δ+s∑
µ>s

{Pµ(σ(t))}δ−µ+s.

On the other hand, let us set

P (z) :=
s∗∑
r=s∗

(
zr − σr0 − rσr−1

0 (z − σ0)
)
. (20)

We have P (σ0) = 0 and DP (σ0) = 0. Then, we notice that

{P (σ(t))}δ = M
∑

s∗≤r≤s∗

∑
δ1+···+δr=δ

(δ1,··· ,δr)∈Ωr

σδ1 · · ·σδr

where Ωr is given by (18). Let us set G(z, t) := F (z, t) + P (z). Therefore, we have
σδ = {F (σ(t), t) + P (σ(t))}δ.

As a consequence, the power series σ(t) is solution of the problem G(σ(t), t) = (σ(t)−σ0)
together with σ(0) = σ0. Since DzG(σ0, 0) = 0, then, according to the implicit function
theorem, this problem has a unique holomorphic solution satisfying the same initial condi-
tion.

Remark 5.11. The order of F (z, t) at t = 0 is δ0 := max(minδ∈∆̃− δ, 1).

Therefore, according to the diophantiness property of S, there exists M, c > 0 such
that ηδ ≤ Mcδ for all positive δ ∈ ∆̃. Moreover, according to the previous lemma and
to proposition 3.7, there exists M ′, d > 0 such that σδ ≤ M ′dδ for all positive δ ∈ ∆̃−.
Hence, according to lemma 5.9, we have, for all positive δ ∈ ∆̃−, ‖Uδ‖p,δ ≤ Mcδ for some
positive constants M and c. Therefore, according to proposition 3.7, U is holomorphic in a
neighborhood of the origin in Cn. This concludes the proof of the main theorem.

6 Conjugacy to normal forms and approximation up to an
exponentially small remainder

In this section we shall study the conjugacy problem to normal form. We shall show that if
the ”small divisors” are actually big, then there is a convergent normalizing transformation.
On the other hand, we shall show that, if the ”small divisors” are not too small then there
exists a formal normalizing transformation which is not worst than Gevrey. From this, we
will be able to obtain an optimal choice of the quasidegree α of normalization such that
discrepancy between the partial conjugate and the partial normal form of quasidegree α is
exponentially small in some twisted ball.
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6.1 Normalization and cohomological equations

Let S be a p-quasihomogeneous vector field of Cn. Let X := S +R be a good holomorphic
perturbation of S in a neighborhood of the origin of Cn (i.e. the quasiorder of R at the
origin is greater than s). Proposition 4.4 ensures that for every α ∈ ∆̃ with α > s,
there exists a polynomial diffeomorphism tangent to identity Φ−1

α = Id + Uα where Uα =∑
0<δ≤α−s

Uδ, with Uδ ∈ Hδ such that (Φα)∗(X) = S+Nα+R>α, whereNα =
∑

s<δ≤α
Nδ, Nδ ∈

Ker �δ, and whereR>α is of quasiorder > α. We recall that in the expansions of Nα and Uα,
Uδ = 0 andNδ = 0 for δ /∈ ∆̃ sinceHδ = {0}. A basic identification of the quasihomogeneous
components for δ ∈ ∆̃ with s < δ ≤ α leads to{

Nα + [S,Uα]
}
δ

=
{
R(Id + Uα)−DUα.Nα + S(Id + Uα)− S −DS.Uα

}
δ

(21)

Hence, using proposition 3.4, lemma 3.5 and (18), we get the following hierarchy of coho-
mological equations in Hδ for δ ∈ ∆̃ with s < δ ≤ α:

Nδ + d0(Uδ−s) = Kδ (22)

with

Kδ =
∑

µ>s, µ∈∆̃

µ∗∑
r=µ∗

∑
δ1+···+δr+µ=δ

δi≥0

R̃µ,r(Uδ1 , . . . , Uδr)−
∑

δ1+δ2=δ
δ1>0, δ2>s,δ2∈∆̃

DUδ1 .Nδ2

+
s∗∑
r=s∗

∑
δ1+···+δr+s=δ
(δ1,··· ,δr)∈Ωr

S̃•,r(Uδ1 , . . . , Uδr)
(23)

where by convention U0 = Id and where Ωr is given by (18). Moreover, if not specified, the
δi’s belong to ∆̃− = ∆̃ ∩ (∆̃− s) in the previous sums.

Then, observe that (23) ensures that Kδ depends only on R and S which are given and
on Nβ and Uβ−s for s < β < δ. So the hierarchy of equations (22) for s < δ ≤ α can be
solved by induction starting with the smallest δ ∈ ∆̃ greater than s.

Let us denote πδ the orthogonal projection on (Ker �δ)⊥ = (Ker d∗0|Hδ)
⊥ = Im d0|Hδ−s .

Since Nδ ∈ Ker �δ, (22) is equivalent to

Nδ = (Id− πδ)(Kδ), d0(Uδ−s) = πδ(Kδ). (24)

Remark 6.1. Observe that if δ − s /∈ ∆̃, Uδ−s = 0 and Nδ = Kδ since Hδ−s = {0}.

To compute by induction upper bounds of Nδ and Uδ−s, we use the normalized norms

νs = 0, νδ = ‖Nδ‖p,δ for δ ∈ ∆̃, δ > s,

u0 = ‖U0‖p,0 = ‖Id‖
p,0

=
√

1
(p1)! + · · ·+ 1

(pn)! , uδ = ‖Uδ‖p,δ for δ ∈ ∆̃, δ > 0.

We set uδ = 0 if δ + s 6∈ ∆̃ and νs = 0. Then, since πδ is orthogonal and using lemma 4.8,
we deduce from (24) that, for all δ ∈ ∆̃,

νδ = ‖Nδ‖p,δ ≤ ‖Kδ‖p,δ , uδ−s ≤
1

min
λ∈spec �δ\{0}

√
λ
‖Kδ‖p,δ . (25)
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Finally, the submultiplicativity of the norms given by proposition 3.6, we get that there
exist M > 0 such that for every δ ∈ ∆̃ with δ > s,

‖Kδ‖p,δ ≤ kδ (26)

with

kδ = M

( ∑
µ>s, µ∈∆̃

∑
µ∗≤r≤µ∗

δ1+···+δr+µ=δ

uδ1 · · ·uδr
ρr

+
∑

1≤δ1≤δ−s−1
δ1∈∆̃−, δ−δ1∈∆̃

δ
max(1, p

2
)

1 uδ1νδ−δ1 +
∑

s∗≤r≤s∗
δ1+···+δr+s=δ
(δ1,··· ,δr)∈Ωr

uδ1 . . . uδr

)
(27)

where in the first and the last sums, the δi’s belong to ∆̃− and where Ωr is defined by (18).

6.2 Convergent conjugacy to a normal form

Let us set
ν := max

(
1, p̄2

)
.

Theorem 6.2. Assume that there exists constant c > 0 such that for all δ ∈ ∆̃+,

min
λ∈spec �δ\{0}

√
λ > c−1(δ − s)ν .

Then, any good holomorphic perturbation X of S is holomorphically conjugate to a normal
form.

Proof. Let us set γ0 = 1 and if δ ∈ ∆̃+ with δ > s

γδ−s := M̃

( ∑
µ>s, µ∈∆̃

∑
µ∗≤r≤µ∗

δ1+···+δr+µ=δ

(
u0

ρ

)r
γδ1 · · · γδr+

∑
1≤δ1≤δ−s−1

δ1∈∆̃−, δ−δ1∈∆̃

γδ1γδ−δ1−s+
∑

s∗≤r≤s∗
δ1+···+δr+s=δ
(δ1,··· ,δr)∈Ωr

γδ1 . . . γδr

)
.

Here, we have set M̃ := max
(
Mcu0,

Mc
u0
,Mcus

∗−1
0 ,Mcus∗−1

0

)
. We claim that

νδ ≤ u0 γδ−s, (δ − s)νuδ−s ≤ u0 γδ−s. (28)

Let us prove these inequalities by induction on δ ≥ s. This is obviously true for δ = s.
According to equations (27) and (26), we have for δ > s

(δ−s)νuδ−s ≤M
( ∑
µ>s, µ∈∆̃

∑
µ∗≤r≤µ∗

δ1+···+δr+µ=δ

(
u0

ρ

)r
γδ1 · · · γδr+

∑
1≤δ1≤δ−s−1

δ1∈∆̃−, δ−δ1∈∆̃

γδ1γδ−δ1−s+
∑

s∗≤r≤s∗
δ1+···+δr+s=δ
(δ1,··· ,δr)∈Ωr

γδ1 . . . γδr

)
,

where, in the first and the last sum, we have used the fact that, if δi > s, uδi−s ≤ (δi −
s)νuδi−s ≤ u0 γδi−s as well as u0 ≤ u0γ0. Therefore, we obtain (δ − s)νuδ−s ≤ γδ−s. In the
same way, we have νδ ≤ γδ−s. Let us define the formal power series

γ(t) :=
∑

i∈∆̃∩(∆̃−s),i≥0

γit
i,
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Let G(z, t) := F (z, t) + P (z) be the function defined by equation (19) and (20) where, in
these formulas, ρ is replaced by ρ/u0, M by M ′ and σ0 by 1.

Let δ ∈ ∆̃ such that δ > s. As we have seen above, we have

δ∑
µ>s

µ∗∑
r=µ∗

∑
δ1+···+δr+µ=δ

M ′
(
u0

ρ

)r
γδ1 · · · γδr +M ′

∑
s∗≤r≤s∗

δ1+···+δr+s=δ
(δ1,··· ,δr)∈Ωr

γδ1 · · · γδr = {G(γ(t), t)}δ−s

where, in the first sum, the δi’s are nonnegative elements of ∆̃− and the µ’s are elements
of ∆̃. We recall that {G(γ(t), t)}δ−s denotes the coefficient of tδ−s in the Taylor expansion
at the origin of the formal power series G(γ(t), t). Furthermore, we have,∑

1≤δ1≤δ−s−1
δ1∈∆̃−, δ−δ1∈∆̃

γδ1γδ−δ1−s = {(γ(t)− 1)2}δ−s

Hence, γ(t) is solution of the holomorphic implicit function problem:

G(γ(t), t) + (γ(t)− 1)2 = γ(t)− 1

with initial condition γ(0) = 1. Since G(1, 0) = 0 and DzG(1, 0) = 0, γ is the unique
holomorphic solution of this problem. Therefore, for all positive δ ∈ ∆̃+, we have uδ ≤ γδ ≤
Cδ. Hence, the formal power series

∑
Uδ converges in a neighborhood of the origin, that is

to say the normalizing transformation Φ−1 is holomorphic in an neighborhood of the origin
of Cn.

Remark 6.3. If S is a diagonal linear vector field, then the situation described by the
previous theorem corresponds to the Poincaré domain [Arn80]. In fact, by definition, the
closed convex hull of the eigenvalues λi in the complex plane does not contain the origin.
Hence, if Q ∈ Nn is such that |Q| = q1+· · ·+qn is large enough, then |q1λ1+· · ·+qnλn−λi| ≥
m|Q|.

6.3 Formal Gevrey conjugacy to a normal form

Assume that S satisfies the following Siegel type condition : there exists c ≥ 1 and τ ≥ 0
such that for every δ ∈ ∆̃ with δ ≥ s, we have

1
(δ − s)τ

≤ c min
λ∈spec �δ\{0}

√
λ. (29)

Our aim is to is to show that both νδ and uδ−s admit Gevrey estimates. Namely we prove
in this section the following result :

Theorem 6.4. Assume that S satisfies (29). Any good holomorphic perturbation of S
admits a formal transformation to a formal normal form both of which are p̄( aδ0 +τ)-Gevrey

power series where δ0 := max(minδ∈∆̃− δ, 1) and a := max
(
1,
[

(p̄+1)
2

])
.
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The following lemma gives such an estimate using a common majorizing power series.

