ON THE LOCAL CONVERGENCE OF THE DOUGLAS-RACHFORD ALGORITHM

H.H. BAUSCHKE ${ }^{\dagger}$, D. NOLL*

Abstract

We discuss the Douglas-Rachford algorithm to solve the feasibility problem for two closed sets A, B in \mathbb{R}^{d}. We prove its local convergence to a fixed point when A, B are finite unions of convex sets. We also show that for more general nonconvex sets the scheme may fail to converge and start to cycle, and may then even fail to solve the feasibility problem.

Keywords nonconvex feasibility problem • fixed-point • discrete dynamical system . convergence • stability

1. Introduction

The Douglas-Rachford iterative scheme, originally introduced in [6] to solve nonlinear heat flow problems, aims to find a point x^{*} in the intersection of two closed constraint sets A, B in \mathbb{R}^{d} or in Hilbert space. As a consequence of more general results in monotone operator theory by Lions and Mercier [12] it is known that the scheme converges weakly for two closed convex sets A, B in Hilbert space with non-empty intersection. A rather comprehensive analysis of the convex case is given in [3].

Due to its success in applications, the Douglas-Rachford scheme is frequently used in the nonconvex setting despite the lack of a satisfactory convergence theory. Recently Hesse and Luke [10] made progress by proving local convergence of the scheme for B an affine subspace intersecting the set A transversally, where A is no longer convex, but satisfies a regularity hypothesis called superregularity. Numerical experiments in the nonconvex case indicate, however, that the Douglas-Rachford scheme should converge in much more general situations. Very frequently one observes that the iterates settle for convergence after a chaotic transitory phase; see [1, 7] and the references therein. Here we prove local convergence of the Douglas-Rachford scheme when A, B are finite unions of convex sets. Our result is complementary to [10], because no transversality hypothesis is required. This result is proved in section 3 .

We will also show that for nonconvex sets A, B the Douglas-Rachford scheme may fail to converge and start to cycle without solving the feasibility problem. We show that this may even lead to continuous limiting cycles. These are more delicate to construct, because in that case the Douglas-Rachford sequence $x_{n+1} \in T\left(x_{n}\right)$ is bounded and satisfies $x_{n+1}-x_{n} \rightarrow 0$, but fails to converge. Our construction is given in section 4.

2. Preparation

Given a nonempty closed subset A of \mathbb{R}^{d}, the projection onto A is the set-valued mapping P_{A} associating with $x \in \mathbb{R}^{d}$ the nonempty set

$$
P_{A}(x)=\{a \in A:\|x-a\|=\operatorname{dist}(x, A)\},
$$

[^0]where $\|\cdot\|$ is the Euclidean norm, and $\operatorname{dist}(x, A)=\min \{\|x-a\|: a \in A\}$. The reflection of x in A is then the set-valued operator
$$
R_{A}=2 P_{A}-I
$$

Given two nonempty closed sets A, B in \mathbb{R}^{d}, the Douglas-Rachford iterative scheme, starting at x_{0}, generates a sequence x_{n} by the recursion

$$
x_{n+1} \in T\left(x_{n}\right), \quad T:=\frac{1}{2}\left(R_{B} R_{A}+I\right),
$$

$n \in \mathbb{N}$. We call T the Douglas-Rachford operator, or shortly, DR operator. Suppose $x^{+} \in T(x)$ is one step of the Douglas-Rachford scheme. Then x^{+}is obtained as

$$
x^{+}=x+b-a,
$$

where $a \in P_{A}(x), y=2 a-x$, and $b \in P_{B}(y)$. We call a the shadow of iterate x on A, b the reflected shadow of x in B, both used to produce x^{+}. We write $x^{+}=T(x)$ if the DR-operator is single-valued, and similarly for projectors P_{A}, P_{B} and reflectors R_{A}, R_{B}.

The fixed point set of T is defined as $\mathrm{F}(T)=\left\{x \in \mathbb{R}^{d}: x \in T(x)\right\}$. Note that if $x^{*} \in \mathrm{~F}(T)$, and if $a^{*} \in A, b^{*} \in B$ are the shadow and reflected shadow of x^{*} used to produce $x^{*} \in T\left(x^{*}\right)$, then $a^{*}=b^{*} \in A \cap B$, so every fixed point gives rise to a solution $a^{*} \in A \cap B$ of the feasibility problem. However, in the set-valued case, it may happen that $x^{*} \in \mathrm{~F}(T)$ has other shadow-reflected shadow pairs ($\left.\tilde{a}, \tilde{b}\right)$ leading away from x^{*}, i.e., where $\tilde{a} \neq \tilde{b}$, so that $\tilde{x}=x^{*}+\tilde{b}-\tilde{a} \in T\left(x^{*}\right) \backslash\left\{x^{*}\right\}$. We therefore introduce the set of strong fixed-points of T as

$$
\mathcal{F}(T)=\left\{x \in \mathbb{R}^{d}: T(x)=\{x\}\right\} .
$$

Note that $A \cap B \subset \mathcal{F}(T) \subset \mathrm{F}(T)$. If T is single-valued, then $\mathrm{F}(T)=\mathcal{F}(T)$.
These concepts are linked to discrete dynamical system theory, where fixed points are steady states, and where any sequence $x_{n+1} \in T\left(x_{n}\right)$ is called an orbit or a trajectory. We recall that a steady state x^{*} is stable in the sense of Lyapunov if for every $\epsilon>0$ there exists $\delta>0$ such that every trajectory $x_{n+1} \in T\left(x_{n}\right)$ with starting point $x_{0} \in B\left(x^{*}, \delta\right)$ satisfies $x_{n} \in B\left(x^{*}, \epsilon\right)$ for all n. Here and throughout $B(x, r)$ means the closed Euclidian ball with centre x and radius r. It is clear that $x^{*} \in \mathrm{~F}(T) \backslash \mathcal{F}(T)$ can never be stable, because $x_{0}=x^{*}$ produces trajectories going away from x^{*}.

