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Abstract. We discuss the Douglas–Rachford algorithm to solve the feasibility problem
for two closed sets A,B in Rd. We prove its local convergence to a fixed point when
A,B are finite unions of convex sets. We also show that for more general nonconvex sets
the scheme may fail to converge and start to cycle, and may then even fail to solve the
feasibility problem.
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1. Introduction

The Douglas–Rachford iterative scheme, originally introduced in [6] to solve nonlinear
heat flow problems, aims to find a point x∗ in the intersection of two closed constraint
sets A,B in Rd or in Hilbert space. As a consequence of more general results in monotone
operator theory by Lions and Mercier [12] it is known that the scheme converges weakly
for two closed convex sets A,B in Hilbert space with non-empty intersection. A rather
comprehensive analysis of the convex case is given in [3].

Due to its success in applications, the Douglas–Rachford scheme is frequently used in
the nonconvex setting despite the lack of a satisfactory convergence theory. Recently Hesse
and Luke [10] made progress by proving local convergence of the scheme for B an affine
subspace intersecting the set A transversally, where A is no longer convex, but satisfies
a regularity hypothesis called superregularity. Numerical experiments in the nonconvex
case indicate, however, that the Douglas–Rachford scheme should converge in much more
general situations. Very frequently one observes that the iterates settle for convergence
after a chaotic transitory phase; see [1, 7] and the references therein. Here we prove local
convergence of the Douglas–Rachford scheme when A,B are finite unions of convex sets.
Our result is complementary to [10], because no transversality hypothesis is required.
This result is proved in section 3.

We will also show that for nonconvex sets A,B the Douglas–Rachford scheme may fail
to converge and start to cycle without solving the feasibility problem. We show that
this may even lead to continuous limiting cycles. These are more delicate to construct,
because in that case the Douglas–Rachford sequence xn+1 ∈ T (xn) is bounded and satisfies
xn+1 − xn → 0, but fails to converge. Our construction is given in section 4.

2. Preparation

Given a nonempty closed subset A of Rd, the projection onto A is the set-valued map-
ping PA associating with x ∈ Rd the nonempty set

PA(x) =
{
a ∈ A : ‖x− a‖ = dist(x,A)

}
,
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where ‖ · ‖ is the Euclidean norm, and dist(x,A) = min{‖x− a‖ : a ∈ A}. The reflection
of x in A is then the set-valued operator

RA = 2PA − I.
Given two nonempty closed sets A,B in Rd, the Douglas–Rachford iterative scheme,
starting at x0, generates a sequence xn by the recursion

xn+1 ∈ T (xn), T := 1
2

(RBRA + I) ,

n ∈ N. We call T the Douglas–Rachford operator, or shortly, DR operator. Suppose
x+ ∈ T (x) is one step of the Douglas–Rachford scheme. Then x+ is obtained as

x+ = x+ b− a,
where a ∈ PA(x), y = 2a − x, and b ∈ PB(y). We call a the shadow of iterate x on A,
b the reflected shadow of x in B, both used to produce x+. We write x+ = T (x) if the
DR-operator is single-valued, and similarly for projectors PA, PB and reflectors RA, RB.

The fixed point set of T is defined as F(T ) = {x ∈ Rd : x ∈ T (x)}. Note that if
x∗ ∈ F(T ), and if a∗ ∈ A, b∗ ∈ B are the shadow and reflected shadow of x∗ used to
produce x∗ ∈ T (x∗), then a∗ = b∗ ∈ A ∩ B, so every fixed point gives rise to a solution
a∗ ∈ A ∩ B of the feasibility problem. However, in the set-valued case, it may happen
that x∗ ∈ F(T ) has other shadow-reflected shadow pairs (ã, b̃) leading away from x∗, i.e.,
where ã 6= b̃, so that x̃ = x∗ + b̃ − ã ∈ T (x∗) \ {x∗}. We therefore introduce the set of
strong fixed-points of T as

F(T ) =
{
x ∈ Rd : T (x) = {x}

}
.