Lemma 6.5. Let {βδ−s}δ∈∆̃∩(∆̃+s), δ≥s be the sequence defined by induction with β0 = 1

and for δ ∈ ∆̃+, δ > s,

βδ−s = M ′
( ∑

µ>s, µ∈∆̃

∑
µ∗≤r≤µ∗

δ1+···+δr+µ=δ

(
u0
ρ

)r
βδ1 · · ·βδr

+
∑

1≤δ1≤δ−s−1
δ1∈∆̃∩(∆̃−s), δ−δ1∈∆̃

δ1(δ1 − 1) · · · (δ1 − a+ 1)βδ1βδ−s−δ1 +
∑

s∗≤r≤s∗
δ1+···+δr+s=δ
(δ1,··· ,δr)∈Ωr

βδ1 . . . βδr

)

where a is the smallest integer larger or equal to ν = max(1, p2) and where in the first and
last sums the δi’s belong to ∆̃−, Ωr is given by (18) and s∗ is defined by (1). Here, we
have set M ′ := max

(
Mcu0m,

Mc
u0
,Mcus

∗−1
0 ,Mcus∗−1

0

)
with m = sup

δ∈∆̃

δa

(δ−1)···(δ−a+1) . Then

for every δ ∈ ∆̃+ with δ ≥ s,

νδ ≤ u0 ((δ − s)!)τβδ−s, uδ−s ≤ u0 ((δ − s)!)τβδ−s. (30)

Remark 6.6. δ ∈ ∆̃+ if and only if δ − s ∈ ∆̃−.

Proof. The proof is made by induction. We first observe that (30) holds for δ = s since
β0 = 1 and νs = 0.

Then, let δ > s and assume that (30) holds for every α ∈ ∆̃+ satisfying s ≤ α < δ. Our
aim is now to prove that (30) holds for δ. We proceed in several steps.

Step 1. We start with uδ−s. Using (26) and (27), we get

uδ−s
u0((δ − s)!)τ ≤

Mc(δ−s)τ
u0((δ−s)!)τ

∑
1≤δ1≤δ−s−1

u2
0 δ

a
1βδ1βδ−s−δ1

(
(δ1)! (δ − δ1 − s)!

)τ
+ Mc(δ−s)τ
u0((δ−s)!)τ

∑
µ>s, µ∈∆̃

∑
µ∗≤r≤µ∗

δ1+···+δr+µ=δ

(
u0
ρ

)r
βδ1 · · ·βδr (δ1!)τ · · · (δr!)τ

+ Mc(δ−s)τ
u0((δ−s)!)τ

∑
s∗≤r≤s∗

δ1+···+δr+s=δ
(δ1,··· ,δr)∈Ωr

(u0)r βδ1 . . . βδr (δ1!)τ · · · (δr!)τ

≤ Mcu0 m
∑

1≤δ1≤δ−s−1
δ1(δ1 − 1) · · · (δ − a+ 1)βδ1βδ−s−δ1(Dδ−s,δ1,δ−s−δ1)τ

+Mc
u0

∑
µ>s, µ∈∆̃

∑
µ∗≤r≤µ∗

δ1+···+δr+µ=δ

(
u0
ρ

)r
βδ1 · · ·βδr (Dδ−s,δ1,··· ,δr)

τ

+Mcmax((u0)s
∗−1, us∗−1

0 )
∑

s∗≤r≤s∗
δ1+···+δr+s=δ
(δ1,··· ,δr)∈Ωr

βδ1 . . . βδr (Dδ−s,δ1,··· ,δr)
τ

(31)
where Dδ−s,δ1,··· ,δr = δ1!···δr!

(δ−s−1)! .
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Step 1.1 Observe that if we set M ′ = max
(
Mcu0m,

Mc
u0
,Mcus

∗−1
0 ,Mcus∗−1

0

)
then Mcu0m ≤

M ′, Mc
u0
≤M ′, Mcmax((u0)s

∗−1, us∗−1
0 ) ≤M ′.

Step 1.2 Then, in the first sum of (31), Dδ−s,δ1,δ−s−δ1 = δ1!(δ−s−δ1)!
(δ−s−1)! = δ−s

C
δ1
δ−s
≤ 1 holds since

1 ≤ δ1 ≤ δ − s− 1.
Step 1.3 Our aim is now to prove that for every index in the second sum of (31), Dδ−s,δ1,··· ,δr ≤
1. For that purpose when need to distinguish three cases.

case 1: r ≥ 2 and δj ≥ 1, 1 ≤ j ≤ r. It is proved in [IL05], p.20, that for r ≥ 2, δj ≥ 1,
and δ1 + · · ·+ δr = d Dd,δ1,··· ,δr ≤ 1. So, in the second sum of (31) for r ≥ 2 and δj ≥ 1, we
have

Dδ−s,δ1,··· ,δr = Dδ−µ,δ1,··· ,δr
(δ − µ− 1)!
(δ − s− 1)!

≤ 1

since δ1 + · · ·+ δr = δ − µ and s < µ ≤ δ.
case 2. In the second sum of (31), if r = 1 (which implies δ1 = δ−µ) or if all the indexes

vanishes except one, then

Dδ−s,δ1,··· ,δr =
(δ − µ)!

(δ − s− 1)!
≤ 1

since µ > s.
case 3. Finally, if some indexes δj vanish in the second sum of (31), then the computation

of the corresponding Dδ−s,δ1,··· ,δr can be made by removing these indexes, i.e. by decreasing
r.

So, for every index in the second sum of (31), Dδ−s,δ1,··· ,δr ≤ 1.

Step 1.4 Finally, in the third sum of (31), Dδ−s,δ1,··· ,δr ≤ 1 still holds for the same reasons
as above, observing that in this case there are at least two positive indexes δj , i.e case 2 is
not possible in the third sum..

Gathering the results of substeps 1.1,· · · ,1.4, we can conclude that

uδ−s

u0((δ − s)!)τ
≤M ′βδ−s

where M ′ = max
(
Mcu0,

Mc
u0
,Mcus

∗−1
0 ,Mcus∗−1

0

)
does not depend on δ.

Step 2 The the computation of the upper bound for νδ is performed exactly in the same
way.

Remark 6.7. If the good perturbation is a formal α-Gevrey power series, then the estimate
1
ρr of |R̃µ,r| has to be changed to 1

ρr (r!)α. Then, inequality (26) is changed to ‖Kδ‖p,δ ≤

(δ∗!)αkδ. Since δ∗ ≤ δ+p̄
p , then according to proof in section A.4, we have (δ∗!)α ≤ (δ+ p̄)!

α
p .

Hence, using lemma 6.8, we obtain estimates of the form

νδ, uδ−s ≤MCδ((δ − s)!)
α
p

+τ+ a
δ0
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for some positive constants M,C. According to lemme 3.8, the formal normalizing trans-
formation and the normal form are both p̄(αp + τ + a

δ0
)-Gevrey.

In the homogeneous case, p = (1, . . . , 1), the formal normalizing transformation and the
normal form are both (α+ τ + 1)-Gevrey.

6.3.1 Gevrey estimates for the βi’s

Let us define the formal power series

β(t) :=
∑

i∈∆̃∩(∆̃−s),i≥0

βit
i,

We recall that β0 = 1. Let δ0 be the order of β − β0 at the origin. We recall that
δ0 := max(minδ∈∆̃− δ, 1) from remark 5.11 and a := max

(
1,
[

(p̄+1)
2

])
.

Lemma 6.8. The formal power series β is a
(
a
δ0

)
-Gevrey power series. More precisely,

there exists positive constants Mβ and C such that βi ≤MβC
i[(i− δ0)!]a/δ0, for all integers

i ≥ δ0 that belong to ∆̃−.

Remark 6.9. With no loss of generality we can assume that Mβ is large enough so that
Mβ ≥ 1 and 2Mβu0

ρ ≥ 1 hold.

Let G(z, t) := F (z, t) + P (z) as defined by equation (19) and (20) where, in these
formulas, ρ is replaced by ρ/u0, M by M ′ and σ0 by 1.

Let δ ∈ ∆̃ such that δ > s. As we have seen above, we can write

δ∑
µ>s

µ∗∑
r=µ∗

∑
δ1+···+δr+µ=δ

M ′
(
u0

ρ

)r
βδ1 · · ·βδr +M ′

∑
s∗≤r≤s∗

δ1+···+δr+s=δ
(δ1,··· ,δr)∈Ωr

βδ1 · · ·βδr = {G(β(t), t)}δ−s

where, in the first sum, the δi’s (resp. µ) are nonnegative elements of ∆̃− (resp. ∆̃). We
recall that {G(β(t), t)}δ−s denotes the coefficient of tδ−s in the Taylor expansion at the
origin of the formal power series G(β(t), t). On the other hand, we have

∑
1≤δ1≤δ−s

δ1∈∆̃∩(∆̃−s), δ−δ1∈∆̃

δ1(δ1 − 1) · · · (δ1 − a+ 1)βδ1βδ−s−δ1 =
{
βta

daβ

dta

}
δ−s

.

Hence, according to the definition of the sequence {βδ−s}δ∈∆̃+,δ≥s in lemma 6.5, the formal
power series β(t) satisfies to the following differential equation

β(t)− β0 = M(β(t)− β0)ta
daβ

dta
+G(β(t), t) (32)

Let us set
β(t) = β0 + tδ0B(t).
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We have B(0) = βδ0 6= 0 and β0 = 1. We have

da(tδ0B(t))
dta

=
min(a,δ0)∑
l=0

C laδ0(δ0 − 1) · · · (δ0 − l + 1)tδ0−l
da−l(B(t))
dta−l

Then, B satisfies the following differential equation

tδ0B = MBtδ0+a

min(a,δ0)∑
l=0

C laδ0(δ0 − 1) · · · (δ0 − l + 1)tδ0−l
da−l(B(t))
dta−l

+G(β(t), t).

Dividing by MB leads to the the equation

tδ0+a

min(a,δ0)∑
l=0

C laδ0(δ0 − 1) · · · (δ0 − l + 1)tδ0−l
da−l(B(t))
dta−l

 = G̃(B(t), t) :=
tδ0B −G(1 + tδ0B(t), t)

MB

and G̃(z, t) is holomorphic in a neighborhood of (βδ0 , 0). We have

G(1 + tδ0B(t), t) = F (1, t) + tδ0BDzF (1, t) +O(t2δ0)

since G(z, t) = F (z, t) + P (z) and DzP (1) = 0. We recall that the order of F (1, t) at t = 0
is δ0 according to remark 5.11. Let us set

G̃′(z, t) :=
tδ0z −G(1 + tδ0z, t)

tδ0Mz
.

This function is holomorphic in a neighborhood of (βδ0 , 0). Moreover, by construction, we
have limt→0

F (1,t)

tδ0
= βδδ0 . Hence, we have G̃′(βδ0 , 0) = 0. Furthermore, we have

−tδ0M∂G̃′

∂z
(z, t) =

1
z2

(
tδ0
∂G

∂z
(1 + tδ0z, t)z −G(1 + tδ0z, t)

)
=

1
z2

(
tδ0z(DzF (1 + tδ0z, t) +DzP (1 + tδ0z))−G(1 + tδ0z, t)

)
∂G̃′

∂z
(βδ0 , 0) = (Mβ2

δ0)−1. lim
t→0

F (1, t)
tδ0

= (Mβδ0)−1 6= 0.

Hence, B(t) is solution of the following differential equation

ta

min(a,δ0)∑
l=0

C laδ0(δ0 − 1) · · · (δ0 − l + 1)tδ0−l
da−l(B(t))
dta−l

 = G̃′(B(t), t). (33)

Let us consider the Newton polygon of the linearized of the differential operator (33) at B:

Lψ := ta

min(a,δ0)∑
l=0

C laδ0(δ0 − 1) · · · (δ0 − l + 1)tδ0−l
da−l(ψ)
dta−l

− ∂G̃′

∂z
(B(t), t)ψ.

It is the convex hull of {0} ∪ {(u, v) ∈ R2|u ≤ a, v = a+ δ0 − l − (a− l) = δ0}. It contains
only one positive (not infinite) slope : δ0

a .
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According to the main theorem of [Mal89] (or theorem A.2.4.2 of [Sib90][p.209], which
are both nonlinear versions of theorem 1.5.17 of [Ram84]), then either B is holomorphic in a
neighborhood of the origin or B is a

(
a
δ0

)
-Gevrey power series. Therefore, Bk ≤Mck(k!)a/δ0

for some constants. The shift in the factorial in the bound of β is only due to the formula
β(t) = 1 + tδ0B(t).

