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Abstract. The aim of this article is to characterize the saturation spaces that appear in
inverse problems. Such spaces are defined for a regularization method and a rate of conver-
gence of the estimation part of the inverse problem depends on their definition. Here we prove
that it is possible to define these spaces as regularity spaces, independent of the choice of the
approximation method. Moreover, this intrinsec definition enables us to provide minimax
rate of convergence under such assumptions.

1. Introduction

An inverse problem deals with the estimation of an unknown function ϕ which is not
observed directly but through an implicit relation to solve. Generally speaking, let ϕ be our
functional interest parameter which belongs to a Hilbert space Φ. We denote S a random
variable and the associated cumulative distribution function F ∈ ̥. Our objective is to study
the solution of the relation:

(1.1) A(ϕ, F ) = 0

where A is an operator defined on Φ × ̥.
The main feature of this presentation is that ϕ is implicitely related to F . Therefore, the

problem to deal with is to check whether or not there exists a unique solution that is stable
under small perturbation of the initial condition of the problem. If there exists a unique
stable solution ϕ to (??), then we can define the operator B such that:

ϕ = B (F )

Moreover, let S1, ...., Sn be realizations of the random variable X. Since F is unknown,
we have to replace it by an estimator F δ and the associated estimated solution ϕδ is defined
through:

ϕδ = B
(
F δ

)

Since the solution is stable, we know that the perturbation involved in the solution
∥∥ϕδ − ϕ

∥∥
will be controlled by the initial perturbation

∥∥F δ − F
∥∥. One example in econometrics of

well-posed inverse problem is illustrated by Vanhems (2002). Another classical example is
the GMM estimation. For example, let assume S = (X, Y ) ∈ IRm a random vector and F
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the associated cumulative distribution function; let h be an operator defined on IRm × Φ and
valued in IRr. We assume that h is integrable for any ϕ and consider the following problem:

IEF [h(Y,X, ϕ)] = 0

When ϕ is finite dimensional, we obtain the usual moment conditions of the GMM method.
It has been extensively studied (Hansen 1982, Hall 1993) and extended to infinite dimensional
spaces through Carrasco and Florens 2000.

In this paper, we will focus on linear inverse problem and we want to characterize solutions
of:

(1.2) y = Lϕ+ ⇔ ϕ+ = L+y

for a specific situation where the exact data y are not known, but only an approximation yδ

such that ‖y − yδ‖ ≤ δ. L is a linear operator that is supposed to be known. For example,
we may think of an observation model yi = yδ

i + εi where εi are observation errors. This is

also the case when L is unknown and is estimated by L̂n. In that case,the obervable data are
given by the relation:

yδ = L̂nϕ = y + (L̂n − L)ϕ

Moreover, we will suppose that our inverse problem is ill-posed. Then, L+yδ is not a good
approximation of L+y due to the unboundedness of the inverse operator L+.

Therefore, we cannot directly inverse the operator L but we try to approximate it by a
regularization operator which inverse is continuous and which converges to the true operator L.
In what follows, we define a regularization operator Rα which converges to L+ as α decreases
to zero (but not too fast in order to ensure the stability of the solution). Then construct
ϕδ

α = Rαy
δ, the regularized estimator of the solution of the ill-posed inverse problem. Write

also ϕα = Rαy the regularized of the real data y. The estimator should verify ϕδ
α− > ϕ when

α and δ go to zero.
This regularization operator depends on a smoothing parameter α which converges to 0.

Moreover, in order to prove the convergence of ϕδ
α to ϕ, we usually have to impose another con-

straint: ‖ϕα − ϕ‖ = O(αβ) where the parameter β controls the convergence of the regularised
solution to the true one. We define the space Φβ such that: ϕ+ ∈ Φβ =

{
ϕ; ‖ϕα − ϕ‖ = O(αβ)

}
.