3. Unions of convex sets

In this section $A=\bigcup_{i \in I} A_{i}$ and $B=\bigcup_{j \in J} B_{j}$ are finite unions of closed convex sets, a case which is of interest in a number of practical applications like rank or sparsity optimization [11], or even road design [5], where finite unions of linear or affine subspaces are used. For every $i \in I$ and $j \in J$ let $T_{i j}$ be the Douglas-Rachford operator associated with the sets A_{i}, B_{j}. By convexity of A_{i}, B_{j}, the operators $T_{i j}$ are single-valued, and $T(x) \subset\left\{T_{i j}(x): i \in I, j \in J\right\}$.

Since A, B are finite unions of convex sets, every DR step is realized as the DR step of one of the operators $T_{i j}$, and in that case, we say that this operator is active. To make this precise, we define the set of active indices at x as

$$
\begin{equation*}
K(x)=\left\{(i, j) \in I \times J: P_{A_{i}}(x) \in P_{A}(x), P_{B_{j}}\left(R_{A_{i}}(x)\right) \in P_{B}\left(R_{A_{i}}(x)\right)\right\} . \tag{1}
\end{equation*}
$$

Note that if $(i, j) \in K(x)$, then $T_{i j}(x) \in T(x)$. Conversely, for every $x^{+} \in T(x)$, there exists $(i, j) \in K(x)$ such that $x^{+}=T_{i j}(x)$. However, be aware that $T_{i j}(x) \in T(x)$ may be true without (i, j) being active at x.
Theorem 1. (Stable local attractor). Let $A=\bigcup_{i \in I} A_{i}$ and $B=\bigcup_{j \in J} B_{j}$ be finite unions of closed convex sets, and let $x^{*} \in \mathcal{F}(T)$ be a strong fixed point. Then x^{*} has a radius of attraction $r>0$ with the following property: For arbitrary fixed $\epsilon \in(0, r)$,
suppose a Douglas-Rachford trajectory $x_{n+1} \in T\left(x_{n}\right)$ enters the ball $B\left(x^{*}, \epsilon\right)$. Then it stays there and converges to some fixed point $\bar{x} \in \mathrm{~F}(T)$. Moreover, every accumulation point of the shadow sequence $a_{n} \in P_{A}\left(x_{n}\right)$ is a solution of the feasibility problem. The radius of attraction can be computed as

$$
\begin{equation*}
r=\sup \left\{\epsilon>0: K\left(B\left(x^{*}, \epsilon\right)\right) \subset K\left(x^{*}\right)\right\} . \tag{2}
\end{equation*}
$$

Proof. 1) The fact that $x^{*} \in \mathcal{F}(T)$ is a strong fixed point has the following consequence. Whenever $(i, j) \in K\left(x^{*}\right)$ is active, then $P_{A_{i}}\left(x^{*}\right)=P_{B_{j}}\left(R_{A_{i}}\left(x^{*}\right)\right) \in A \cap B$. Therefore, for every $(i, j) \in K\left(x^{*}\right)$, the operator $T_{i j}$ has x^{*} as a fixed point.
2) We now show the following. There exists $\epsilon>0$ such that every $x \in B\left(x^{*}, \epsilon\right)$ has $K(x) \subset K\left(x^{*}\right)$.

Let us consider the set $I(x)=\{i \in I$: there exists $j \in J$ such that $(i, j) \in K(x)\}$ of active indices $i \in I$ at x. Then by definition

$$
\begin{equation*}
\delta_{1}:=\min \left\{\operatorname{dist}\left(x^{*}, A_{i}\right): i \notin I\left(x^{*}\right)\right\}-\operatorname{dist}\left(x^{*}, A\right)>0 . \tag{3}
\end{equation*}
$$

Similarly, we have
(4) $\delta_{2}:=\min \left\{\operatorname{dist}\left(R_{A_{i}}\left(x^{*}\right), B_{j}\right)-\operatorname{dist}\left(R_{A_{i}}\left(x^{*}\right), B\right): i \in I\left(x^{*}\right),(i, j) \notin K\left(x^{*}\right)\right\}>0$.

Choose $\epsilon>0$ such that $2 \epsilon<\min \left\{\delta_{1}, \delta_{2}\right\}$. We show that ϵ is as claimed. Pick $(i, j) \notin$ $K\left(x^{*}\right)$. We have to show that $(i, j) \notin K(x)$. First consider the case where $i \in I \backslash I\left(x^{*}\right)$. We show that $i \in I \backslash I(x)$. Indeed,

$$
\begin{aligned}
\operatorname{dist}(x, A) & \leq\left\|x-x^{*}\right\|+\operatorname{dist}\left(x^{*}, A\right) \\
& \leq \epsilon+\operatorname{dist}\left(x^{*}, A_{i}\right)-\delta_{1} \quad(\text { using }(3)) \\
& \leq 2 \epsilon+\operatorname{dist}\left(x, A_{i}\right)-\delta_{1}<\operatorname{dist}\left(x, A_{i}\right)
\end{aligned}
$$

showing that $i \notin I(x)$. We now discuss the case where $i \in I\left(x^{*}\right)$, but $(i, j) \notin K\left(x^{*}\right)$. That means $\operatorname{dist}\left(R_{A_{i}}\left(x^{*}\right), B_{j}\right)-\operatorname{dist}\left(R_{A_{i}}\left(x^{*}\right), B\right) \geq \delta_{2}$. Therefore