Therefore, we obtain an estimate of the form ‖Uδ‖p,δ ≤ Cδ(δ!)τ+ a
δ0 and ‖Nδ‖p,δ ≤

Cδ(δ!)τ+ a
δ0 for some constant C > 0. We just conclude using lemma 3.8.

6.4 Optimal partial normal form with exponentially small remainder

This section is devoted to the proof of theorem 6.11 below which ensures that an optimal
choice of the quasiorder α of the partial normal form given by proposition 4.4 enables to
obtain an exponentially small remainder.

To state a precise theorem, we need to introduce the following ”quasi norms”: for x ∈ Cn,
let us define

dp(x) :=

(
n∑
i=1

pi|xi|2/pi
)1/2

.

Then, for f a complex-valued function defined in a neighborhood of the twisted ball dp(x) <
ε we shall set

|f |qh,ε := sup
dp(x)<ε

|f(x)|.

If X is a vector field defined in a neighborhood of the “twisted ball” dp(x) < ε, we shall set

‖X‖2qh,ε :=
n∑
i=1

1
ε2pi
|Xi|2qh,ε

The subscript qh stands for quasihomogeneous as these norms are adapted to quasiho-
mogeneous objects.

Remark 6.10. Before stating the theorem, we recall that lemma 3.3-(a),(b) ensures that
∆̃ contains all the sufficiently large integers. In other words, there exists δ∗ such that for
every α ∈ N, if α ≥ δ∗ then α belongs to ∆̃.

Theorem 6.11. Let S be a p-quasihomogeneous vector field of Cn. Let X := S + R
be a good holomorphic perturbation of S in a neighborhood of the origin of Cn (i.e. the
quasiorder of R at the origin is greater than s). Proposition 4.4 ensures that for every
α ∈ ∆̃, there exists a polynomial diffeomorphism tangent to identity Φ−1

α = Id + Uα where
Uα =

∑
0<δ≤α−s

Uδ, with Uδ ∈ Hδ such that

(Φα)∗(X) = S +Nα +R>α,

where Nα =
∑

s<δ≤α
Nδ, Nδ ∈ Ker �δ, and where R>α is of quasiorder > α.

Assume that there exist c ≥ 1 and τ ≥ 0 such that for every δ ∈ ∆̃ with δ ≥ s, we have

1
min

λ∈spec �δ\{0}

√
λ
≤ c(δ − s)τ . (34)
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Then, there exists θ ≥ 4, Mopt > 0, wopt > 0 and ε0 > 0 such that for every ε ∈]0, ε0[,
αopt =

[
1

(θCε)b

]
+ s− 2 satisfies

αopt > s and αopt ≥ δ∗, (35)

and
‖R>αopt‖qh,ε ≤Mopte

−
wopt

εb (36)

where 1
b = τ + a

δ0
and δ∗ is defined in remark 6.10.

Proof. The proof of this theorem is based on the following proposition which is proved in
appendix B .

Proposition 6.12. Let K ≥ 2 and γ ≥ 2 be fixed such that

ρ1(K) < 1 with ρ1(K) =
u0MβMp

Kδ0

+∞∑
k=0

(k + δ0)a
(

1
2

)k
and

χ

γC
< 1 with χ =

(
2Mβu0

ρ

) 1
p

where a, δ0, C and Mβ are defined in lemma 6.8.
Then there exist MR > 0, such that for every ε ∈]0, 1[ and every α ∈ ∆̃ with α > s

satisfying

Cε ≤ 1

γK(α− s)
1
b

, (37)

we have
‖R>α‖qh,ε ≤MR

(
(Cε)α+1((α− s+ 2)!)

1
b ∆α +

(
1
K

)α+1
)

(38)

where ∆α = 1 if 1
b ≥ a and ∆α = (α− s)1−a− 2

b otherwise.

We now prove theorem 6.11 in the case 1
b ≥ a. The other case can be deduced from

this one by an appropriate change of the value of MR and C. The key idea is to choose an
appropriate value αopt for α in (38) and to show using Stirling formula that for this value
of α the upper bound is exponentially small.

So, we choose αopt such that

αopt − s+ 2 =
[

1
(γKCε)b

]
(39)

which ensures that αopt − s ≤ 1
(γKCε)b

and so that (37) is satisfied. Moreover, observe that
for ε sufficiently small, (35) is satisfied. Then we compute the upper bound given by the
right hand side of (38) with this choice of α. For that purpose let us denote

D1 := (Cε)αopt+1((αopt − s+ 2)!)
1
b , D2 :=

(
1
K

)αopt+1
.
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Let us denote x = (Cε)b, MS = sup
k∈N

ek!

kk+
1
2 e−k

and observe that Stirling formula ensures that

MS <∞ holds. Then, using (39) we check

(D1)b

MS
≤ e−1x

[
1

x(γK)b

]
+s−1

exp
({[

1
x(γK)b

]
+ 1

2

}
ln
[

1
x(γK)b

]
−
[

1
x(γK)b

])
=
xs−1

e
exp

({[
1

x(γK)b

]
+ 1

2

}
ln
[

1
x(γK)b

]
+
[

1
x(γK)b

]
ln x

e

)
≤ xs−1

e
exp

({[
1

x(γK)b

]
+ 1

2

}
ln
(

1
x(γK)b

)
+
[

1
x(γK)b

]
ln x

e

)
=
xs−1

e
exp

(
−
[

1
x(γK)b

] (
1 + ln(γK)b

))
exp

(
1
2 ln

(
1

x(γK)b

))
=

xs−
3
2

e(γK)
b
2

exp
(
−
[

1
x(γK)b

] (
1 + ln(γK)b

))
= xs−

3
2 (γK)

b
2 exp

(
−
([

1
x(γK)b

]
+ 1

) (
1 + ln(γK)b

))
≤ xs−

3
2 (γK)

b
2 exp

(
−1+ln(γK)b

x(γK)b

)
.

Hence

D1 ≤M1/b
S (Cε)s−

3
2

√
γK e

−w1
εb with w1 =

1 + ln(γK)b

b(γKC)b
. (40)

On the other hand we check

∆2 =
(

1
K

)[ 1

(γKCε)b

]
+s−1

≤ 1
Ks−2

exp
(
− lnK

(γKCε)b

)
.

Hence,

D2 ≤
1

Ks−2
e
−w2
εb with w2 =

lnK
(γKC)b

. (41)

Observing that w1 > w2, we can conclude that (36) holds with wopt = w2 and

Mopt = MR max

(
1

Ks−2
,M

1/b
S

√
γK sup

ε∈]0,1]

{
(Cε)s−

3
2 e

w2−w1
εb

})
.

It might be useful to consider in some problems, parameters as variables to which one
prescribe a weight. This has been done implicitly in [IL04] for instance.

7 Computations and example

Let p = (p1, . . . , pn) ∈ (N∗)n. Let S be a quasihomogeneous vector field of quasidegree s and
let Hδ be the space of quasihomogeneous vector fields of quasidegree δ > s. We recall that
for each positive quasidegree k, the map d0 : Hδ → Hδ+s is defined to be d0(U) = [S,U ]
where [., .] denotes the Lie bracket of vector fields.
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7.1 Computation of d∗0 and �

Let U ∈ Hδ and V ∈ Hδ+s. We write U =
∑n
i=1 Ui

∂
∂xi

. We have

d0(U) =
n∑
i=1

(S(Ui)− U(Si))
∂

∂xi
(42)

where S(Ui) :=
∑n
j=1 Sj

∂Ui
∂xj

denotes the Lie derivative of Ui along S. We have

〈d0(U), V 〉
p,δ+s

=
n∑
i=1

〈S(Ui)− U(Si), Vi〉p,δ+s+pi

=
n∑
i=1

〈Ui, S∗(Vi)〉p,δ+pi − 〈U(Si), Vi〉p,δ+s+pi

=
n∑
i=1

〈Ui, S∗(Vi)〉p,δ+pi −
n∑
j=1

〈
Uj ,

(
∂Si
∂xj

)∗
Vi

〉
p,δ+pj

=
n∑
i=1

〈
Ui, S

∗(Vi)−
n∑
j=1

(
∂Sj
∂xi

)∗
Vj

〉
p,δ+pi

.

Hence, we can write d∗0 in a matrix form as

d∗0(V ) =


S∗ −

(
∂S1
∂x1

)∗
−
(
∂S2
∂x1

)∗
· · · −

(
∂Sn
∂x1

)∗
−
(
∂S1
∂x2

)∗
S∗ −

(
∂S2
∂x2

)∗
· · · −

(
∂Sn
∂x2

)∗
...

. . .
...

−
(
∂S1
∂xn

)∗
· · · −

(
∂Sn−1

∂xn

)∗
S∗ −

(
∂Sn
∂xn

)∗




V1
...
...
Vn


Let us set Ai := S − ∂Si

∂xi
. The operator d0d

∗
0 can be viewed as a matrix (Pi,j)1≤i,j≤n of

differential operators defined as follow :

Pi,j = δi,jSS
∗ − S

(
∂Sj
∂xi

)∗
− ∂Si
∂xj

S∗ +
n∑
k=1

∂Si
∂xk

(
∂Sj
∂xk

)∗
where δi,j = 1 if i = j and 0 otherwise.

In the homogeneous case, that is p = (1, . . . , 1), the adjoint operator, with respect the
the hermitian product 〈., .〉

H
(see section A.2), of the multiplication by xi is ∂

∂xi
. Hence,

the adjoint operator with respect to 〈., .〉
p,δ

is equal to x∗i|Hδ = 1
δ
∂
∂xi

. Hence, the adjoint
operator S∗ of the Lie derivative along S is defined S∗ : Pk+s → Pk with

S∗(f) :=
k!

(k + s)!

n∑
i=1

xiS̄i(
∂

∂x
)(f).

Here, if Si(x) =
∑
|Q|=s+1 si,Qx

Q then S̄i( ∂
∂x) :=

∑
|Q|=s+1 s̄i,Q

∂|Q|

∂xQ
.
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7.2 Example

In this section we shall completely treat the case where S = x2 ∂
∂x + xy ∂

∂y , p = (1, 1) and

s = 1. We have S∗|Hn = 1
n

(
x ∂2

∂x2 + y ∂2

∂x∂y

)
=: 1

nA. If v ∈ Hn−1 then,

nd∗0(v1
∂
∂x + v2

∂
∂y ) =

(
A− 2 ∂

∂x − ∂
∂y

0 A− ∂
∂x

)(
v1

v2

)
.

(a) The resonances

Let us compute the kernel of d∗0. Let (v1, v2) be a couple of formal power series of
order ≥ 3 such that d∗0(v1, v2) = 0. Then,{

(A− ∂
∂x)v2 = 0

(A− 2 ∂
∂x)v1 = ∂v2

∂y .

First of all, for any (p, q) ∈ N2 with p+ q ≥ 3, we have A(xpyq) = p(p+ q− 1)xp−1yq.
Hence, a formal power series f of order ≥ 3 such that A(f) = 0 is of the form f(y).
Since (A − ∂

∂x)(xpyq) = p(p + q − 2)xp−1yq, any formal power series f of order ≥ 3
such that (A− ∂

∂x)(f) = 0 is the form f(y).

As a consequence, we have v2 = f(y) for some power series f =
∑
k≥3 fky

k and
(A− 2 ∂

∂x)v1 = ∂f
∂y . Let us write v1 =

∑
p+q≥3 v1,p,qx

pyq. Then, we have∑
p+q≥3

v1,p,qp(p+ q − 3)xp−1yq =
∑
q≥2

fq+1(q + 1)yq.

This means that v1,1,q = q+1
q−2fq+1 if q > 2, v1,p,q with p+ q = 3 or p = 0 is unspecified

and f3 = 0.

Finally, any holomorphic perturbation X = S + R of S of quasiorder > 1 (i.e the
components of R are of order > 2) admits a formal normal form of the type :

dx

dt
= x2 + P3(x, y) + x

∑
k≥3

k+1
k−2fk+1y

k + ĥ4(y) (43)

dy

dt
= xy +

∑
k≥3

fk+1y
k+1

for some power series ĥ4 of order ≥ 4, some numbers fk and some homogeneous
polynomial P3 of degree 3.