In what follows, the sub-space defined by this condition is called saturation space. As a
matter of fact, such spaces determine the longest sets where a regularization scheme provide
estimators converging at an optimal rate of convergence. The objective of our work is then to
characterize this condition in terms of regularity assumptions of both the function ϕ and the
operator L. Moreover, under classical smoothness assumptions for the operator L, the space
will only depend on ϕ.

For general references, we refer to Chow, Ibragimov and Haasminski 1999, Cavalier and
Tsybakov 2000, Ermakov 1989, O’Sullivan 1996. Such kind of ill-posed linear inverse problems
occurs frequently in econometrics.
A very classical example is the Fredholm integral equation of the first kind with the kernel
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function K(x, s):
b∫

a

K(x, s)ϕ(s)ds = u(x), x ∈ [a, b]

where u is a known function. This inverse problem is ill-posed. The associated regularized
equation is the Fredholm integral equation of the second kind:

ϕ(x) −

b∫

a

K(x, s)ϕ(s)ds = u(x), x ∈ [a, b]

The Fredholm type one integral equation is in particular used in Carrasco Florens with
the extension of GMM to a continuous number of moment conditions. The formalisation of
the inversion of the variance of the moment conditions then lead to a linear integral equation
which is part of the implementation of optimal GMM.

Let us detail for example the case developed by Darolles, Florens Renault 2002.
Note S = (Y, Z,W ) a random vector; the probability distribution on S is characterized by

its joint cumulative distribution function F . For a given F , we consider the Hilbert space L2
F

of square integrable functions of S and we denote L2
F (Y ), L2

F (Z), L2
F (W ) the subspaces of

L2
F of functions depending on Y , Z or W only. Then, the objective is to study the function
ϕ ∈ L2

F (Z) solution of the functional equation:

(1.3) IE [Y − ϕ (Z) |W ] = 0

This relation can be rewritten in the following way:

Lϕ = y

where y = IE [Y |W ] and Lϕ = IE [ϕ (Z) |W ] . More precisely:

L : L2
F (Z)− > L2

F (W ) ϕ 7−→ Lϕ = IE [ϕ (Z) |W ]

L∗ : L2
F (W )− > L2

F (Z) ψ 7−→ L∗ψ = IE [ψ (W ) |Z ]

where L∗ is the adjoint of L.
Darolles Florens Renault show that this inverse problem (??) is ill-posed and they transform

it the following way. First, instead of studying L, they consider L∗L and regularize it by using
Tikhonov regularisation:

(1.4) (αI + L∗L)ϕ = L∗y

where α is a smoothing parameter.
The problem defined by (??) is now well-posed and we can define the approximated solution:

ϕα = (αI + L∗L)−1L∗y

= Rα (L∗y)

When replacing the second part y by an estimator yδ, it becomes:
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ϕδ
α = Rα

(
L∗yδ

)

In order to prove the convergence of ϕδ
α to the true function ϕ, they have to restrict the set

of functions ϕ ∈ L2
F (Z) ∩ Φβ .Therefore, under assumptions on α and δ, they prove that:

Theorem 1.1. If ϕ ∈ Φβ, then there exists a choice of α and δ such that

n
β

2+β

∥∥ϕδ
α − ϕ

∥∥2
= O(1)

The condition ϕ ∈ Φβ is crucial for the demonstration and also appears in many ill-posed
inverse problems (see for example Loubes Vanhems 2002) but up to now, the link between
the space Φβ , the regularity of the function ϕ and the operator L was not clearly established.

Therefore, the main goal of this paper is to try to characterize this space Φβ and we show
that its definition is independant of the type of regularization; moreover we can characterize
this space only through regularity assumptions on ϕ, which enables us to check the minimax
properties of Darolles Florens Renault estimator.

Even if in this work we only consider linear inverse problems, it is possible to study in a
similar way the nonlinear case, when replacing the assumptions over L by assumptions over
DL(ϕ+) (the differential of L with respect to ϕ+). For a close study of nonlinear inverse
problem, we refer to Ludena Loubes 2003.