Note that A ∩B ⊂ F(T ) ⊂ F(T ). If T is single-valued, then F(T ) = F(T ).
These concepts are linked to discrete dynamical system theory, where fixed points are

steady states, and where any sequence xn+1 ∈ T (xn) is called an orbit or a trajectory. We
recall that a steady state x∗ is stable in the sense of Lyapunov if for every ε > 0 there
exists δ > 0 such that every trajectory xn+1 ∈ T (xn) with starting point x0 ∈ B(x∗, δ)
satisfies xn ∈ B(x∗, ε) for all n. Here and throughout B(x, r) means the closed Euclidian
ball with centre x and radius r. It is clear that x∗ ∈ F(T ) \ F(T ) can never be stable,
because x0 = x∗ produces trajectories going away from x∗.

3. Unions of convex sets

In this section A =
⋃
i∈I Ai and B =

⋃
j∈J Bj are finite unions of closed convex sets,

a case which is of interest in a number of practical applications like rank or sparsity
optimization [11], or even road design [5], where finite unions of linear or affine subspaces
are used. For every i ∈ I and j ∈ J let Tij be the Douglas–Rachford operator associated
with the sets Ai, Bj. By convexity of Ai, Bj, the operators Tij are single-valued, and
T (x) ⊂ {Tij(x) : i ∈ I, j ∈ J}.

Since A,B are finite unions of convex sets, every DR step is realized as the DR step of
one of the operators Tij, and in that case, we say that this operator is active. To make
this precise, we define the set of active indices at x as

K(x) =
{

(i, j) ∈ I × J : PAi
(x) ∈ PA(x), PBj

(RAi
(x)) ∈ PB (RAi

(x))
}
.(1)

Note that if (i, j) ∈ K(x), then Tij(x) ∈ T (x). Conversely, for every x+ ∈ T (x), there
exists (i, j) ∈ K(x) such that x+ = Tij(x). However, be aware that Tij(x) ∈ T (x) may be
true without (i, j) being active at x.

Theorem 1. (Stable local attractor). Let A =
⋃
i∈I Ai and B =

⋃
j∈J Bj be finite

unions of closed convex sets, and let x∗ ∈ F(T ) be a strong fixed point. Then x∗ has
a radius of attraction r > 0 with the following property: For arbitrary fixed ε ∈ (0, r),
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suppose a Douglas–Rachford trajectory xn+1 ∈ T (xn) enters the ball B(x∗, ε). Then it
stays there and converges to some fixed point x̄ ∈ F(T ). Moreover, every accumulation
point of the shadow sequence an ∈ PA(xn) is a solution of the feasibility problem. The
radius of attraction can be computed as

r = sup
{
ε > 0 : K (B(x∗, ε)) ⊂ K(x∗)

}
.(2)

Proof. 1) The fact that x∗ ∈ F(T ) is a strong fixed point has the following consequence.
Whenever (i, j) ∈ K(x∗) is active, then PAi

(x∗) = PBj
(RAi

(x∗)) ∈ A ∩B. Therefore, for
every (i, j) ∈ K(x∗), the operator Tij has x∗ as a fixed point.

2) We now show the following. There exists ε > 0 such that every x ∈ B(x∗, ε) has
K(x) ⊂ K(x∗).

Let us consider the set I(x) = {i ∈ I : there exists j ∈ J such that (i, j) ∈ K(x)} of
active indices i ∈ I at x. Then by definition

δ1 := min
{

dist(x∗, Ai) : i 6∈ I(x∗)
}
− dist(x∗, A) > 0.(3)

Similarly, we have

δ2 := min
{

dist (RAi
(x∗), Bj)− dist (RAi

(x∗), B) : i ∈ I(x∗), (i, j) 6∈ K(x∗)
}
> 0.(4)

Choose ε > 0 such that 2ε < min{δ1, δ2}. We show that ε is as claimed. Pick (i, j) 6∈
K(x∗). We have to show that (i, j) 6∈ K(x). First consider the case where i ∈ I \ I(x∗).
We show that i ∈ I \ I(x). Indeed,

dist(x,A) ≤ ‖x− x∗‖+ dist(x∗, A)

≤ ε+ dist(x∗, Ai)− δ1 (using (3))
≤ 2ε+ dist(x,Ai)− δ1 < dist(x,Ai),

showing that i 6∈ I(x). We now discuss the case where i ∈ I(x∗), but (i, j) 6∈ K(x∗).
That means dist(RAi

(x∗), Bj)− dist(RAi
(x∗), B) ≥ δ2. Therefore

dist(RAi
(x), B) ≤ ‖RAi

(x)−RAi
(x∗)‖+ dist(RAi

(x∗), B)