(b) ”The small divisors”
Let us consider the differential operators A1(f) := S(f)−2xf and A2(f) := S(f)−xf .
We have, if fn ∈ Hn, nA∗1(fn) := A(fn)− 2∂fn∂x and nA∗2(fn) := A(fn)− ∂fn

∂x . Then, if
V ∈ Hn−1 then

nd0d
∗
0(V ) =

(
A1A

∗
1 −A1 ◦ ∂

∂y

−yA∗1 A2A
∗
2 + y ∂

∂y

)(
V1

V2

)
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For each n ≥ 3, the 1-dimensional vector space generated by xn ∂
∂y is left invariant by

d0d
∗
0 and we have

nd0d
∗
0(xn ∂

∂y ) = n(n− 2)(n− 3)xn ∂
∂y .

For each Q = (p, q) ∈ N2 with p ≥ 1, the vector subspace EQ generated by e1,Q =
xpyq ∂∂x and e2,Q = xp−1yq+1 ∂

∂y is invariant by d0d
∗
0. Its restriction to it given in the

basis {e1,Q, e2,Q} by

nd0d
∗
0|EQ(v, w) =

(
p(p− 3 + q)2 −(q + 1)(p− 3 + q)
−p(p− 3 + q) (p− 1)(p+ q − 2)2 + (q + 1)

)(
v
w

)
.

Its smallest eigenvalue for Q = (p, n− p) is

nλ−(n, p) := (p− 1
2)n2 + 5

2n(1− 2p) + (6p− 3
2)

−(1/2)
√

9 + 72p+ (31 + 12p)n2 − 30n(1− 2p)− 10n3 + n4

Since 1 ≤ p ≤ n, then for large enough n, we have

9 + 72p+ (31 + 12p)n2 − 30n(1− 2p)− 10n3 + n4 ≤ 9 + 72n+ (31 + 12n)n2

−30n+ 60n2 − 10n3 + n4

≤ 9
4n

4.

Hence, we have

nλ−(n, p) ≥ n2
(
p− 1

2

(
1 + 3

2

))
+5

2n(1− 2p) + (6p− 3
2) =: g(p)

Let us find the smallest value of this lower bound g(p) when p ranges from to 2 to n,
n being a large enough fixed integer. We have g′(p) = n2 − 5n + 6 = (n − 2)(n − 3)
which is positive if n > 3. Hence, g is an increasing function of p. Finally, we have
for n large enough and n ≥ p ≥ 2,

nλ−(n, p) ≥ n2
(
2− 5

4

)
− 15

2 n+ (12− 3
2) (44)

and
nλ−(n, 1) = −5n+ 9 + n2. (45)

Moreover, we have Hn = ⊕np=1Ep,n−p ⊕ Cxn ∂
∂y ⊕ Cyn ∂

∂x and d0d
∗
0(yn ∂

∂x) = 0. As
consequence, there exists a positive constant M such that, if n is large enough, then
minλ∈Spec(�n)\{0}

√
λ ≥M

√
n.
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A Inner products and analyticity

A.1 Decomposition as sum of quasihomogeneous components

This subsection is devoted of the computations of homogeneous and quasi homogeneous
components of products, derivatives and composition of functions and vector fields.

Lemma A.1 (Components of the product). Let f, g ∈ C[[x1, · · ·xn]] and U, S ∈ (C[[x1, · · ·xn]])n.
Then,

(a) {fg}•,r =
∑

r1+r2=r
f•,r1g•,r2, {fV }•,r =

∑
r1+r2=r

f•,r1V•,r2;

(b) {fg}δ =
∑

δ1+δ2=δ
fδ1gδ2, {fV }δ =

∑
δ1+δ2=δ

fδ1Vδ2;

Lemma A.2 (Components of the derivatives). Let f ∈ C[[x1, · · ·xn]] and U, S ∈ (C[[x1, · · ·xn]])n.
Denote by S(f) the Lie derivative of f along S and by [S,U ] the Lie brackets of S and U .
Then,

(a) {S(f)}•,r =
∑

r1+r2=r+1
S•,r1(f•,r2), {DS.U}•,r =

∑
r1+r2=r+1

DS•,r1 .U•,r2, {[U, S]}•,r =
∑

r1+r2=r+1
[S•,r1 , U•,r2 ];

(b) {S(f)}δ =
∑

δ1+δ2=δ
Sδ1(fδ1), {DS.U}δ =

∑
δ1+δ2=δ

DSδ1 .Uδ2, {[U, S]}δ =
∑

δ1+δ2=δ
[Sδ1 , Uδ2 ];

Proof. The proofs of the above three lemmas follow directly from definition and from propo-
sition 3.4

The following lemma gives a characterization of quasihomogeneous polynomial and vec-
tor fields of given quasidegree. This characterization happens to be very convenient to
compute the quasihomogeneous components of compositions.

Lemma A.3. Let us define tp.x := (tp1x1, . . . , t
pnxn). Then, a polynomial P is p-quasi-

homogeneous of degree δ if and only if P (tp.x) = tδP (x). Furthermore, a vector field is
p-quasihomogeneous of degree δ if and only if X(tp.x) = tδ(tp.X(x)).

Proof. The proof is immediate.

Lemma A.4 (Components of the composition). Let f ∈ C[[x1, · · ·xn]] and U, V ∈ (C[[x1, · · ·xn]])n.
Then,

(a) {f ◦ U}δ′ =
∑

δ≤δ′, δ
p
≤r≤ δ

p

δ+δ1+···+δr=δ′

f̃δ,r(Uδ1 , · · ·Uδr),

(b) {V ◦ U}δ′ =
∑

δ≤δ′, δ∗≤r≤δ∗
δ+δ1+···+δr=δ′

Ṽδ,r(Uδ1 , · · ·Uδr),

where δ∗ and δ∗ are defined in (1).
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Proof. The proof is based on the characterization of the δ- quasihomogeneous components
given by lemma A.3. Indeed, using that fδ is quasihomogeneous of quasidegree δ and that
f̃δ,r is r-linear, we have

f(U)(tp.x) =
∑
δ∈∆

fδ
((∑

d∈∆̃

Ud(tp.x)
))

=
∑
δ∈∆

fδ
(
tp.
(∑
d∈∆̃

tdUd(x)
))

=
∑
δ∈∆

tδfδ
(∑
d∈∆̃

tdUd(x)
)

=
∑
δ∈∆

tδ
∑

δ
p
≤r≤ δ

p

f̃δ,r
( ∑
δ1∈∆̃

tδ1Uδ1(x), · · · ,
∑
δr∈∆̃

tδrUδr(x)
)

=
∑
δ∈∆

∑
δ
p
≤r≤ δ

p

∑
δ1,··· ,δr∈∆̃

tδ+δ1+···+δr f̃δ,r
(
Uδ1(x), · · · , Uδr(x)

)
.

Hence,
{f ◦ U}δ′ =

∑
δ≤δ′, δ

p
≤r≤ δ

p

δ+δ1+···+δr=δ′

f̃δ,r(Uδ1 , · · ·Uδr).

For vector fields the proof is the same.

A.2 Inner products for quasihomogeneous polynomials and vector fields

In this section, to avoid any confusion we denote by Pδ(Cn) the space of p-quasihomogeneous
polynomials from Cn to C of quasidegree δ and by Hδ(Cn) the space of p-quasihomogeneous
vector fields of quasidegree δ in Cn.

In a similar way, let us denote by Pd(CN ) the space of standard homogeneous polyno-
mials from CN to C of degree d and by Hd(CN ) the space of standard homogeneous vector
fields of degree d in CN .

The aim of this subsection is to build on Pδ(Cn) and Hδ(Cn) inner products which lead
to norms such that the norm of the product is less or equal to the product of the norms. In
the homogeneous case for Pδ(CN ) and Hδ(CN ), the Fisher’s inner products 〈·, ·〉

H
given by〈

xR, xQ
〉
H

:=

{
R! if R = Q
0 otherwise

where R! = r1! · · · rn! if R = (r1, . . . , rn) (46)

for monomials and by

〈U, V 〉
H

:=
n∑
j=1

〈Uj , Vj〉H . (47)

for polynomial vector fields U =
n∑
j=1

Uj
∂
∂xj

and V =
n∑
j=1

Vj
∂
∂xj

, lead to multiplicative norms

given by

|φ|H,δ =

√
〈φ, φ〉

H

δ!
.
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One can check that 〈
∂

∂xj
f(x), g(x)

〉
H

= 〈f(x), xjg(x)〉
H
.

In the homogeneous case, p = (1, . . . , 1). Let f ∈ Hδ−1, g ∈ Hδ, then we have

〈xif, g〉p,δ =
1
δ!
〈xif, g〉H =

1
δ!

〈
f,
∂g

∂xi

〉
H

=
(δ − 1)!
δ!

〈
f,
∂g

∂xi

〉
p,δ−1

.

In the quasihomogeneous case, a natural idea to build inner products which lead to
multiplicative norms is based on the following proposition:

Proposition A.5. Let N be and integer and s be a morphism of algebra from C[x1, · · · , xn]
to C[x1, · · · , xN ] which is injective (i.e. Ker s = 0) and which maps Pδ(Cn) into Pδ(CN )
for every δ ∈ ∆. Then,

(a) The bilinear form 〈f, g〉
p

= 〈s(f), s(g)〉
H

is an inner product on Pδ(Cn);

(b) the renormalized norm |f |
p,δ

=

√
〈f,f〉p
δ! satisfies for every f ∈ Pδ and g ∈ Pδ′

|fg|
p,δ+δ′

≤ |f |
p,δ
|g|

p,δ′
. (48)

(c) Let fδ,r : Cn → C be simultaneously quasihomogeneous of degree δ and homogeneous of
degree r. Denote by f̃δ,r the unique r-linear, symmetric form such that f̃δr(x, · · · , x︸ ︷︷ ︸

r times

) =

fδ,r(x) where x = (x1, . . . , xn). For 1 ≤ ` ≤ r, let Uδ` be a p-quasihomogeneous
vector field of quasidegree δ`. Then, f̃δ,r(Uδ1 , . . . , Uδr) is p-quasihomogeneous de degree
δ + δ1 + · · ·+ δr and we have∣∣∣f̃δ,r(Uδ1 , . . . , Uδr)∣∣∣

p,δ+δ1+···+δr
≤ N1(f̃δ,r) ‖Uδ1‖p,δ1 · · · ‖Uδr‖p,δr . (49)

with

‖U‖2
p,δ

=

∥∥∥∥∥
n∑
i=1

Ui
∂

∂xi

∥∥∥∥∥
2

p,δ

:=
n∑
i=1

|Ui|2p,δ+pi

and
N1(f̃δ,r) :=

∑
1≤i`≤n
1≤`≤r

∣∣∣f̃δ,r(ei1 , · · · , eir)∣∣∣
where (e1, · · · , en) is the canonical basis of Cn.

(d) Let Rδ,r be a vector field of Cn. We assume that Rδ,r is simultaneously quasihomoge-
neous of degree δ and homogeneous of degree r. Denote by R̃δ,r the unique r-linear,
symmetric operator of Cn such that R̃δ,r(x, · · · , x︸ ︷︷ ︸

r times

) = Rδr(x) where x = (x1, . . . , xn).
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For 1 ≤ ` ≤ r, let Uδ` be p-quasihomogeneous vector field of degree δ`. Then,
R̃δ,r(Uδ1 , . . . , Uδr) is p-quasihomogeneous de degree δ + δ1 + · · ·+ δr and we have∥∥∥R̃δ,r(Uδ1 , . . . , Uδr)∥∥∥

p,δ+δ1+···+δr
≤ N2,1(R̃δ,r) ‖Uδ1‖p,δ1 · · · ‖Uδr‖p,δr . (50)

with

N2,1(R̃δ,r) :=

√√√√ n∑
j=1

N2
1 (R̃δ,r,j)

where R̃δ,r,j is the j-th components of R̃δ,r in the canonical basis of Cn.

Proof.
(a) : Property (a) directly follows from the fact that s is linear and injective.