$$
\begin{aligned}
\operatorname{dist}\left(R_{A_{i}}(x), B\right) & \leq\left\|R_{A_{i}}(x)-R_{A_{i}}\left(x^{*}\right)\right\|+\operatorname{dist}\left(R_{A_{i}}\left(x^{*}\right), B\right) \\
& \leq \epsilon+\operatorname{dist}\left(R_{A_{i}}\left(x^{*}\right), B_{j}\right)-\delta_{2} \quad(\text { using (4)) } \\
& \leq 2 \epsilon+\operatorname{dist}\left(R_{A_{i}}(x), B_{j}\right)-\delta_{2}<\operatorname{dist}\left(R_{A_{i}}(x), B_{j}\right)
\end{aligned}
$$

proving $(i, j) \notin K(x)$.
3) As an immediate consequence of 2) we have the following: If $x \in B\left(x^{*}, \epsilon\right)$ and $x^{+} \in T(x)$ is realized as $x^{+}=T_{i j}(x)$ for some active operator $T_{i j}$, that is, for some $(i, j) \in K(x)$, then this operator $T_{i j}$ has x^{*} as a fixed point. Namely, by 2) x satisfies $K(x) \subset K\left(x^{*}\right)$, hence $(i, j) \in K\left(x^{*}\right)$, and therefore $P_{A_{i}}\left(x^{*}\right)=P_{B_{j}}\left(R_{A_{i}}\left(x^{*}\right)\right)$, which proves what we claimed.
5) We next show that as soon as a DR sequence $x_{n+1} \in T\left(x_{n}\right)$ enters the ball $B\left(x^{*}, \epsilon\right)$, then it stays there and converges.

This can be seen as follows. Suppose the trajectory enters $B\left(x^{*}, \epsilon\right)$ at stage n. Then the active operator $T_{i_{n} j_{n}}$ used to produce $x_{n+1}=T_{i_{n} j_{n}}\left(x_{n}\right) \in T\left(x_{n}\right)$ has x^{*} as a fixed point, because $\left(i_{n}, j_{n}\right) \in K\left(x_{n}\right) \subset K\left(x^{*}\right)$. Therefore, by [2, Prop. 4.21], this operator satisfies $\left\|x_{n+1}-x^{*}\right\|=\left\|T_{i_{n} j_{n}}\left(x_{n}\right)-x^{*}\right\| \leq\left\|x_{n}-x^{*}\right\| \leq \epsilon$. The conclusion is that from index n onward the sequence x_{n} stays in the ball $B\left(x^{*}, \epsilon\right)$, and all operators $T_{i_{m} j_{m}}$ used from here on have x^{*} as a common fixed point.

Now we invoke Elsner et al. [8, Thm. 1], who show that x_{n} converges to a common fixed point \bar{x} of the operators $T_{i_{m} j_{m}}, m \geq n$. But \bar{x} is then also a fixed point of T, as follows from the continuity of the distance functions. One has $\bar{x} \in B\left(x^{*}, \epsilon\right)$, and moreover, if $a_{n}=P_{i_{n}}\left(x_{n}\right) \in A_{i_{n}} \subset A$, then every accumulation point of the sequence a_{n} is a solution of the feasibility problem. Namely, if we consider $b_{n}=P_{B_{j}}\left(R_{A_{i}}\left(x_{n}\right)\right) \in B$, and if we take
accumulation points a^{*} of a_{n} and b^{*} of b_{n}, then $\left.a^{*} \in P_{A}\left(x^{*}\right), b^{*} \in P_{B}\left(2 a-x^{*}\right)\right)$, hence $a^{*}=b^{*}$, because x^{*} is a strong fixed point.
6) To conclude let us now define the radius of attraction r as in formula (2). In 1) -5) above we have shown that there exists $\epsilon>0$ such that $K\left(B\left(x^{*}, \epsilon\right)\right) \subset K\left(x^{*}\right)$, and that this inclusion alone already implies convergence of every trajectory entering $B\left(x^{*}, \epsilon\right)$. This means that the supremum in (2) is over a nonempty set, and that is all that we need.
Remark 1. (Stable steady state.) The dynamic system interpretation of Theorem 1 is that a strong fixed point $x^{*} \in \mathcal{F}(T)$ is a stable steady state of the Douglas-Rachford dynamical system $x^{+} \in T(x)$ when A, B are finite unions of convex sets. Note also that we do not claim that $\bar{x} \in \mathrm{~F}(T)$ is strong, nor do we claim that the iterates converge to x^{*} itself.

The following observation is also of the essence.
Remark 2. (Strong fixed point needed). Theorem 1 is not true if $x^{*} \in \mathrm{~F}(T) \backslash \mathcal{F}(T)$, that is, if x^{*} is not a strong fixed point. Indeed, let $A=\{-1,1\}$ and $B=\{-2,1\}$. Then $x^{*}=0$ is a fixed-point of T, but not a strong one. Now there exist arbitrarily small $\epsilon \in(0,1)$ such that trajectories starting in $B(0, \epsilon)=(-\epsilon, \epsilon)$ will not stay in that ball. Indeed, for $x \in(-\epsilon, 0), x^{+}$will move away from 0 and will not stay in $B(0, \epsilon)$, while for $x \in(0, \epsilon), x^{+}$stays in that interval.

Remark 3. Note that if A, B are convex sets, then all $K(x)$ are identical singleton sets, so formula (2) gives $r=\infty$, which means the DR scheme converges globally.