≤ ε+ dist(RAi
(x∗), Bj)− δ2 (using (4))

≤ 2ε+ dist(RAi
(x), Bj)− δ2 < dist(RAi

(x), Bj),

proving (i, j) 6∈ K(x).
3) As an immediate consequence of 2) we have the following: If x ∈ B(x∗, ε) and

x+ ∈ T (x) is realized as x+ = Tij(x) for some active operator Tij, that is, for some
(i, j) ∈ K(x), then this operator Tij has x∗ as a fixed point. Namely, by 2) x satisfies
K(x) ⊂ K(x∗), hence (i, j) ∈ K(x∗), and therefore PAi

(x∗) = PBj
(RAi

(x∗)), which proves
what we claimed.

5) We next show that as soon as a DR sequence xn+1 ∈ T (xn) enters the ball B(x∗, ε),
then it stays there and converges.

This can be seen as follows. Suppose the trajectory enters B(x∗, ε) at stage n. Then the
active operator Tinjn used to produce xn+1 = Tinjn(xn) ∈ T (xn) has x∗ as a fixed point,
because (in, jn) ∈ K(xn) ⊂ K(x∗). Therefore, by [2, Prop. 4.21], this operator satisfies
‖xn+1 − x∗‖ = ‖Tinjn(xn) − x∗‖ ≤ ‖xn − x∗‖ ≤ ε. The conclusion is that from index n
onward the sequence xn stays in the ball B(x∗, ε), and all operators Timjm used from here
on have x∗ as a common fixed point.

Now we invoke Elsner et al. [8, Thm. 1], who show that xn converges to a common
fixed point x̄ of the operators Timjm , m ≥ n. But x̄ is then also a fixed point of T , as
follows from the continuity of the distance functions. One has x̄ ∈ B(x∗, ε), and moreover,
if an = Pin(xn) ∈ Ain ⊂ A, then every accumulation point of the sequence an is a solution
of the feasibility problem. Namely, if we consider bn = PBj

(RAi
(xn)) ∈ B, and if we take
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accumulation points a∗ of an and b∗ of bn, then a∗ ∈ PA(x∗), b∗ ∈ PB (2a− x∗)), hence
a∗ = b∗, because x∗ is a strong fixed point.

6) To conclude let us now define the radius of attraction r as in formula (2). In 1)
– 5) above we have shown that there exists ε > 0 such that K (B(x∗, ε)) ⊂ K(x∗), and
that this inclusion alone already implies convergence of every trajectory entering B(x∗, ε).
This means that the supremum in (2) is over a nonempty set, and that is all that we
need. �

Remark 1. (Stable steady state.) The dynamic system interpretation of Theorem 1
is that a strong fixed point x∗ ∈ F(T ) is a stable steady state of the Douglas–Rachford
dynamical system x+ ∈ T (x) when A,B are finite unions of convex sets. Note also that
we do not claim that x̄ ∈ F(T ) is strong, nor do we claim that the iterates converge to x∗
itself. �

The following observation is also of the essence.

Remark 2. (Strong fixed point needed). Theorem 1 is not true if x∗ ∈ F(T ) \F(T ),
that is, if x∗ is not a strong fixed point. Indeed, let A = {−1, 1} and B = {−2, 1}. Then
x∗ = 0 is a fixed-point of T , but not a strong one. Now there exist arbitrarily small
ε ∈ (0, 1) such that trajectories starting in B(0, ε) = (−ε, ε) will not stay in that ball.
Indeed, for x ∈ (−ε, 0), x+ will move away from 0 and will not stay in B(0, ε), while for
x ∈ (0, ε), x+ stays in that interval. �

Remark 3. Note that if A,B are convex sets, then all K(x) are identical singleton sets,
so formula (2) gives r =∞, which means the DR scheme converges globally.

Remark 4. Formula (2) allows to compute the radius of attraction of a strong fixed-point
x∗ ∈ F(T ) in certain cases. For illustration, consider A = {(x, 0) : x ∈ R} ∪ {(0, y) : y ∈
R} a union of two lines and B = {(x, y) : y = − y∗

x∗
x + y∗} a line, where x∗ > 0, y∗ > 0.