(b) : using that s is a morphism of algebra and that the renormalized norm for homogeneous

polynomials |φ|H,δ =
√
〈φ,φ〉H
δ! is multiplicative we get

|fg|
p,δ+δ′

= |s(fg)|
H,δ+δ′

= |s(f)s(g)|
H,δ+δ′

≤ |s(f)|
H,δ
|s(g)|

H,δ′
= |f |

p,δ
|g|
p,δ′

.

Hence the renormalized norm for quasihomogeneous polynomial is multiplicative.

(c) : The proof is made in three steps.

Step (c)-1 : Explicit formula for f̃δ,r. For 1 ≤ ` ≤ n, let x(`) be a vector of Cn with
x(`) = (x(`)

1 , · · · , x(`)
n ). Then denoting by (ei)1≤i≤n the canonical basis of Cn, we get

f̃δ,r(x(1), · · · , x(r)) =
∑

1≤i`≤n
1≤`≤r

x
(1)
i1
· · ·x(r)

ir
f̃δ,r(ei1 , · · · , eir).

since f̃δ,r is r-linear. Hence, for x = (x1, · · · , xn),

fδ,r(x) = f̃δ,r(x, · · · , x) =
∑

1≤i`≤n
1≤`≤r

xi1 · · ·xir f̃δ,r(ei1 , · · · , eir).

Then since the quasi degree of xi1 · · ·xir is pi1 + · · ·+ pir and since fδ,r is of quasi degree δ
we get that for every x(`) ∈ Cn, we have

f̃δ,r(x(1), · · · , x(r)) =
∑

1≤i`≤n, 1≤`≤r
pi1+···+pir=δ

x
(1)
i1
· · ·x(r)

ir
f̃δ,r(ei1 , · · · , eir).

Step c-2 : Quasidegree of fδ,r(Uδ1 , · · · , Uδr).. For 1 ≤ ` ≤ r, let Uδ` be in Hδ` . Denote by
Uδ`,i the i-th coordinate of Uδ` in the canonical basis of Cn. Then, Uδ`,i belongs to Pδ`+pi
and Uδ1,i1 · · ·Uδr,ir belongs to Pδ1+···+δr+pi1+···+pir . Hence since

f̃δ,r(Uδ1 , . . . , Uδr) =
∑

1≤i`≤n, 1≤`≤r
pi1+···+pir=δ

Uδ1,i1 · · ·Uδr,ir f̃δ,r(ei1 , · · · , eir) (51)
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f̃δ,r(Uδ1 , . . . , Uδr) belongs to Pδ′ with δ′ := δ1 + · · ·+ δr + δ.

Step c-3 : Majorization of
∣∣∣f̃δ,r(Uδ1 , . . . , Uδr)∣∣∣

p,δ′
. Using (51), (48) and observing that for a

polynomial vector field U =
n∑
j=1

Uj
∂
∂xj
∈ Hδ we have |Uj |

p,δ+pj
≤ ‖U‖

p,δ
we get,

∣∣∣f̃δ,r(Uδ1 , . . . , Uδr)∣∣∣
p,δ′
≤

∑
1≤i`≤n, 1≤`≤r
pi1+···+pir=δ

|f̃δ,r(ei1 , · · · , eir)| |Uδ1,i1 |p,δ1+p1
· · · |Uδr,ir |p,δr+pr

≤
∑

1≤i`≤n, 1≤`≤r
pi1+···+pir=δ

|f̃δ,r(ei1 , · · · , eir)| ‖Uδ1‖p,δ1 · · · ‖Uδr‖p,δr

= N1(f̃δ,r) ‖Uδ1‖p,δ1 · · · ‖Uδr‖p,δr

(d) : For a polynomial vector field Rδ,r :=
n∑
j=1

Rδ,r,j
∂
∂xj

, (d) ensures that for every 1 ≤ j ≤ n,

R̃δ,r,j(Uδ1 , . . . , Uδr) belongs to Pδ1+···+δr+δ+pj and that∣∣∣R̃δ,r,j(Uδ1 , . . . , Uδr)∣∣∣
p,δ′+pj

≤ N1(R̃δ,r,j) ‖Uδ1‖p,δ1 · · · ‖Uδr‖p,δr

where δ′ = δ1 + · · ·+ δr + δ. Hence, R̃δ,r(Uδ1 , . . . , Uδr) belongs to Hδ′ and we have∥∥∥R̃δ,r(Uδ1 , . . . , Uδr)∥∥∥2

p,δ′
=

n∑
j=1

∣∣∣R̃δ,r,j(Uδ1 , . . . , Uδr)∣∣∣2
p,δ′+pj

≤
n∑
j=1

N2
1 (R̃δ,r,j) ‖Uδ1‖p,δ1 · · · ‖Uδr‖p,δr

= N2,1(R̃δ,r) ‖Uδ1‖p,δ1 · · · ‖Uδr‖p,δr

The following lemma and corollary give four examples of morphism of algebra from
Pδ(Cn) into Pδ(CN ) which lead to four different inner products on Pδ(Cn). The first example
is the one used throughout this paper (see (2), Lemma A.5 and (52)).

Lemma A.6. Let us define

s1 : Pδ(Cn) → Pδ(C|p|)
f 7→ s1(f)(x1,1, · · · , x1,p1 , ·, xn,1, · · ·xn,pn) := f

(
(x1,1 · · ·x1,p1), · · · , (xn,1 · · ·xn,pn)

)
;

s2 : Pδ(Cn) → Pδ(Cn)
f 7→ s2(f)(x1, · · · , xn) := f(xp11 , · · · , xpnn );

s3 : Pδ(Cn) → Pδ(C2n)
f 7→ s3(f)(x1, · · · , xn, η1, · · · , ηn) := f(x1η

p1−1
1 , · · · , xnηpn−1

n );

s4 : Pδ(Cn) → Pδ(Cn+1)
f 7→ s4(f)(x1, · · · , xn, ε) := f(x1ε

p1−1
1 , · · · , xnεpn−1

n );
Then,
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(a) For 1 ≤ k ≤ 4, sk is an injective morphism of algebra. So it induces on Pδ an inner
product given by 〈f, g〉k,p := 〈s(f), s(g)〉

H

(b) For every Q = (q1, · · · , qn) and R = (r1, · · · , rn),〈
xQ, xR

〉
1,p

:= δQ,R (q1!)p1 · · · (qn!)pn (52)〈
xQ, xR

〉
2,p

:= δQ,R (p1q1)! · · · (pnqn)!〈
xQ, xR

〉
3,p

:= δQ,R (q1)! · · · (qn)! ((p1 − 1)q1)! · · · ((pn − 1)qn)!〈
xQ, xR

〉
4,p

:= δQ,R (q1)! · · · (qn)! ((Q, p)− |Q|).

where δQ,R := 1 if Q = R and δQ,R := 0 otherwise.

The proof of this lemma follows directly from proposition A.5. The details are left to
the reader.

Lemma A.7. Assume that Pδ is endowed with the scalar product 〈·, ·〉 := 〈·, ·〉1,p defined in
lemma A.6 and that Pδ and Hδ are normed with the two corresponding norms.

(a) Let f be in Pδ and N in Hα. Then Df.N belongs to Pδ+α and

|Df.U |
p,δ+d

≤ mp δ
max(1, p

2
) ‖f‖

p,δ
‖U‖

p,d
where mp = n.

(b) Let U be in Hδ and N in Hα. Then DU.N lie in Hδ+α and

‖DU.N‖
p,δ+α

≤ mp (δ + p)max(1, p
2

) ‖U‖
p,δ
‖N‖

p,α
.

Proof. (a) : Proposition 3.4 ensures that Df.N lie inHδ+d. Moreover denoting Nj := πj(N)
the jth component of U in Cn we have

|Df.N |
p,δ+α

=

∣∣∣∣∣∣
n∑
j=1

∂f

∂xj
Nj

∣∣∣∣∣∣
p,δ+α

≤
n∑
j=1

∣∣∣∣∣ ∂f∂xj
∣∣∣∣∣
p,δ−pj

|Nj |
p,α+pj

≤

√√√√√ n∑
j=1

∣∣∣∣∣ ∂f∂xj
∣∣∣∣∣
2

p,δ−pj

‖N‖
p,α

.

Then denoting f =
∑

(α,p)=δ
fQx

Q we have

n∑
j=1

∣∣∣∣∣ ∂f∂xj
∣∣∣∣∣
2

p,δ−pj

=
n∑
j=1

∑
(Q,p)=δ

|fQ|2|qj |2
(Q!)p

(qj)pj (δ − pj)!
=

∑
(α,p)=δ

|fQ|2(Q!)p

δ!

n∑
j=1

|qj |2δ!
(qj)pj (δ − pj)!

.

Moreover, we check that

n∑
j=1

|qj |2δ!
(qj)pj (δ − pj)!

≤
n∑
j=1

(
δ

qj

)pj
|qj |2
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Then, using that for (Q, p) = δ, we have p qj ≤ p|Q| ≤ δ ≤ |Q|p,we that

for pj = 1,
(
δ
qj

)pj|qj |2 = δ |qj | ≤ δ2

p ≤ δ
2

for pj = 2,
(
δ
qj

)pj|qj |2 = δ2

for pj ≥ 3,
(
δ
qj

)pj|qj |2 ≤ δp 1

q
pj−2

j

≤ δp

Hence
|Df.N |

p,δ+α
≤ n δmax(1, p

2
) ‖f‖

p,δ
‖U‖

p,α

(b) : Proposition 3.4 ensures that Df.N lie in Hδ+α. Moreover denoting Sj := πj(S) the
j-th component of S in Cn and using (b), we get

‖DU.N‖2
p,δ+α

=
n∑
j=1

|DUj .N |2
p,δ+α+pj

≤
n∑
j=1

n2 (δ + pj)2 max(1, p
2

) |Uj |2
p,δ+pj

‖N‖2
p,α

≤ n2 (δ + p)2 max(1, p
2

) ‖U‖2
p,δ
‖N‖2

p,α
.

Hence
‖DN.U‖

p,δ+α
≤ n (δ + p)max(1, p

2
) ‖U‖

p,δ
‖N‖

p,α
.

A.3 Quasihomogeneous decomposition and analyticity

In subsection 3.2 we introduced several decompositions of a formal power series f ∈
C[[x1, · · · , xn]] as sum of homogeneous and quasihomogeneous components. We now prove
that f converges uniformly in a neighborhood of the origin if and only if its homogeneous
or quasihomogeneous components grow at most geometrically. In this subsection, we use

the normalized norm |f |
p,δ

:=
√
〈s1(f),s1(f)〉H

δ! (see proposition A.5 and lemmas A.6 ). More
precisely we have

Proposition A.8. For a formal power series , f =
∑

Q∈Nn
fQx

Q ∈ C[[x1, · · · , xn]], the

following properties are equivalent:

(a) f is uniformly convergent in a neighborhood of the origin;

(b) There exists M,R > 0 such that for every Q ∈ Nn, |fQ| ≤ M
R|Q|

.

(c) There exists M,R > 0 such that for every Q ∈ Nn, |f•,r|
0,r

:= sup
x∈Cn

|f•,r(x)|
|x|r ≤ M

Rr .

(d) There exists M,R > 0 such that for every Q ∈ Nn, ‖|f̃•,r|‖ :=sup
x(`)∈Cn

|f̃•,r(x(1),··· ,x(r))|
|x(1)|···|x(r)| ≤

M
Rr .
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(e) There exists M,R > 0 such that for every δ ∈ ∆, |fδ|p,δ ≤
M
Rδ

;

(f) There exists M,R > 0 such that for every δ ∈ ∆ and r ≥ 0, N1(f̃δ,r) ≤ M
Rr .

We have a similar proposition for vector fields. Statements (a), (b), (c), (d) are still
equivalent for vector fields. Statements (e) and (f) should be be modified with appropriate
norms for vector fields. More precisely we have

Proposition A.9. For a formal vector field, V ∈ (C[[x1, · · · , xn]])n, the following properties
are equivalent:

(a) V is uniformly convergent in a neighborhood of the origin;

(b) There exists M,R > 0 such that for every δ ∈ ∆̃, ‖Vδ‖p,δ ≤
M
Rδ

;

(c) There exists M,R > 0 such that for every δ ∈ ∆̃ and r ≥ 0, N21(Ṽδ,r) ≤ M
Rr .