Remark 4. Formula (2) allows to compute the radius of attraction of a strong fixed-point $x^{*} \in \mathcal{F}(T)$ in certain cases. For illustration, consider $A=\{(x, 0): x \in \mathbb{R}\} \cup\{(0, y): y \in$ $\mathbb{R}\}$ a union of two lines and $B=\left\{(x, y): y=-\frac{y^{*}}{x^{*}} x+y^{*}\right\}$ a line, where $x^{*}>0, y^{*}>0$. Then $\left(0, y^{*}\right)$ and $\left(x^{*}, 0\right)$ are the two only fixed points of T, both strong, and one easily finds $r\left(x^{*}, 0\right)=x^{*} / \sqrt{2}$ and $r\left(0, y^{*}\right)=y^{*} / \sqrt{2}$.
Remark 5. (Asymptotic stability). Let $x^{*} \in \mathcal{F}(T)$ be a strong fixed point, and suppose there exists $\delta>0$ such that $B\left(x^{*}, \delta\right)$ contains no further fixed point of T. Then it follows from Theorem 1 that we can find $\epsilon \in(0, \delta]$ such that every trajectory $x_{n+1} \in T\left(x_{n}\right)$ entering $B\left(x^{*}, \epsilon\right)$ stays there and converges to x^{*}. In the dynamical system terminology, x^{*} is then asymptotically stable in the sense of Lyapunov. Note that this still fails for an isolated fixed point $x^{*} \in \mathrm{~F}(T) \backslash \mathcal{F}(T)$.
Theorem 2. (Local convergence). Let $A=\bigcup_{i \in I} A_{i}$ and $B=\bigcup_{j \in J} B_{j}$ be finite unions of convex sets. Let $x_{n+1} \in T\left(x_{n}\right)$ be a bounded Douglas-Rachford sequence satisfying $x_{n+1}-x_{n} \rightarrow 0$. Then x_{n} converges to a fixed-point $\bar{x} \in \mathrm{~F}(T)$. Moreover, every accumulation point of the shadow sequence $a_{n} \in P_{A}\left(x_{n}\right)$ is a solution to the feasibility problem.

Proof. 1) For every $n \in \mathbb{N}$ let us choose an active index pair $\left(i_{n}, j_{n}\right) \in K\left(x_{n}\right)$ such that $x_{n+1}=T_{i_{n} j_{n}}\left(x_{n}\right)$. Put $a_{n}=P_{A_{i_{n}}}\left(x_{n}\right)$ and $b_{n}=P_{B_{j_{n}}}\left(R_{A_{i_{n}}}\left(x_{n}\right)\right)=P_{B_{j_{n}}}\left(2 a_{n}-x_{n}\right)$, so that $x_{n+1}=x_{n}+b_{n}-a_{n}$. Note that $a_{n}-b_{n}=x_{n}-x_{n+1} \rightarrow 0$ by hypothesis.
2) Let x^{*} be any accumulation point of the sequence x_{n}. We define a subset $K_{0}\left(x^{*}\right)$ of the active set $K\left(x^{*}\right)$ as

$$
K_{0}\left(x^{*}\right)=\left\{(i, j) \in K\left(x^{*}\right): P_{A_{i}}\left(x^{*}\right)=P_{B_{j}}\left(R_{A_{i}}\left(x^{*}\right)\right)\right\} .
$$

Note that every $T_{i j}$ with $(i, j) \in K_{0}\left(x^{*}\right)$ has x^{*} as a fixed point.
3) We now claim that for every accumulation point x^{*} of the sequence x_{n} there exists $\epsilon>0$ and an index n_{0} such that for every x_{n} with $n \geq n_{0}$ and $x_{n} \in B\left(x^{*}, \epsilon\right)$, we have $\left(i_{n}, j_{n}\right) \in K_{0}\left(x^{*}\right)$.

To prove this, assume on the contrary that for every $\epsilon=\frac{1}{k}$ there exists n_{k} such that $x_{n_{k}} \in B\left(x^{*}, \frac{1}{k}\right)$, but $\left(i_{n_{k}}, j_{n_{k}}\right) \notin K_{0}\left(x^{*}\right)$. Moreover, let $n_{k}<n_{k+1} \rightarrow \infty$. Then $x_{n_{k}} \rightarrow$ x^{*}. Passing to another subsequence which we also denote by $x_{n_{k}}$, we may assume that $i_{n_{k}}=i, j_{n_{k}}=j$. Then $a_{n_{k}}=P_{A_{i}}\left(x_{n_{k}}\right) \rightarrow a^{*} \in A, b_{n_{k}}=P_{B_{j}}\left(R_{A_{i}}\left(x_{n_{k}}\right)\right) \rightarrow b^{*} \in B$. Since $a_{n}-b_{n} \rightarrow 0$ by part 1), we deduce that $a^{*}=b^{*} \in A \cap B$. Since we also have $a_{n_{k}}=P_{A_{i}}\left(x_{n_{k}}\right) \in P_{A}\left(x_{n_{k}}\right)$ and $b_{n_{k}} \in P_{B}\left(R_{A_{i}}\left(x_{n_{k}}\right)\right) \subset P_{B}\left(R_{A}\left(x_{n_{k}}\right)\right)$, we get $a^{*} \in P_{A}\left(x^{*}\right)$ and $b^{*} \in P_{B}\left(R_{A}\left(x^{*}\right)\right)$, hence $(i, j) \in K\left(x^{*}\right)$. Since $a^{*}=b^{*}$, we have $(i, j) \in K_{0}\left(x^{*}\right)$. This contradiction proves the claim.
4) Since x^{*} is an accumulation point of the sequence x_{n}, there exist infinitely many indices with $x_{n} \in B\left(x^{*}, \epsilon\right)$. Choose one with $n \geq n_{0}$. Then $x_{n+1}=T_{i_{n} j_{n}}\left(x_{n}\right)$, and by part $3)$ we have $\left(i_{n}, j_{n}\right) \in K_{0}\left(x^{*}\right)$. By part 2), $T_{i_{n} j_{n}}$ has therefore x^{*} as a fixed point. Using [2, Prop. 4.21], we deduce $\left\|x_{n+1}-x^{*}\right\|=\left\|T_{i_{n} j_{n}}\left(x_{n}\right)-x^{*}\right\| \leq\left\|x_{n}-x^{*}\right\| \leq \epsilon$, hence x_{n+1} stays in the ball $B\left(x^{*}, \epsilon\right)$. This means we can repeat the argument, showing that the entire sequence $x_{m}, m \geq n$, stays in $B\left(x^{*}, \epsilon\right)$. By part 3) the operators $T_{i_{m} j_{m}}, m \geq n$, have the common fixed point x^{*}, hence we conclude again using [8, Thm. 1] that x_{m} converges to some \bar{x}, which must be a fixed point of T. The second part of the statement follows now from $a_{n}-b_{n} \rightarrow 0$.