Then (0, y∗) and (x∗, 0) are the two only fixed points of T , both strong, and one easily
finds r(x∗, 0) = x∗/

√
2 and r(0, y∗) = y∗/

√
2.

Remark 5. (Asymptotic stability). Let x∗ ∈ F(T ) be a strong fixed point, and
suppose there exists δ > 0 such that B(x∗, δ) contains no further fixed point of T . Then it
follows from Theorem 1 that we can find ε ∈ (0, δ] such that every trajectory xn+1 ∈ T (xn)
entering B(x∗, ε) stays there and converges to x∗. In the dynamical system terminology,
x∗ is then asymptotically stable in the sense of Lyapunov. Note that this still fails for an
isolated fixed point x∗ ∈ F(T ) \ F(T ).

Theorem 2. (Local convergence). Let A =
⋃
i∈I Ai and B =

⋃
j∈J Bj be finite unions

of convex sets. Let xn+1 ∈ T (xn) be a bounded Douglas–Rachford sequence satisfying
xn+1− xn → 0. Then xn converges to a fixed-point x̄ ∈ F(T ). Moreover, every accumula-
tion point of the shadow sequence an ∈ PA(xn) is a solution to the feasibility problem.

Proof. 1) For every n ∈ N let us choose an active index pair (in, jn) ∈ K(xn) such that
xn+1 = Tinjn(xn). Put an = PAin

(xn) and bn = PBjn

(
RAin

(xn)
)

= PBjn
(2an−xn), so that

xn+1 = xn + bn − an. Note that an − bn = xn − xn+1 → 0 by hypothesis.
2) Let x∗ be any accumulation point of the sequence xn. We define a subset K0(x

∗) of
the active set K(x∗) as

K0(x
∗) =

{
(i, j) ∈ K(x∗) : PAi

(x∗) = PBj
(RAi

(x∗))
}
.

Note that every Tij with (i, j) ∈ K0(x
∗) has x∗ as a fixed point.

3) We now claim that for every accumulation point x∗ of the sequence xn there exists
ε > 0 and an index n0 such that for every xn with n ≥ n0 and xn ∈ B(x∗, ε), we have
(in, jn) ∈ K0(x

∗).
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To prove this, assume on the contrary that for every ε = 1
k
there exists nk such that

xnk
∈ B(x∗, 1

k
), but (ink

, jnk
) 6∈ K0(x

∗). Moreover, let nk < nk+1 → ∞. Then xnk
→

x∗. Passing to another subsequence which we also denote by xnk
, we may assume that

ink
= i, jnk

= j. Then ank
= PAi

(xnk
) → a∗ ∈ A, bnk

= PBj
(RAi

(xnk
)) → b∗ ∈ B.

Since an − bn → 0 by part 1), we deduce that a∗ = b∗ ∈ A ∩ B. Since we also have
ank

= PAi
(xnk

) ∈ PA(xnk
) and bnk

∈ PB (RAi
(xnk

)) ⊂ PB (RA(xnk
)), we get a∗ ∈ PA(x∗)

and b∗ ∈ PB (RA(x∗)), hence (i, j) ∈ K(x∗). Since a∗ = b∗, we have (i, j) ∈ K0(x
∗). This

contradiction proves the claim.
4) Since x∗ is an accumulation point of the sequence xn, there exist infinitely many

indices with xn ∈ B(x∗, ε). Choose one with n ≥ n0. Then xn+1 = Tinjn(xn), and by part
3) we have (in, jn) ∈ K0(x

∗). By part 2), Tinjn has therefore x∗ as a fixed point. Using [2,
Prop. 4.21], we deduce ‖xn+1− x∗‖ = ‖Tinjn(xn)− x∗‖ ≤ ‖xn− x∗‖ ≤ ε, hence xn+1 stays
in the ball B(x∗, ε). This means we can repeat the argument, showing that the entire
sequence xm, m ≥ n, stays in B(x∗, ε). By part 3) the operators Timjm , m ≥ n, have the
common fixed point x∗, hence we conclude again using [8, Thm. 1] that xm converges to
some x̄, which must be a fixed point of T . The second part of the statement follows now
from an − bn → 0. �

Remark 6. (Discrete limit cycle). Let A = {(x, y) : y = 0} ⊂ R2 be the x-axis, fix
1 ≥ η > 0, and put B = {(0, 0), (7 + η, η), (7,−η)}. When started at x1 = (7, η), the
method cycles between the four points x1, x2 = (7 + η, 0), x3 = (7 + η,−η), x4 = (7, 0).
Note that B is a finite union of bounded convex sets and A is convex, the iterates x2
and x4 reach A, but the method fails to converge, and it also fails to solve the feasibility
problem.