2. Minimax rate of convergence for inverse problems

The scheme of our study is the classical inverse problem defined in (??).

y = Lϕ+

where ϕ+ is the true functional interest parameter which belongs to an Hilbert space Φ ⊂ L2(X),
where L2(X) is the Hilbert space of square integrable real valued functions depending on X,
a random real-valued variable. Moreover L is a linear operator defined on L2(X) to L2(Y )
(with Y a real-valued random variable). At last we define the function y which belongs to an
Hilbert space Ψ ⊂ L2(Y ) . Then, L∗ : L2(Y )− > L2(X) will be the adjoint of L.
We assume that L∗L is a compact operator. This assumption is a natural assumption, common
in all the work about this topic. Then, we can write (σ2

n, vn, un), ∀n ∈ N the associated spec-
tral value decomposition and Eλ the spectrum of the compact operator L∗L. (σ2

n, vn), n ∈ N

are respectively the eigenvalues and the eigenvectors of the compact operator L∗L and (un)
are chosen by un = Lvn

‖Lvn‖
, ∀n ∈ N. As a result we have the following notations for all integer

n:

Lvn = σnun, L∗un = σnvn,

Then, for all functions φ and y, we can write:

Lϕ =
∑

n

σn < ϕ, vn > un, L∗y =
∑

n

σn < y, un > vn,

L∗Lϕ =
∑

n

σ2
n < ϕ, vn > vn =

∫
λdEλϕ.
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Using the spectral measure of the operator, we define the following notations. For every
continuous function g, set:

(2.1) g(L∗L)ϕ =

∫
g(λ)dEλϕ =

∑

n

g(σ2
n) < ϕ, vn > vn.

As a result, for every regularization scheme Rα, there exists a function gα such that

ϕα = RαL
∗y =

∫
gα(λ)dEλL

∗y.

For example, the Tikhonov’s regularized estimator is defined by the function

gα =
1

λ+ α
.

See for instance Tikhonov and Arsenin (1977).
Now, we want to quantify the regularity of the inverse operator L+. Due to the ill-posedness
of the operator, we can not study directly this regularity directly. That is the reason why,
∀δ > 0, and for all subspace M of L2(X), we define

(2.2) Ω(δ,M) = sup{‖ϕ‖, : ϕ ∈ M, : ‖Lϕ‖ ≤ δ}.

This quantity is a way of measuring the action of the pseudo-inverse L+ over a ball ‖Lφ‖ ≤ δ.
Set also, for a regularization operator R = Rα and a regularization sequence α,

(2.3) ∆(δ,M, R) = sup{‖Rαϕ
δ − ϕ‖, : ϕ ∈ M, : yδ ∈ Y , : ‖y − yδ‖ ≤ δ}.

This quantity measures the quality of approximation of the regularization method R for
functions in the set M. The following inequality links these two quantities.

Lemma 2.1.

∆(δ,M, R) ≥ Ω(δ,M).

Proof. Let ϕ ∈ M, such that ‖Lϕ‖ ≤ δ . As a result, for a choice of yδ = 0, we get y = Lϕ
is such that ‖y‖ ≤ δ. Hence, taking the supremum over all x ∈ M, we get

∆(δ,M, R) ≥ Ω(δ,M).

�

Define, for β ≥ 0 the set Xβ as the range of the operator (L∗L)β , i.e:

Xβ = R((L∗L)β).

Indeed
Xβ = {ϕ ∈ Φ, : ∃ω ∈ L2(X), : ϕ = (L∗L)βω}.

The set Xβ can be written using the following decomposition for ρ > 0:

Xβ = ∪ρ>0Xβ,ρ,with

Xβ,ρ = {ϕ ∈ X, : ∃ω ∈ L2(X), : ‖ω‖ ≤ ρ, : ϕ = (L∗L)βω}.

Using Lemma (??), a lower bound for Ω(δ,M) will give the lower rate of convergence for
the approximation method R. This rate determines the difficulty of the issue. The following
proposition gives this rate of convergence, which, of course, depends on δ, the approximation
of the real data y by yδ.
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Proposition 2.2.