Remark 6. (Discrete limit cycle). Let $A=\{(x, y): y=0\} \subset \mathbb{R}^{2}$ be the x-axis, fix $1 \geq \eta>0$, and put $B=\{(0,0),(7+\eta, \eta),(7,-\eta)\}$. When started at $x_{1}=(7, \eta)$, the method cycles between the four points $x_{1}, x_{2}=(7+\eta, 0), x_{3}=(7+\eta,-\eta), x_{4}=(7,0)$. Note that B is a finite union of bounded convex sets and A is convex, the iterates x_{2} and x_{4} reach A, but the method fails to converge, and it also fails to solve the feasibility problem.
Remark 7. (Several shadows). Let B be a circle in \mathbb{R}^{2}, and let A consist in the union of two circles which touch B from outside in a_{1}^{*}, a_{2}^{*}. Then the centre x^{*} of B is a fixed-point of the Douglas-Rachford operator T, and the two points $a_{i}^{*} \in A \cap B$ are both shadows of x^{*}. This shows that even in the case of convergence of x_{n} we do not expect the shadows a_{n} to converge.
Remark 8. (More than two sets.) It is a standard procedure in applications to extend the Douglas-Rachford scheme to solve the feasibility problem for a finite number of constraint sets C_{1}, \ldots, C_{m} in \mathbb{R}^{d}. One defines A to be the diagonal in $\mathbb{R}^{d} \times \cdots \times \mathbb{R}^{d}$ (m times), and chooses as $B=C_{1} \times \cdots \times C_{m}$ in the product space. Then if $\bigcap_{i=1}^{m} C_{i} \neq \emptyset$, the Douglas-Rachford algorithm in product space can be used to compute a point in this intersection. The interesting observation is that if each C_{i} is a finite union of convex sets, then this remains true for the set B, hence our convergence theory applies.

4. Existence of a continuous limit cycle

In this section we construct two closed bounded sets A, B such that the DouglasRachford iteration $x_{n+1} \in T\left(x_{n}\right)$ with $T=\frac{1}{2}\left(R_{B} R_{A}+I\right)$ fails to converge and produces a continuum of accumulation points $F \subset \mathrm{~F}(T)$ forming a continuous limit cycle. We let A be the cylinder mantle

$$
A=\{(\cos t, \sin t, h): 0 \leq t \leq 2 \pi, 0 \leq h \leq 1\},
$$

and B a double spiral consisting of two logarithmic spirals in 3D winding down against the cylinder, one from inside, one from outside. That is,

$$
B=\left\{\left(\left(1 \pm e^{-t}\right) \cos t,\left(1 \pm e^{-t}\right) \sin t, e^{-t / 2}\right): 0 \leq t\right\} \cup F,
$$

where $F=\{(\cos \alpha, \sin \alpha, 0): \alpha \in[0,2 \pi]\}$. Note that $A \cap B=F$. We will construct a Douglas-Rachford sequence $x_{n+1}=T\left(x_{n}\right)$, whose set of accumulation points is the entire
set F. It will be useful to divide the spiral in its outer and inner part

$$
B_{ \pm}=\left\{\left(\left(1 \pm e^{-t}\right) \cos t,\left(1 \pm e^{-t}\right) \sin t, e^{-t / 2}\right): 0 \leq t\right\} \cup F
$$

so that $B=B_{-} \cup B_{+}$and $B_{-} \cap B_{+}=F$ with these notations.
Theorem 3. (Continuous limit cycle). Let $x_{n+1}=T\left(x_{n}\right)$ be any Douglas-Rachford sequence between A and B with starting point $x_{1} \in B_{-} \backslash F$. Then the sequence x_{n} is bounded, satisfies, $x_{n+1}-x_{n} \rightarrow 0$, but fails to converge. Its set of accumulation points is $F=A \cap B \subset \mathcal{F}(T)$.
Proof. 1) For $t \geq 0$ let us introduce the notations

$$
a(t)=\left(\cos t, \sin t, e^{-t / 2}\right) \in A
$$

and

$$
b_{ \pm}(t)=\left(\left(1 \pm e^{-t}\right) \cos t,\left(1 \pm e^{-t}\right) \sin t, e^{-t / 2}\right) \in B_{ \pm} \backslash F
$$

The set $\{a(t): t \geq 0\} \subset A$ is the shadow of the spiral on the cylinder mantle. Namely, it is clear that for $t>0$,

$$
\begin{equation*}
P_{A}\left(b_{+}(t)\right)=P_{A}\left(b_{-}(t)\right)=a(t) \tag{5}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\left\|b_{ \pm}(t)-P_{A}\left(b_{ \pm}(t)\right)\right\|=e^{-t} \tag{6}
\end{equation*}
$$

In consequence

$$
R_{A}\left(b_{+}(t)\right)=b_{-}(t), \quad R_{A}\left(b_{-}(t)\right)=b_{+}(t) .
$$