Remark 7. (Several shadows). Let B be a circle in R2, and let A consist in the union
of two circles which touch B from outside in a∗1, a∗2. Then the centre x∗ of B is a fixed-point
of the Douglas–Rachford operator T , and the two points a∗i ∈ A∩B are both shadows of
x∗. This shows that even in the case of convergence of xn we do not expect the shadows
an to converge.

Remark 8. (More than two sets.) It is a standard procedure in applications to
extend the Douglas–Rachford scheme to solve the feasibility problem for a finite number
of constraint sets C1, . . . , Cm in Rd. One defines A to be the diagonal in Rd × · · · × Rd

(m times), and chooses as B = C1 × · · · ×Cm in the product space. Then if
⋂m
i=1Ci 6= ∅,

the Douglas–Rachford algorithm in product space can be used to compute a point in this
intersection. The interesting observation is that if each Ci is a finite union of convex sets,
then this remains true for the set B, hence our convergence theory applies.

4. Existence of a continuous limit cycle

In this section we construct two closed bounded sets A,B such that the Douglas–
Rachford iteration xn+1 ∈ T (xn) with T = 1

2
(RBRA + I) fails to converge and produces

a continuum of accumulation points F ⊂ F(T ) forming a continuous limit cycle. We let
A be the cylinder mantle

A =
{

(cos t, sin t, h) : 0 ≤ t ≤ 2π, 0 ≤ h ≤ 1
}
,

and B a double spiral consisting of two logarithmic spirals in 3D winding down against
the cylinder, one from inside, one from outside. That is,

B =
{

((1± e−t) cos t, (1± e−t) sin t, e−t/2) : 0 ≤ t
}
∪ F,

where F = {(cosα, sinα, 0) : α ∈ [0, 2π]}. Note that A ∩ B = F . We will construct a
Douglas–Rachford sequence xn+1 = T (xn), whose set of accumulation points is the entire
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set F . It will be useful to divide the spiral in its outer and inner part

B± =
{

((1± e−t) cos t, (1± e−t) sin t, e−t/2) : 0 ≤ t
}
∪ F

so that B = B− ∪B+ and B− ∩B+ = F with these notations.

Theorem 3. (Continuous limit cycle). Let xn+1 = T (xn) be any Douglas–Rachford
sequence between A and B with starting point x1 ∈ B− \ F . Then the sequence xn is
bounded, satisfies, xn+1 − xn → 0, but fails to converge. Its set of accumulation points is
F = A ∩B ⊂ F(T ).

Proof. 1) For t ≥ 0 let us introduce the notations

a(t) =
(

cos t, sin t, e−t/2
)
∈ A,

and
b±(t) =

(
(1± e−t) cos t, (1± e−t) sin t, e−t/2

)
∈ B± \ F.

The set {a(t) : t ≥ 0} ⊂ A is the shadow of the spiral on the cylinder mantle. Namely, it
is clear that for t > 0,

PA (b+(t)) = PA (b−(t)) = a(t).(5)

In particular,

‖b±(t)− PA (b±(t)) ‖ = e−t.(6)

In consequence
RA (b+(t)) = b−(t), RA (b−(t)) = b+(t).

In words, the two branches B± of the double spiral are the reflections of each others in
the cylinder mantle.

2) Let us now analyze the projection of a(t) on the double spiral B. We consider
the projections of a(t) on each of the branches B±. We start with the analysis of b ∈
PB+ (a(t)). We first claim that b 6∈ F . Indeed, the point v ∈ F closest to a(t) is v =