A.3.1 Proof of Proposition A.8

The proof of the equivalence of statements (a),(b),(c),(d) of proposition A.8 which corre-
spond to the homogeneous decompositions is due to H. Shapiro [Sha89][lemma 1]. The
equivalence of (c) and (d) rely on the equivalence of the norms |·|

0,r
and ‖| · |‖ which can be

found in the book of Cartan [Car67]. More precisely we have

Lemma A.10. For an homogeneous polynomial ψ of degree r, let us denote by ψ̃ the unique
r-linear form such that for every x ∈ Cn, ψ̃(x, · · · , x) = ψ(x). Then there exists M > 0
such that for every r ≥ 0 and every homogeneous polynomial ψ of degree r

|ψ|
0,r
≤ ‖|ψ̃|‖ ≤M(2e)r |ψ|

0,r
.

The prof of the equivalence of statements (a) and (e) of proposition A.8 is based on the
following lemma:

Lemma A.11. Let f be in C[[x1, · · · , xn]]. The the following properties are equivalent

(a) f is uniformly convergent in a neighborhood of the origin;

(b) F := s1(f) ∈ C[[x1,1, · · · , x1,p1 , · · · , xn,1, · · · , xn,pn]] is uniformly convergent in a
neighborhood of the origin;

(c) There exists M,R > 0 such that for every δ ∈ ∆, |fδ|p,δ ≤
M
Rδ

;

Proof. The proof is performed in three steps.

Step 1. We prove that (a)⇔(b).
Let us decompose f and F = s1(f) as sum of monomials. We have

f =
∑
Q∈Nn

fQ xQ, F =
∑
Q∈Nn

fQ(x1,1)q1 · · · (x1,p1)q1 · · · (xn,1)qn · · · (x1,pn)qn =
∑

FAX
A
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with

X = (x1,1, · · · , x1,p1 , · · · , xn,1, · · · , x1,pn),
A = (q1, · · · · · · , q1︸ ︷︷ ︸

p1times

, · · · · · · , qn, · · · · · · , qn︸ ︷︷ ︸
pntimes

),

FA = fQ.

Hence, we have |A| = p1q1 + · · · pnqn = (Q, p). Thus p |Q| ≤ |A| ≤ p |Q|.
Hence, on one hand if f is uniformly convergent in a neighborhood of the origin, then

there exists M,R > 0 such that for every Q ∈ Nn

|FA| = |fQ| ≤M
1

R|Q|
≤M

(
1

R
1
p

)|A|
.

Hence F , is uniformly convergent in a neighborhood of the origin.

On the other hand if F is uniformly convergent in a neighborhood of the origin, then
there exists M ′, R′ > 0 such that for every A ∈ Nn

|FQ| = |fA| ≤M ′
(

1
R′

)|A|
≤M ′

(
1

(R′)p

)|Q|
.

Hence f , is uniformly convergent in a neighborhood of the origin.

Step 2. We prove that (b)⇒(c). PropositionA.8-(b) applied to F = s1(f) ensures that if F
is uniformly convergent in a neighborhood of the origin, then there exists M0, R0 > 0 such
that for every δ,

|F•δ|0,δ ≤
M0

Rδ0
,

where F•δ is the homogeneous component of F of degree δ. Moreover it is proved in
[IL05][lemma A.5] that

|F•δ|H,δ =

√
〈F•δ, F•δ〉H

δ!
≤
√
Cn−1
δ+n−1 |F•δ|0,δ

where
Cn−1
δ+n−1 =

(δ + n− 1)!
(n− 1)! δ!

=
(δ + n− 1) · · · (δ + 1)

(n− 1)!

Hence, there exists M ′ > 0 such that for every δ,

|F•δ|H,δ ≤M
′δ
n
2
M0

Rδ0
≤M 1

Rδ
,

where R is any number in ]0, R0[ and where M = M ′M0 sup
δ≥0

[
δ
n
2

(
R
R0

)δ]
. So we can

conclude that if F is uniformly convergent in a neighborhood of the origin, then there exits
M,R > 0 such that for every δ,

|fδ|p,δ =

√
〈s1(fδ), s1(fδ)〉H

δ!
= |F•δ|H,δ =≤M 1

Rδ
.
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Step 3. We prove that (c)⇒(b). Assume that there exist M,R > 0 such that for every δ,

|fδ|p,δ ≤M
1
Rδ
.

Then, F = s1(f) satisfies

|F•δ|H,δ = |fδ|p,δ ≤M
1
Rδ

Moreover it is proved in [IL05][lemma A.3] that |F•δ|0,δ ≤ |F•δ|H,δ. Hence, propositionA.8-
(b) applied to F ensures that F is uniformly convergent in a neighborhood of the origin.

To prove statement (f) of proposition A.8, we first need a technical lemma giving the
equivalence of the norms ‖| · |‖ and N1(·).

Lemma A.12.

(a) For every r-linear form ϕ̃ : Cn → C, we have ‖|ϕ̃|‖ ≤ N1(ϕ̃) ≤ nr‖|ϕ̃|‖.

(b) For every r-linear operator R̃ : Cn → Cn, we have ‖|R̃|‖ ≤ N1(R̃) ≤ nr‖|R̃|‖.

Proof. (a) : For x(`) =
n∑
i=1

x
(`)
i ei where (ei)1≤i≤n is the canonical basis of Rn we have

ϕ̃(x(1), · · · , x(r)) =
∑

1≤`≤r
1≤i`≤n

ϕ̃(ei1 , · · · , eir) x
(1)
i1
· · ·x(r)

ir

Using that |x(`)
i | ≤ |x(`)| we get that |ϕ̃(x(1), · · · , x(r))| ≤ |x(1)| · · · |x(r)| N1(ϕ̃). Hence

‖|ϕ̃|‖ ≤ N1(ϕ̃).

Reciprocally,

N1(ϕ̃) :=
∑

1≤`≤r
1≤i`≤n

|ϕ̃(ei1 , · · · , eir)| ≤
∑

1≤`≤r
1≤i`≤n

‖|ϕ̃|‖1 · · · 1 = nr‖|ϕ̃|‖.

(b) :Let us denote R̃(x(1), · · · , x(r)) :=
n∑
i=1

R̃i(x(1), · · · , x(r)) ei. Then using (a) we have

|R̃(x(1), · · · , x(r))|2 =
n∑
i=1

|R̃i(x(1), · · · , x(r))|2 ≤
n∑
i=1

‖|R̃i|‖2 |x(1)|2 · · · |x(r)|2

≤ |x(1)|2 · · · |x(r)|2
n∑
i=1

N2
1 (R̃i)
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Hence ‖|R̃|‖ ≤ N21(R̃). Reciprocally, using Cauchy schwartz inequality we get

N2
21(R̃) =

n∑
j=1

N2
1 (R̃j) =

n∑
j=1

( ∑
1≤`≤r
1≤i`≤n

|R̃j(ei1 , · · · , eir)|
)2

≤
n∑
j=1

( ∑
1≤`≤r
1≤i`≤n

1
) ( ∑

1≤`≤r
1≤i`≤n

|R̃j(ei1 , · · · , eir)|2
)

= nr
n∑
j=1

∑
1≤`≤r
1≤i`≤n

|R̃j(ei1 , · · · , eir)|2

= nr
∑

1≤`≤r
1≤i`≤n

|R̃(ei1 , · · · , eir)|2

≤ n2r ‖|R̃|‖2

Hence, N21(R̃) ≤ nr ‖|R̃|‖.

Finally, equivalents of statements (a) and (f) of proposition A.8 directly follows from

Lemma A.13. Let f =
∑

Q∈Nn
fQx

Q ∈ C[[x1, · · · , xn]].Then,

(a) for every Q ∈ Nn, |fQ| ≤ n
r
2 N1(f̃δ,r) where r = |Q| and δ = (Q, p).

(b) There exists M,R > 0 such that for every r ≥ 0 and δ ∈ ∆, N1(f̃δ,r) ≤Mrn(2en
3
2 )r |f•,r|

0,r

Proof. (a) : Using Cauchy’s formula, for Q = (q1, · · · , qn), we get

fQ =
1

2πn

∫ 2π

0
. . .

∫ 2π

0
fδ,r(eiθ1 , · · · , eiθn) e−iq1θ1 · · · e−iqnθn dθ1 · · · dθn .

Hence, using that |fδ,r(x1, · · · , xn)| ≤ |fδ,r|
0,r

(
x2

1 + · · · + x2
n

) r
2 and using lemma A.10 and

A.12, we get

|fQ| ≤
1

2πn

∫ 2π

0
. . .

∫ 2π

0
|fδ,r|

0,r

(√
|eiθ1 |2 + · · ·+ |eiθn |2

)r
dθ1 · · · dθn

≤ n
r
2 |fδ,r|

0,r
≤ n

r
2 ‖|f̃δ,r|‖ ≤ n

r
2N1(f̃δ,r).

(b): Using lemma A.10 and A.12, we get that for every δ, r ≥ 0

N1(f̃δ,r) ≤ nr‖|f̃δ,r|‖ ≤Mnr(2e)r |fδ,r|
0,r
.

Moreover we have,

|fδ,r|
0,r

= sup
x∈Cn

|fδ,r(x)|
|x|r

≤ sup
x∈Cn

∑
|Q|=r

(Q,p)=r

|fQ|
|x1|q1 · · · |xr|qr

|x|r
≤

∑
|Q|=r

(Q,p)=r

|fQ| ≤
∑
|Q|=r

|fQ|.
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Since using Cauchy’s formula we get for any Q such that |Q| = r, |fQ| ≤ nr |f•,r|
0,r

, and

since #{Q/|Q| = r} = Cn−1
r+n−1 (see [IL05][lemma A.2], we obtain that there exists M ′ > 0

such that for every r ≥ 0

|fδ,r|
0,r
≤ Cn−1

r+n−1n
r
2 |f•,r|

0,r
≤M ′rnn

r
2 |f•,r|

0,r
.

So, we finally obtain that for every δ, r ≥ 0, N1(f̃δ,r) ≤Mrn(2en
3
2 )r| |f•,r|

0,r
.

A.3.2 Proof of Proposition A.9

The proof of equivalence of statements (a), (c) is exactly the same as for functions. The
equivalence of statements (a) and (b) directly follows from the case of functions. Indeed,

V =
n∑
j=1

πj(V )
∂

∂xj
is uniformly convergent in a neighborhood of the origin,

⇔ for all 1 ≤ j ≤ n, πj(V ) is uniformly convergent in a neighborhood of the origin,

⇔ for all 1 ≤ j ≤ n, there exits Mj , Rj > 0, such that for every δ,
∣∣∣{πj(V )}δ+pj

∣∣∣
p,δ+pj

≤ Mj

R
δ+pj
j

,

⇔ there exits M,R > 0, such that for every δ and all 1 ≤ j ≤ n,
∣∣∣{πj(V )}δ+pj

∣∣∣
p,δ+pj

≤ M

Rδ
,

⇔ there exits M,R > 0, such that for every δ and all 1 ≤ j ≤ n, ‖Vδ‖p,δ ≤
M

Rδ
,

since {πj(V )}δ+pj = πj(Vδ) and ‖Vδ‖p,δ =
n∑
j=1
|πj(Vδ)|2

p,δ+pj
.

A.4 Proof of lemma 3.8

First of all, using Sterling formula, it is easy to show that there exists a positive constant
C (depending on p) such that, for all multiindices Q ∈ Nn,

(p|Q|)! ≤ C |Q|(|Q|!)p.

Hence, we have
(Q, p)!
Q!p

≤ C |Q| (Q, p)!
(p1q1)! · · · (pnqn)!

.

Furthermore, since 2k = (1 + 1)k =
∑k
m=0C

m
k , we have a+b!

a!b! ≤ 2a+b. We have

(Q, p)!
(p1q1)! · · · (pnqn)!

=
q1p1 + (q2p2 + · · ·+ qnpn)!
(p1q1)!(q2p2 + · · ·+ qnpn)!

(q2p2 + · · ·+ qnpn)!
(p2q2)! · · · (pnqn)!

≤ 2(Q,p) (q2p2 + · · ·+ qnpn)!
(p2q2)! · · · (pnqn)!

.

Hence, the same argument by induction, we obtain that there exist a constant C such that
for all multiindices Q ∈ Nn, (Q,p)!