In words, the two branches $B_{ \pm}$of the double spiral are the reflections of each others in the cylinder mantle.
2) Let us now analyze the projection of $a(t)$ on the double spiral B. We consider the projections of $a(t)$ on each of the branches $B_{ \pm}$. We start with the analysis of $b \in$ $P_{B_{+}}(a(t))$. We first claim that $b \notin F$. Indeed, the point $v \in F$ closest to $a(t)$ is $v=$ $(\cos t, \sin t, 0)=P_{F}(a(t))$, so $\|v-a(t)\|=e^{-t / 2}$. But $\left\|b_{+}(t)-a(t)\right\|=e^{-t}<e^{-t / 2}$, hence there are points on $B_{+} \backslash F$ closer to $a(t)$ than v. This shows that any projected point $b \in P_{B_{+}}(a(t))$ has to be of the form $b_{+}(\tau)$ for some $\tau \geq 0$. Now consider some such $b_{+}(\tau) \in P_{B_{+}}(a(t))$, then

$$
\begin{equation*}
e^{-t}=\left\|a(t)-b_{+}(t)\right\| \geq\left\|a(t)-b_{+}(\tau)\right\| \geq\left\|a(\tau)-b_{+}(\tau)\right\|=e^{-\tau} \tag{7}
\end{equation*}
$$

which shows $\tau \geq t$. Here the second estimate follows from $a(\tau)=P_{A}\left(b_{+}(\tau)\right)$.
3) Let us further observe that $\tau>t$. Namely, if we had $\tau=t$, then we would have a fixed point pair for the method of alternating projections between A and B_{+}in the sense that $a(t)=P_{A}\left(b_{+}(t)\right), b_{+}(t) \in P_{B_{+}}(a(t))$. That would mean the distance squared $\tau \mapsto \frac{1}{2}\left\|a(t)-b_{+}(\tau)\right\|^{2}$ had a local minimum at $\tau=t$. But the derivative of this function at $\tau=t$ is $-e^{-2 t}<0$, so $\tau=t$ is impossible, and we deduce $\tau>t$.
4) Using $b_{+}(\tau) \in P_{B_{+}}(a(t))$ and (7), we find

$$
e^{-t} \geq\left\|a(t)-b_{+}(\tau)\right\| \geq\left|e^{-t / 2}-e^{-\tau / 2}\right|=e^{-t / 2}-e^{-\tau / 2}=e^{-t}\left(e^{t / 2}-e^{t-\tau / 2}\right)
$$

which shows

$$
0<e^{t / 2}-e^{t-\tau / 2} \leq 1
$$

This can be re-arranged as

$$
\begin{equation*}
0<1-e^{t / 2-\tau / 2} \leq e^{-t / 2} \tag{8}
\end{equation*}
$$

In particular, for $t \rightarrow \infty$ we must have $\tau-t \rightarrow 0$.
5) Let us next show that the projection $b_{+}(\tau)=P_{B_{+}}(a(t))$ is unique for t sufficiently large. Indeed, suppose we find $t<\tau_{1}<\tau_{2}$ such that $b_{+}\left(\tau_{1}\right), b_{+}\left(\tau_{2}\right) \in P_{B_{+}}(a(t))$. Then
by (8) we have $t<\tau_{1}<\tau_{2}<t-2 \log \left(1-e^{-t / 2}\right)$. Define the function $d_{+}(x)=\frac{1}{2} \| a(t)-$ $b_{+}(x) \|^{2}$, then $d_{+}(t)=\frac{1}{2} e^{-2 t}, d_{+}^{\prime}(t)=-e^{-2 t}<0$. Since τ_{1}, τ_{2} are local minima, we have $d_{+}^{\prime}\left(\tau_{1}\right)=d_{+}^{\prime}\left(\tau_{2}\right)=0$. But $d_{+}^{\prime \prime}(x)=\cos (t-x)+2 e^{-2 x}+2 e^{-x} \sin (t-x)+\frac{3}{2} e^{-x}-\frac{1}{4} e^{-x / 2-t / 2}$. In consequence, for t large and x moving in the interval $x \in\left(t, t-2 \log \left(1-e^{-t / 2}\right)\right.$), we have $d_{+}^{\prime \prime}(x) \approx \cos (t-x) \approx 1$, so certainly $d_{+}^{\prime \prime \prime}(x)>0$ for these x, and since the local minima τ_{i} are in that interval for t large, $d_{+}^{\prime}\left(\tau_{2}\right)=0$ is impossible. This proves $b_{+}(\tau)=P_{B_{+}}(a(t))$ for t sufficiently large.

6) Let us now consider the point $b_{-}(\tau) \in B_{-} \backslash F$ on the inner spiral. We claim that $b_{-}(\tau)$ is closer to $a(t)$ than $b_{+}(\tau)$. Indeed, the set of points w having equal distance to $b_{-}(\tau)$ and $b_{+}(\tau)$ is the tangent plane to the cylinder at the point $a(\tau)=\frac{1}{2}\left(b_{-}(\tau)+b_{+}(\tau)\right)$. But the cylinder lies in one of the half-spaces associated with this plane, namely the one containing $b_{-}(\tau),\left\|b_{-}(\tau)-a(t)\right\|<\left\|b_{+}(\tau)-a(t)\right\|$. Since $b_{+}(\tau)$ is the nearest point to $a(t)$ in B_{+}, we deduce that $P_{B}(a(t)) \subset P_{B_{-}}(a(t))$ for all t. In other words, projections from the shadow of the spiral onto the double spiral always go to the inner spiral.

We could also use an analytic argument to prove this. Let $d_{-}(x)=\frac{1}{2}\left\|a(t)-b_{-}(x)\right\|^{2}$ and consider the function $f(x)=d_{+}(x)-d_{-}(x)$, then $f(x)=\frac{1}{2} e^{-x}(1-\cos (x-t))$, so $f \geq 0$, and $f=0$ for $x=t+2 k \pi$. Since $t<\tau<t-2 \log \left(1-e^{-t / 2}\right) \ll t+2 \pi$, this proves $f(\tau)>0$.
7) Let $b \in P_{B}(a(t))=P_{B_{-}}(a(t))$ a projected point of $a(t)$ in the inner spiral. We know already that $b \notin F$, hence $b=b_{-}(\sigma)$ for some $\sigma \geq 0$. Repeating the argument in part 2), it follows that $\sigma>t$. Indeed, like in (7) we have

$$
e^{-t}=\left\|a(t)-b_{-}(t)\right\| \geq\left\|a(t)-b_{-}(\sigma)\right\| \geq\left\|a(\sigma)-b_{-}(\sigma)\right\|=e^{-\sigma},
$$

and the same argument as in part 2) shows $\sigma>t$. But then again

$$
e^{-t} \geq\left\|a(t)-b_{-}(\sigma)\right\| \geq\left|e^{-t / 2}-e^{-\sigma / 2}\right|=e^{-t / 2}-e^{-\sigma / 2}=e^{-t}\left(e^{t / 2}-e^{t-\sigma / 2}\right),
$$

which shows

$$
0<e^{t / 2}-e^{t-\sigma / 2} \leq 1
$$

This can be re-arranged to

$$
\begin{equation*}
0<1-e^{t / 2-\sigma / 2} \leq e^{-t / 2} \tag{9}
\end{equation*}
$$