Ω(δ,Xβ,ρ) = δ
2β

2β+1ρ
1

2ρ+1 .

Proof. The proof of the previous result falls into 2 parts.
First, using the definition of Xβ we get

‖ϕ‖ = ‖(L∗L)βω‖

≤ ‖(L∗L)β+ 1

2ω‖
2β

2β+1‖ω‖
1

2β+1

≤ ‖(L∗L)
1

2ϕ‖
2β

2β+1‖ω‖
1

2β+1

≤ ‖Lϕ‖
2β

2β+1‖ω‖
1

2β+1

≤ δ
2β

2β+1ρ
1

2ρ+1 .

Here we have used the interpolation inequality with r = β and ρ = β + 1/2.

∀q > r ≥ 0, ‖(L∗L)rφ‖ ≤ ‖(L∗L)qφ‖
r
q ‖φ‖1− r

q .

As a consequence we get the upper bound

(2.4) Ω(δ,Xβ,ρ) ≤ δ
2β

2β+1ρ
1

2ρ+1 .

Then, recall that the eigenvalues σn are decreasing towards 0, as n increases. Hence, set
δn = ρσ2β+1

n . As a result
(
δn
ρ

) 2

2β+1

= σ2
n

is an eigenvalue of the operator L∗L. Hence, the associated eigenvector vn satisfies ‖vn‖ = 1.
Set now

ϕn = ρ(L∗L)βvn ∈ Xβ,ρ.

We have

ϕn = ρ(L∗L)βvn

= ρσ2β
n vn

= δ
2β

2β+1

n ρ
1

2β+1vn

= δ
2β+2

2β+1

n ρ−
1

2β+1vn.

So, we get

‖Lϕn‖
2 =< L∗Lϕn, ϕn >= δ2

n.

As a consequence

(2.5) Ω(δn, Xβ,ρ) ≥ ‖φn‖ = δ
2β

2β+1

k ρ
1

2β+1 ,

Then inequalities (??) and (??) conclude the proof. �
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3. Characterization of saturation spaces for regularization method

Recall that the regularized function ϕα and the true function ϕ+ ared defined by the
following relations:

ϕα =

∫
gα(λ)dEλL

∗y

ϕ+ =

∫
1

λ
dEλL

∗y

As a consequence, the difference between the two functions can be expressed using the spectral
measure Eλ as:

ϕ+ − ϕα = ϕ+ − gα(L∗L)L∗y

= (I − gα(L∗L)L∗L)ϕ+

=

∫
(1 − λgα(λ))dEλϕ

+

= rα(L∗L)ϕ+.

We have also the following usefull equality:

(3.1) ‖ϕ+ − ϕα‖
2 =

∫ ‖L‖2

0

r2
α(λ)d‖Eλϕ

+‖2.

In the following theorem, we give the conditions that enable to identify the saturation spaces
Φβ and the spaces Xβ . The condition depends on the regularization scheme and the decay of
the eigenvalues of the operator.

Theorem 3.1. • If λβ|rα(λ)| ≤ αβ , then

(3.2) ϕ+ ∈ Xβ,ρ ⇒ ‖ϕα − ϕ+‖ ≤ ραβ.

• If there exists a constant γ such that ∀λ ∈ [cα, ‖L‖2], λβ|rα(λ)| ≥ γαβ, then we get

the following proposition:

(3.3) ‖ϕα − ϕ+‖ = O(αβ) ⇒ ϕ+ ∈ Xβ.

Proof. For the first part, note that we have:

‖ϕ+ − ϕα‖ = ‖rα(L∗L)(L∗L)βω‖

≤ |rα(λ)|λβ‖ω‖

≤ αβρ.
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For the second part, using (??) we get:

‖ϕ+ − ϕα‖
2 =

∫ ‖L‖2

0

r2
α(λ)d‖Eλϕ

+‖2

≥

∫ ‖L‖2

cα

r2
α(λ)d‖Eλϕ

+‖2

≥ γ2α2β

∫ ‖L‖2

cα

λ−2βd‖Eλϕ
+‖2

= O(α2β).