Q!p ≤ C |Q|. Let f =
∑
δ∈∆ fδ be a formal power series.
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Let δ ∈ ∆ and let Q ∈ Nn such that (Q, p) = δ. By definition of the norm and using the
previous argument, we have

|fQ| ≤ |fδ|p,δ

√
δ!
Q!p
≤ C |Q||fδ|p,δ

Hence, if |fδ|p,δ ≤ Dδ(δ!)b then

|fQ| ≤ C̃ |Q|(δ!)b ≤ D̃|Q|(Q!p)b ≤ E|Q||Q|!p̄b

for some constants C̃, D̃, E.

B Proof of proposition 6.12

Let S be a p-quasihomogeneous vector field of Cn. Let X := S +R be a good holomorphic
perturbation of S in a neighborhood of the origin of Cn (i.e. the quasiorder of R at the origin
is greater than s). Proposition 4.4 ensures that for every α ∈ ∆̃, there exists a polynomial
diffeomorphism tangent to identity Φ−1

α = Id + Uα where Uα =
∑

0<δ≤α−s
Uδ, with Uδ ∈ Hδ

such that
(Φα)∗(X) = S +Nα +R>α,

where Nα =
∑

s<δ≤α
Nδ, Nδ ∈ Ker �δ, and where R>α is of quasiorder > α. The aim of

this appendix is to prove proposition 6.12 which gives a kind of ”gevrey estimates” of the
remainder R>α. We first check that the remainder is explicitly given by

Lemma B.1.
LαR>α = Q1

>α +Q2
>α +Q3

>α,

with
Lα = Id +DUα = Id +

∑
0<δ≤α−s

DUδ,

and

Q1
>α =

∑
δ1+δ2>α

0<δ1≤α−s, δ1∈∆̃−

s<δ2≤α, δ2∈∆̃

DUδ1 .Nδ2 , (53)

Q2
>α =

∑
µ>s, µ∈∆̃

µ∗∑
r=µ∗

∑
δ1+···+δr+µ>α

0≤δi≤α−s, δi∈∆̃−

R̃µ,r(Uδ1 , . . . , Uδr), (54)

Q3
>α =

s∗∑
r=s∗

∑
δ1+···+δr+s>α

0≤δi≤α−s
(δ1,··· ,δr)∈Ωr

S̃•,r(Uδ1 , . . . , Uδr). (55)

Then to compute upper bounds of L−1
α Q

j
>α we introduce the following family of norms

and Banach spaces:
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Definition B.2. For ε > 0, let us denote Bε the Banach space of all formal vector fields
V =

∑
δ∈∆̃ Vδ of Cn such that

Nε(V ) :=
∑
δ∈∆̃

εδ ‖Vδ‖p,δ < +∞.

Remark B.3. Statement (c) Lemma A.9 ensures that any analytic vector field of Cn belongs
to Bε for ε sufficiently small.

We first prove the following lemma which which gives comparisons of the different norms

Lemma B.4. Let ε be fixed in ]0, 1[.

(a) Let f(x1, . . . , xn) ∈ Pδ be a quasihomogeneous polynomial of degree δ. Let F ∈ Pδ(C|p|)
be given by F (X1,1, · · · , X1,p1 , · · · , Xn,1, · · · , Xn,pn) := s1(f) as defined in lemma A.6.
Then, we have

|f |qh,ε := sup
dp(x)<ε

|f(x)| ≤ sup
‖X‖<ε

|F (X)| . (56)

(b) For every f ∈ Pδ, |f |qh,ε ≤ εδ |f |p,δ holds.

(c) For every V ∈ Hδ,

‖V ‖2qh,ε :=
n∑
i=1

1
ε2pi
|Vi|2qh,ε ≤ εδ ‖V ‖p,δ (57)

holds.

(d) For every V ∈ Bε,
‖V ‖2qh,ε ≤ Nε(V ) (58)

holds.

Remark B.5. In fact it is possible to prove more accurate results for statements (a), (b),
(c). Indeed, for f ∈ Pδ and V ∈ Hδ, we have

|f |qh,ε = sup
‖X‖<ε

|F (X)| ,

|f |qh,ε ≤ εδ |f |p,δ ≤
√
C
|p|
δ+|p|+1 |f |qh,ε,

‖V ‖qh,ε ≤ εδ ‖V ‖p,δ ≤
√
C
|p|
p+δ+|p|+1 ‖V ‖qh,ε.

Proof of Lemma B.4. Let f(x1, . . . , xn) ∈ Pδ be a quasihomogeneous polynomial of degree
δ. Let F ∈ Pδ(C|p|) be given by F (X1,1, · · · , X1,p1 , · · · , Xn,1, · · · , Xn,pn) := s1(f) as defined
in lemma A.6

Proof of (a): Let x = (x1, · · · , xn) be in Cn and let us denote xk = rke
iθk where rk, θk ∈ R.

Then, setting Xk,j = (rk)
1
pk e

i
θk
pk , we get

f(x1, · · · , xn) = F (X1,1, · · · , X1,p1 , · · · , Xn,1, · · · , Xn,pn).
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Moreover,

(dp(x))2 :=
n∑
k=1

pk|xk|
2
pk =

n∑
k=1

pn∑
j=1

|Xk,j |2 = ‖X‖2.

Thus, if dp(x) < ε, then ‖X‖ < ε and

|f(x1, · · · , xn)| = |F (X1,1, · · · , X1,p1 , · · · , Xn,1, · · · , Xn,pn)| ≤ sup
‖X‖<ε

|F (X)|.

Hence,
|f |qh,ε = sup

dp(x)<ε
|f(x)| ≤ sup

‖X‖<ε
|F (X)| .

Proof of (b): Let f be in Pδ and let us denote F := s1(f). The homogeneous polynomial
F ∈ Pδ(C|p|) is an homogeneous polynomial of degree δ. It is proved in [IL05]-Lemma A.3
that

‖F‖0,δ := sup
X 6=0

|F (X)|
‖X‖δ

≤ ‖F‖H,δ

Then since ‖F‖H,δ := ‖s1(f)‖H,δ :=
√
〈s1(f),s1(f)〉H

δ! = |f |
p,δ

, using (a) we finally get

|f |qh,ε ≤ sup
‖X‖<ε

|F (X)| ≤ ‖F‖0,δ εδ ≤ ‖F‖H,δ εδ = |f |
p,δ

εδ.

Proof of (c): Let V be in Hδ. Using the previous result, we directly get

‖V ‖2qh,ε :=
n∑
i=1

1
ε2pi
|Vi|2qh,ε ≤

n∑
i=1

ε2(δ+pi)

ε2pi
|Vi|2p,δ+pi = ε2δ ‖V ‖2

p,δ
.

Proof of (d): Let V be in Bε. Writing V as the sum of its quasi homogeneous components,
V =

∑
δ∈∆̃

Vδ we get

‖V ‖qh,ε ≤
∑
δ∈∆̃

‖Vδ‖qh,ε ≤
∑
δ∈∆̃

εδ ‖V ‖
p,δ

= Nε(V ).

Then we prove that Lα is invertible and we compute the operator norm of its inverse.

Proposition B.6. Let K ≥ 2 be fixed such that

ρ1(K) < 1 with ρ1(K) =
u0MβMp

Kδ0

+∞∑
k=0

(k + δ0)a
(

1
2

)k
(59)

where a, δ0 and Mβ are defined in lemma 6.8.
Then for every ε ∈]0, 1[ and every α ∈ ∆̃ with α > s satisfying

Cε ≤ 1

K(α− s)
1
b

, (60)

we have :
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(a) The operator Tα given by Tα.V = DUα.V maps Bε into Bε and for every V ∈ Bε we
have

Nε(Tα.V ) ≤ ρ1(K) Nε(V ).

(b) The operator Lα = Id + Tα is invertible and for for every V ∈ Bε,
‖L−1

α V ‖qh,ε ≤ Nε(L−1
α V ) ≤ 1

1−ρ1(K)Nε(V ).

Proof. Statement (b) directly follows from (a) since it ensures that ‖|Tα|‖L(Bε) < ρ1(K) < 1

and so L−1
α = (Id + Tα)−1 =

∞∑
n=0

(−Tα)n holds. We now prove statement (a). Observing

that
Tα.V =

∑
0<δ1≤α−s, δ1∈∆̃−

δ2∈∆̃

DUδ1 .Vδ2 ,

recalling that a := max
(
1,
[

(p̄+1)
2

])
and using Proposition 3.6-(d) we get

Nε(Tα.V ) =
∑

0<δ1≤α−s, δ1∈∆̃−

δ2∈∆̃

∥∥∥∥∥∥
∑

δ1+δ2=δ

DUδ1 .Vδ2

∥∥∥∥∥∥
p,δ

εδ,

≤ Mp

∑
0<δ1≤α−s, δ1∈∆̃−

δ2∈∆̃

δa1 ‖Uδ1‖p,δ1 ε
δ1 ‖Vδ2‖p,δ2 ε

δ2

≤ η Nε(V ) (61)

where
η = Mp

∑
0<δ1≤α−s, δ1∈∆̃−

δa1 ‖Uδ1‖p,δ1 ε
δ1

Using (30) and Lemma 6.8 and recalling that 1
b = τ + a

δ0
we get

η ≤ MpMβu0

∑
δ0≤δ1≤α−s, δ1∈∆̃−

δa1(Cε)δ1(δ1!)τ
(
(δ1 − δ0)!

) a
δ0 ≤ MpMβu0

∑
δ0≤δ1≤α−s, δ1∈∆̃−

δa1(Cε)δ1(δ1!)
1
b .

Then for every K ≥ 2 and every ε, α satisfying (60), we obtain

η ≤ MpMβu0

∑
δ0≤δ1≤α−s, δ1∈∆̃−

δa1

(
1
K

)δ1 ( δ1!
(α− s)δ1

) 1
b

≤ MpMβu0

∑
δ0≤δ1≤α−s, δ1∈∆̃−

δa1

(
1
K

)δ1

≤ MpMβu0

Kδ0

+∞∑
δ1=δ0

δa1

(
1
K

)δ1−δ0

≤ MpMβu0

Kδ0

+∞∑
k=0

(k + δ0)a
(

1
2

)k
= ρ1(K) (62)
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In conclusion, gathering (61) and (62) we get that for every V ∈ Bε, every K ≥ 2 and
every ε, α satisfying (60),

Nε(Tα.V ) ≤ ρ1(K) Nε(V ).

Before computing upper bounds of L−1
α Q>α, we prove a last lemma giving an estimates

of the norm of Id + Uα:

Lemma B.7. Let K ≥ 2 be fixed such that (59) is satisfied. Then for every ε ∈]0, 1[ and
every α ∈ ∆̃ such that α > s satisfying (60), we have

Nε(Id + Uα) =
∑

0≤δ≤α−s, δ∈∆̃−

εδuδ ≤ 2Mβu0.

Remark B.8. The key point in the above estimate is that the upper bound does not depend
on α nor on ε.

Proof. Using (30) and Lemma 6.8 and recalling that 1
b = τ + a

δ0
and that Mβ ≥ 1, we get

that for every K ≥ 2, every ε ∈]0, 1[ and every α ∈ ∆̃ with α > s satisfying (60), we have

Nε(Id + Uα) =
∑

0≤δ≤α−s, δ∈∆̃−

εδuδ

≤ u0 +Mβu0

∑
δ0≤δ≤α−s, δ∈∆̃−

(Cε)δ(δ!)τ
(
(δ − δ0)!

) a
δ0

≤Mβu0

∑
0≤δ≤α−s, δ∈∆̃−

(Cε)δ(δ!)
1
b .

≤Mβu0

∑
0≤δ≤α−s, δ∈∆̃−

(
1
K

)δ ( δ!
(α− s)δ

) 1
b

≤Mβu0

∑
0≤δ≤α−s, δ∈∆̃−

(
1
K

)δ
≤Mβu0

∞∑
δ=0

(
1
2

)δ
= 2Mβu0

We have now enough material to be able to compute an upper bound for L−1
α Q

j
>α. We

estimate each of them separately in the three following lemmas.