In particular, for $t \rightarrow \infty$ we must have $\sigma-t \rightarrow 0$, and in particular $0<\sigma-t \ll$ 2π. Therefore projected points $b_{-}(\sigma) \in P_{B}(a(t))$ lie on the same tour of the spiral as $a(t), b_{-}(t)$, and one does not take shortcuts by jumping down a full turn of the spiral B_{-}
or more. Repeating the argument of 5), we also see that $b_{-}(\sigma)=P_{B_{-}}(a(t))$ is unique for $t>0$ large enough.
8) Let us now generate our Douglas-Rachford sequence x_{n}, starting at $x_{1}=b_{-}\left(t_{1}\right) \in B_{-}$ with $t_{1}>0$, excluding $t_{1}=0$ for simplicity to have a unique projection on the cylinder mantle at the start.

We get $a_{1}=P_{A}\left(x_{1}\right)=a\left(t_{1}\right)$, hence $R_{A}\left(x_{1}\right)=b_{+}\left(t_{1}\right)$. Since $b_{+}\left(t_{1}\right) \in B$, it is its own reflection in B, and we get $b_{1}=b_{+}\left(t_{1}\right)$. Averaging then gives $x_{2}=\left(b_{1}+x_{1}\right) / 2=a_{1}=a\left(t_{1}\right)$, which concludes the first DR-step.

The second DR-step proceeds as follows. Since $x_{2}=a\left(t_{1}\right) \in A$, it is its own reflection in A, so $a_{2}=x_{2}=a_{1}=R_{A}\left(x_{1}\right)$. Now let $b_{2}=P_{B}\left(R_{A}\left(x_{2}\right)\right)$, then $b_{2}=P_{B}\left(a\left(t_{1}\right)\right)=$ $P_{B_{-}}\left(a\left(t_{1}\right)\right)$, so $b_{2}=b_{-}\left(t_{2}\right)$ for some $t_{2}>t_{1}$, where t_{2} is for t_{1} what σ was for t in part 7). So the reflected point is $2 b_{-}\left(t_{2}\right)-a\left(t_{2}\right)$ and averaging then gives $x_{3}=b_{-}\left(t_{2}\right) \in B_{-}$.

Proceeding in this way, we generate a strictly increasing sequence t_{n} such that

$$
\begin{equation*}
x_{2 k-1}=b_{-}\left(t_{k}\right) \in B_{-}, \quad x_{2 k}=a\left(t_{k}\right) \in A . \tag{10}
\end{equation*}
$$

Moreover, the shadow and reflected shadow are

$$
P_{A}\left(x_{2 k-1}\right)=a_{2 k-1}=a\left(t_{k}\right), \quad P_{B}\left(R_{A}\left(x_{2 k-1}\right)\right)=b_{2 k-1}=b_{+}\left(t_{k}\right)
$$

respectively,

$$
P_{A}\left(x_{2 k}\right)=a_{2 k}=a\left(t_{k}\right), \quad P_{B}\left(R_{A}\left(x_{2 k}\right)\right)=b_{2 k}=b_{-}\left(t_{k}\right) .
$$

Furthermore, note that we generate a sequence of alternating projections between A and B_{-}. Namely

$$
\begin{equation*}
b_{0}:=x_{1} \xrightarrow{P_{A}} a_{1}=a_{2} \xrightarrow{P_{B_{-}}} b_{2} \xrightarrow{P_{A}} a_{3}=a_{4} \xrightarrow{P_{B}} b_{4} \ldots \tag{11}
\end{equation*}
$$

9) We now argue that t_{n} so constructed tends to ∞. Suppose on the contrary that $t_{n}<t_{n+1} \rightarrow t^{*}<\infty$. Then from the construction we see that we create a pair $a\left(t^{*}\right) \in A$, $b_{-}\left(t^{*}\right) \in B_{-}$such that $a\left(t^{*}\right) \in P_{A}\left(b_{-}\left(t^{*}\right)\right)$ and $b_{-}\left(t^{*}\right) \in P_{B_{-}}\left(a\left(t^{*}\right)\right)$. Arguing as before, this would imply that $\tau \mapsto \frac{1}{2}\left\|a\left(t^{*}\right)-b_{-}(\tau)\right\|^{2}$ had a local minimum at $\tau=t^{*}$, which it does not because its derivative at t^{*} is $-e^{-2 t^{*}}<0$. Hence $t^{*}<\infty$ is impossible, and we have $t_{n} \rightarrow \infty$. As a consequence, the statements about uniqueness of the operators and the estimate (7) are now satisfied from some counter n_{0} onward.
10) To conclude, observe that $x_{n}-x_{n+1} \rightarrow 0$ by (9), and that the $a\left(t_{n}\right)$ are $2 e^{-t_{n}}$-dense in the interval $\left[t_{n}, t_{n}+2 \pi\right]$, because of

$$
\left\|a\left(t_{n}\right)-a\left(t_{n+1}\right)\right\| \leq\left\|a\left(t_{n}\right)-b_{-}\left(t_{n+1}\right)\right\|+\left\|b_{-}\left(t_{n+1}\right)-a\left(t_{n+1}\right)\right\| \leq e^{-t_{n}}+e^{-t_{n+1}} \leq 2 e^{-t_{n}}
$$

Using (6) and the fact that every $a(t)$ with $t \in\left[t_{n}, t_{n}+2 \pi\right]$ is at distance $\leq e^{-t_{n} / 2}$ to the set F, we deduce that every point in F is an accumulation point of both the DR-sequence (10) and the MAP sequence (11).