As a result,
∫ ‖L‖2

cα
λ−2βd‖Eλϕ

+‖2 = O(1), hence we can define

w =

∫ ‖L‖2

0

λ−βdEλϕ
+ ∈ L2(X).

We now can see that
ϕ+ = (L∗L)βw.

�

As a consequence, under the assumption of Theorem (??), we have the equality of the two
sets

(3.4) Φβ = {ϕ, : ‖ϕ− ϕα‖ = O(αβ)} = Xβ = {ϕ, : ∃ω ∈ L2, ϕ = (L∗L)βω}.

The equality (??) provides a characterization of the saturation spaces Φβ in terms of func-
tionnal spaces, independent of the chosen regularization method. As a consequence, the sets
Φβ can be characterized as functional sets, where the regularity of the operator L is linked
with the regularity of the function ϕ. These two regularities can be expressed by the decay
of the Fourier coefficients of ϕ, < ϕ, vn > and of the eigenvalues σ2

n of the operator L∗L as it
appears in the following corollary.

Corollary 3.2. Using the spectral values decomposition, the sets Xβ can be rewritten as:

Φβ = Xβ = {ϕ =
∑

n

< ϕ, vn > vn, :
∑

k≥n

| < ϕ, vn > |2 = σ−2β
n }.

Now, we aim at giving a definition of the sets Φβ that only involves the regularity of
the parameter of interest φ+. It will enables us to check the optimality of the estimation
procedures, used in econometrics, in terms of minimax rate of convergence. For this assume
regularity conditions for the operator L. Let H t be a Sobolev space. We recall that the spaces
Hp are defined by the following relation:

φ ∈ Hp(X) ⇔ ∀0 ≤ m ≤ p, φ(m) ∈ L2(X).

Hence the dual space of a space H t is (H t)
′

= H−t. Here, we consider that L is a smoothing
operator of order t. Indeed, there exists a real t such that, for all ϕ ∈ L2 we get

< Lϕ, ϕ >∼ ‖ϕ‖
H−

t
2
.

This assumption is standard in linear inverse problems, see for instance Cohen, Hoffmann
and Reiss (2002), Cavalier and Tsybakov (2000) or Johnstone and Silverman (1990). Hence,
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Corollary (??) shows that the condition ϕ ∈ Φβ is equivalent to ϕ ∈ H tβ, the Sobolev space
of order tβ. As a consequence, for φ+ ∈ Φβ , we get that φ+ ∈ H tβ and the operator L is such
that:

(3.5) L : H tβ −→ H t(1+β).

For every ϕ ∈ Φβ , we get the following rate of convergence:

‖ϕδ
α − ϕ+‖2 ≤ ‖ϕδ

α − ϕα‖
2 + ‖ϕα − ϕ+‖2

≤ O(α2β) + ‖Rα(yδ − y)‖2

≤ O(α2β) +
δ

α
.

An optimal choice for the regularization parameter is α ∼ δ
1

2β+1 . So, for estimating a function

ϕ ∈ Φβ , an upper bound for the rate of convergence is given by δ
2β

2β+1 . This result, together

with Proposition (??), prove that the rate of convergence in δ
2β

2β+1 is a minimax rate of
convergence for the inverse problem (??) and for the quadratic loss function.
The approximation rate δ has now to be made more precise. When L is not observed, we
consider an estimate L̂n → L . The observable data are then given by the relation

yδ = L̂nϕ = y + (L̂n − L)ϕ.

As a result we get the following correspondance

δn = ‖(L̂n − L)ϕ‖.

In the example studied by Darolles, Florens and Renault (2002), the operator is estimated by
a kernel estimator and δn is the optimal choice for the smoothing parameter hn of the kernel.
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