Lemma B.9. Let K ≥ 2 be fixed such that (59) is satisfied. Then, there exists M1 > 0
such that for every ε ∈]0, 1[ and every α ∈ ∆̃ with α > s, satisfying (60), we have

(a) when 1
b = τ + a

δ0
≥ a,

‖L−1
α Q1

>α‖qh,ε ≤M1(Cε)α+1((α+ 2− s)!)
1
b ;
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(b) when 1
b = τ + a

δ0
≤ a,

‖L−1
α Q1

>α‖qh,ε ≤M1(Cε)α+1((α+ 2− s)!)
1
b (α− s)1+a− 2

b .

Proof. Lemma B.7-(b) ensures that

‖L−1
α Q1

>α‖qh,ε ≤ 1
1−ρ1(K)Nε(Q1

>α). (63)

So to get the desired result we only need to compute an upper bound of Nε(Q1
>α).

Recalling that a := max
(
1,
[

(p̄+1)
2

])
and using Proposition 3.6-(d), (30) and Lemma 6.8

we get

Nε(Q1
>α) ≤ MpM

2
βu

2
0

∑
δ1+δ2>α

0<δ1≤α−s, δ1∈∆̃−

s<δ2≤α, δ2∈∆̃

δa1(Cε)δ1+δ2(δ1!)τ
(
(δ1 − δ0)!

) a
δ0 ((δ2 − s)!)τ

(
(δ2 − s− δ0)!

) a
δ0

≤ MpM
2
βu

2
0

∑
δ1+δ2>α

0<δ1≤α−s, δ1∈∆̃−

s<δ2≤α, δ2∈∆̃

δa1(Cε)δ1+δ2(δ1!(δ2 − s)!)τ
(
(δ1)!(δ2 − s)!

) a
δ0

≤ MpM
2
βu

2
0

∑
δ1+δ2≥α+1
1≤δ1≤α−s
s+1≤δ2≤α

δa1(Cε)δ1+δ2(δ1!(δ2 − s)!)
1
b

In the above estimate, one can obtain a sharper result using a smaller set of index in the
last sum, i.e. {(δ1, δ2) ∈ N2/δ1 + δ2 ≥ α+, 0+ ≤ δ1 ≤ α− s, s+ ≤ δ2 ≤ α} (α+ is the small
integer of ∆̃ greater than α). However, it leads to far more intricate computations, for a
not so better estimate. This is why we have chosen this more rough estimate corresponding
to a larger set of index.

So now, performing the change of indexes (δ1, δ2) 7→ (δ1, δ = δ1 + δ2) we get that for
every K ≥ 2, every ε ∈]0, 1[ and every α ∈ ∆̃ with α > s satisfying (60), we have

Nε(Q1
>α)

MpM
2
βu

2
0

≤
α−s∑
δ1=1

δ1+α∑
δ=α+1

δa1(Cε)δ(δ1!(δ − δ1 − s)!)
1
b

≤ (Cε)α+1
α−s∑
δ1=1

δa1(δ1!)
1
b

δ1+α∑
δ=α+1

(Cε)δ−(α+1)((δ − δ1 − s)!)
1
b

≤ (Cε)α+1
α−s∑
δ1=1

δa1(δ1!)
1
b

δ1+α∑
δ=α+1

( 1
K )δ−(α+1)

(
(δ − δ1 − s)!

(α− s)δ−(α+1)

) 1
b

Then observing that for 0 ≤ δ1 ≤ α− s , α+ 1 ≤ δ ≤ δ1 +α, we have δ− δ1− s ≤ α− s and

(δ − δ1 − s)!
(α− s)δ−(α+1)

= (α+ 1− δ1 − s)!
(α+ 2− δ1 − s) · · · (δ − δ1 − s)

(α− s)δ−(α+1)
≤ (α+ 1− δ1 − s)!
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we get

Nε(Q1
>α)

MpM
2
βu

2
0

≤ ≤ (Cε)α+1
α−s∑
δ1=1

δa1

(
δ1!(α+ 1− δ1 − s)!

) 1
b
δ1+α∑
δ=α+1

(
1
2

)δ−(α+1)

≤ 2(Cε)α+1
α−s∑
δ1=1

δa1

(
δ1!(α+ 1− δ1 − s)!

) 1
b
.

When 1
b ≥ a, we obtain

Nε(Q1
>α)

MpM
2
βu

2
0

≤ 2(Cε)α+1
α−s∑
δ1=1

(
(δ1 + 1)!(α+ 1− δ1 − s)!

) 1
b

≤ 2(Cε)α+1
(
(α+ 2− s)!

) 1
b
α−s∑
δ1=1

(
1

Cδ1+1
α+2−s

) 1
b

≤ 2(Cε)α+1
(
(α+ 2− s)!

) 1
b
α−s∑
δ1=1

(
1

α+ 2− s

) 1
b

= 2(Cε)α+1
(
(α+ 2− s)!

) 1
b α− s

(α+ 2− s)
1
b

≤ 2(Cε)α+1
(
(α+ 2− s)!

) 1
b

since 1
b ≥ a ≥ 1. Hence, when 1

b ≥ a,

Nε(Q1
>α) ≤ 2 MpM

2
βu

2
0 (Cε)α+1

(
(α+ 2− s)!

) 1
b

On the other hand, when 1
b ≤ a we get

Nε(Q1
>α)

MpM
2
βu

2
0

= 2(Cε)α+1
(
(α+ 2− s)!

) 1
b (α− s)a−

1
b

α− s
(α+ 2− s)

1
b

≤ 2(Cε)α+1
(
(α+ 2− s)!

) 1
b (α− s)a+1− 2

b .

This achieves the proof of lemma B.9 with

M1 =
2MpM

2
βu

2
0

1− ρ1(K)
.

Lemma B.10. Let K ≥ 2 be fixed such that (59) holds. Then let γ ≥ 2 be fixed such that

q =
χ

γC
< 1 with χ =

(
2Mβu0

ρ

) 1
p

(64)

where C and Mβ are defined in lemma 6.8.
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Then there exists M2 > 0, such that for every ε ∈]0, 1[ and every α ∈ ∆̃ with α > s
satisfying

Cε ≤ 1

γK(α− s)
1
b

, (65)

we have
‖L−1

α Q2
>α‖qh,ε ≤M2

(
1
K

)α+1
.

Proof. Like for L−1
α Q1

>α, Lemma B.7-(b) ensures that

‖L−1
α Q2

>α‖qh,ε ≤ 1
1−ρ1(K)Nε(Q2

>α). (66)

So, to get the desired result we only need to compute an upper bound of Nε(Q2
>α).

According to proposition 3.6 and proposition 3.7, there exists positive constants MR

and ρ such that, for all µ > s belonging to ∆̃, for all µ∗ ≤ r ≤ µ∗, we have∥∥∥R̃µ,r(Uδ1 , . . . , Uδr)∥∥∥
p,δ1+···+δr+µ

≤ MR

ρr
‖Uδ1‖p,δ1 · · · ‖Uδr‖p,δr =

MR

ρr
uδ1 · · ·uδr . (67)

Hence, using (30) we get

Nε(Q2
>α) ≤

∑
s<µ µ∈∆̃

µ∗∑
r=µ∗

∑
δ1+···+δr+µ>α

0≤δj≤α−s, δj∈∆̃−

MR

ρr
uδ1 · · ·uδrεδ1+···+δr+µ

≤
∑

s<µ, µ∈∆̃

µ∗∑
r=µ∗

∑
δ1+···+δr+µ>α

0≤δj≤α−s, δj∈∆̃−

MR ur0
ρr

εδ1+···+δr+µ
r∏
j=1

(δj !)τβδj

Then lemma 6.8 and remark 6.9 ensure that for every δ ≥ 0 lying in δ ∈ ∆̃−, we have

βδ ≤MβC
δ(δ!)

a
δ0 .

Thus, for every for every ε ∈]0, 1[ and every α ∈ ∆̃ with α > s satisfying (65), we have

Nε(Q2
>α) ≤

∑
s<µ, µ∈∆̃

µ∗∑
r=µ∗

∑
δ1+···+δr+µ>α

0≤δj≤α−s, δj∈∆̃−

MR

(
Mβu0

ρ

)r (Cε)δ1+···+δr+µ

Cµ

r∏
j=1

(δj !)
1
b

≤ MR

∑
s<µ, µ∈∆̃

1
Cµ

µ∗∑
r=µ∗

(
Mβu0

ρ

)r ∑
δ1+···+δr+µ>α

0≤δj≤α−s, δj∈∆̃−

(
1

γK(α−s)
1
b

)δ1+···+δr+µ r∏
j=1

(δj !)
1
b

≤ MR
Kα+1

∑
s<µ, µ∈∆̃

(
1

γC(α−s)
1
b

)µ µ∗∑
r=µ∗

(
Mβu0

ρ

)r ∑
(δ1,...,δr)∈Nr
0≤δj≤α−s

r∏
j=1

(δj !)
1
b

(
1

γ(α−s)
1
b

)δj

≤ MR
Kα+1

∑
s<µ, µ∈∆̃

(
1

γC(α−s)
1
b

)µ µ∗∑
r=µ∗

(
Mβu0

ρ

)r (α−s∑
δ=0

(δ!)
1
b

(
1

γ(α−s)
1
b

)δ)r
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Then, observe that

α−s∑
δ=0

(δ!)
1
b

(
1

γ(α−s)
1
b

)δ
=

α−s∑
δ=0

(
δ!

(α−s)δ
) 1
b 1

γδ
≤ 1 +

α−s∑
δ=1

1
γδ
≤ 1

1− 1
γ

≤ 2

since γ ≥ 2. So, we can conclude

Nε(Q2
>α) ≤ MR

Kα+1

∑
s<µ, µ∈∆̃

(
1

γC(α−s)
1
b

)µ µ∗∑
r=µ∗

(
2Mβu0

ρ

)r

≤ MR
Kα+1

∑
s<µ, µ∈∆̃

(
1
γC

)µ µ∗∑
r=µ∗

(
2Mβu0

ρ

)r
. (68)

Now, observe that (1) ensures that

µ

p
+
p

p
≤ µ∗ and µ∗ ≤ µ

p
+
p

p
.

Then, since according to remark 6.9, we can assume that 2Mβu0

ρ ≥ 1, we get

µ∗∑
r=µ∗

(
2Mβu0

ρ

)r
≤ (µ∗ − µ∗ + 1)

(
2Mβu0

ρ

)µ∗
≤ (Aµ+B)χµ (69)

where χ is given by (64) and where

A =

(
1
p
− 1
p

)
χp and B =

(
p

p
−
p

p
+ 1

)
χp.

Finally, (64), (68) and (69) ensures that that for every ε ∈]0, 1[ and every α ∈ ∆̃ with α > s
satisfying (65), we have

Nε(Q2
>α) ≤ MR

Kα+1

∑
s<µ, µ∈∆̃

(
χ
γC

)µ
(Aµ+B)

≤ MR
Kα+1

∞∑
µ=s+1

(
χ
γC

)µ
(Aµ+B)

= MR qs+1
(

B
1−q + qA

(1−q)2
) 1
Kα+1 . (70)

This achieves the proof of lemma B.10 with

M2 =
1

1− ρ1(K)
MR qs+1

(
B

1−q + qA
(1−q)2

)
.
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Lemma B.11. Let K ≥ 2 and γ ≥ 2 be fixed such that (59) and (64) holds.

Then there exist M3 > 0, such that for every ε ∈]0, 1[ and every α ∈ ∆̃ with α > s
satisfying (65), we have

‖L−1
α Q3

>α‖qh,ε ≤M3

(
1
K

)α+1
.

Proof. The proof is very similar to the one of lemma B.10 and we get an estimate analogous
to (68) which read

Nε(Q3
>α) ≤ MS

Kα+1

(
1
γC

)s s∗∑
r=s∗

(
2Mβu0

ρS

)r
≤MS

(
1
C

)s s∗∑
r=s∗

(
2Mβu0

ρS

)r 1
Kα+1 .

The details are left to the reader. This which achieves the proof of lemma B.11 with

M3 = MS

(
1
C

)s s∗∑
r=s∗

(
2Mβu0

ρS

)r

Considering lemma B.1, proposition 6.12 directly follows from lemmas B.9, B.10, B.11.
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ries)]. Birkhäuser Verlag, Basel, 2006.

61