Remark 9. (Strong fixed points need not be stable). The system-theoretic interpretation of this result is that a strong fixed-point $x^{*} \in F \subset \mathcal{F}(T)$ need not be a stable steady state. This is in contrast with Theorem 1, where this was shown to be true when A, B are finite unions of convex sets. A second interpretation is that F is a stable attractor for the dynamical system $x^{+}=T(x)$.
Remark 10. (Shadows need not converge). We note that not only does the DR sequence x_{n} fail to converge in Theorem 3, also the sequences $a_{n}=P_{A}\left(x_{n}\right) \in A, b_{n}=$ $P_{B}\left(R_{A}\left(x_{n}\right)\right) \in B$ fail to converge and have the same continuum set of accumulation points F. Presently no example of failure of convergence of a bounded DR-sequence x_{n} satisfying $x_{n}-x_{n+1} \rightarrow 0$ is known, where the shadow sequence a_{n} converges to a single limit $a^{*} \in A \cap B$. It is clear that this could only happen when $F \subset\left\{x:\left\|x-a^{*}\right\|=\epsilon\right\}$ for some $\epsilon>0$.

Corollary 1. (Continuous limit cycle for MAP). Let x_{n} be the Douglas-Rachford sequence constructed above, and let $a_{n} \in A, b_{n} \in B$ be the shadows associated with x_{n}. Then $b_{2 n}, a_{2 n+1}$ is a sequence of alternating projections between the cylinder A and the inner spiral B_{-}. This sequence also fails to converge and has the same set of accumulation points $F=A \cap B$.

Corollary 2. (Limit cycle for MAP with one set convex). Every sequence of alternating projections a_{n}, b_{n} between the outer spiral B_{+}and the solid cylinder $\operatorname{conv}(A)$ started at $b_{1} \in B_{+} \backslash F$ is bounded, satisfies $a_{n}-b_{n} \rightarrow 0$, but fails to converge and has the set $F=B_{+} \cap \operatorname{conv}(A)$ as its set of accumulation points.

Proof. In part 2) of the proof of Theorem 3 we analyzed this sequence, which is generated by the building blocks $a(t) \rightarrow b_{+}(\tau) \rightarrow a(\tau)$.

Remark 11. Here we have an example of a semi-algebraic convex set $\operatorname{conv}(A)$, and the spiral B_{+}, which is the projection of a semi-analytic set in \mathbb{R}^{4}, where the MAP sequence fails to converge and leads to a continuous limit cycle. The first example with a continuous limit cycle appears in [4], but with more pathological sets A, B. The fact that B_{+}is not subanalytic can be deduced from [13, Cor. 7]. Currently we do not have an example where the DR-algorithm fails to converge and creates a continuous limit cycle with one of the sets convex.

Acknowledgements

H.H. Bauschke was supported by the Natural Sciences and Engineering Research Council of Canada and the Canada Research Chair Program. D. Noll acknowledges hospitality of the University of British Columbia Kelowna and support by the Pacific Institute of the Mathematical Sciences during the preparation of this paper. The visualization was made possible by GeoGebra [9].

References

[1] F.J. Aragón Artacho, J.M. Borwein, M.K. Tam. Recent results on Douglas-Rachford methods. Serdica Mathematical Journal 39 (2013), 313-330.
[2] H.H. Bauschke, P.L. Combettes. Convex Analysis and Monotone Operator Theory in Hilbert Space, Springer, 2011.
[3] H.H. Bauschke, P.L. Combettes, D.R. Luke. Finding best approximation pairs relative to two closed convex sets in Hilbert spaces. Journal of Approximation Theory 127 (2004), 178-192.
[4] H.H. Bauschke, D. Noll. On cluster points of alternating projections. Serdica Mathematical Journal 39 (2013), 355-364.
[5] H.H. Bauschke, V.R. Koch. Projection methods: Swiss Army knives for solving feasibility and best approximation problems with halfspaces. Contemporary Mathematics, in press.
[6] J. Douglas, H.H. Rachford. On the numerical solution of heat conduction problems in two or three space variables, Transactions of the AMS 82 (1956), 421-439.
[7] V. Elser, I. Rankenburg, P. Thibault. Searching with iterated maps, Proceedings of the National Academy of the U.S.A. 104(2) (2007), 418-423.
[8] L. Elsner, I. Koltracht, M. Neumann. Convergence of sequential and asynchronous nonlinear paracontractions, Numerische Mathematik 62 (1992), 305-319.
[9] http://www.geogebra.org/cms/en/
[10] R. Hesse, D.R. Luke. Nonconvex notions of regularity and convergence of fundamental algorithms for feasibility problems, SIAM Journal on Optimization 23(4) (2013), 2397-2419.
[11] R. Hesse, D.R. Luke, P. Neumann. Projection methods for sparse affine feasibility: results and counterexamples, arXiv:1307.2009v1 [math.OC] 8 Jul 2013.
[12] P.-L. Lions, B. Mercier. Splitting algorithms for the sum of two nonlinear operators. SIAM Journal on Numerical Analysis 16 (1979), 964-979.
[13] D. Noll, A. Rondepierre. On local convergence of the method of alternating projections. arXiv:1312.5681v1 [math.OC] 19 Dec 2013

[^0]: Date: May 24, 2024.
 \dagger University of British Columbia, Kelowna, Canada.

 * Institut de Mathématiques de Toulouse, France.