(cos t, sin t, 0) = PF (a(t)), so ‖v − a(t)‖ = e−t/2. But ‖b+(t)− a(t)‖ = e−t < e−t/2, hence
there are points on B+ \ F closer to a(t) than v. This shows that any projected point
b ∈ PB+(a(t)) has to be of the form b+(τ) for some τ ≥ 0. Now consider some such
b+(τ) ∈ PB+ (a(t)), then

e−t = ‖a(t)− b+(t)‖ ≥ ‖a(t)− b+(τ)‖ ≥ ‖a(τ)− b+(τ)‖ = e−τ ,(7)

which shows τ ≥ t. Here the second estimate follows from a(τ) = PA (b+(τ)).
3) Let us further observe that τ > t. Namely, if we had τ = t, then we would have

a fixed point pair for the method of alternating projections between A and B+ in the
sense that a(t) = PA (b+(t)), b+(t) ∈ PB+ (a(t)). That would mean the distance squared
τ 7→ 1

2
‖a(t)− b+(τ)‖2 had a local minimum at τ = t. But the derivative of this function

at τ = t is −e−2t < 0, so τ = t is impossible, and we deduce τ > t.
4) Using b+(τ) ∈ PB+ (a(t)) and (7), we find

e−t ≥ ‖a(t)− b+(τ)‖ ≥ |e−t/2 − e−τ/2| = e−t/2 − e−τ/2 = e−t
(
et/2 − et−τ/2

)
,

which shows
0 < et/2 − et−τ/2 ≤ 1.

This can be re-arranged as

0 < 1− et/2−τ/2 ≤ e−t/2.(8)

In particular, for t→∞ we must have τ − t→ 0.
5) Let us next show that the projection b+(τ) = PB+ (a(t)) is unique for t sufficiently

large. Indeed, suppose we find t < τ1 < τ2 such that b+(τ1), b+(τ2) ∈ PB+ (a(t)). Then
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by (8) we have t < τ1 < τ2 < t− 2 log
(
1− e−t/2

)
. Define the function d+(x) = 1

2
‖a(t)−

b+(x)‖2, then d+(t) = 1
2
e−2t, d′+(t) = −e−2t < 0. Since τ1, τ2 are local minima, we have

d′+(τ1) = d′+(τ2) = 0. But d′′+(x) = cos(t−x) + 2e−2x + 2e−x sin(t−x) + 3
2
e−x− 1

4
e−x/2−t/2.

In consequence, for t large and x moving in the interval x ∈
(
t, t− 2 log

(
1− e−t/2

))
, we

have d′′+(x) ≈ cos(t−x) ≈ 1, so certainly d′′+(x) > 0 for these x, and since the local minima
τi are in that interval for t large, d′+(τ2) = 0 is impossible. This proves b+(τ) = PB+ (a(t))
for t sufficiently large.

6) Let us now consider the point b−(τ) ∈ B− \ F on the inner spiral. We claim that
b−(τ) is closer to a(t) than b+(τ). Indeed, the set of points w having equal distance to
b−(τ) and b+(τ) is the tangent plane to the cylinder at the point a(τ) = 1

2
(b−(τ) + b+(τ)).

But the cylinder lies in one of the half-spaces associated with this plane, namely the one
containing b−(τ), ‖b−(τ)−a(t)‖ < ‖b+(τ)−a(t)‖. Since b+(τ) is the nearest point to a(t)
in B+, we deduce that PB (a(t)) ⊂ PB− (a(t)) for all t. In other words, projections from
the shadow of the spiral onto the double spiral always go to the inner spiral.

We could also use an analytic argument to prove this. Let d−(x) = 1
2
‖a(t) − b−(x)‖2

and consider the function f(x) = d+(x) − d−(x), then f(x) = 1
2
e−x (1− cos(x− t)), so

f ≥ 0, and f = 0 for x = t+ 2kπ. Since t < τ < t− 2 log(1− e−t/2)� t+ 2π, this proves
f(τ) > 0.

7) Let b ∈ PB (a(t)) = PB− (a(t)) a projected point of a(t) in the inner spiral. We know
already that b 6∈ F , hence b = b−(σ) for some σ ≥ 0. Repeating the argument in part 2),
it follows that σ > t. Indeed, like in (7) we have

e−t = ‖a(t)− b−(t)‖ ≥ ‖a(t)− b−(σ)‖ ≥ ‖a(σ)− b−(σ)‖ = e−σ,

and the same argument as in part 2) shows σ > t. But then again

e−t ≥ ‖a(t)− b−(σ)‖ ≥ |e−t/2 − e−σ/2| = e−t/2 − e−σ/2 = e−t
(
et/2 − et−σ/2

)
,

which shows
0 < et/2 − et−σ/2 ≤ 1.

This can be re-arranged to

0 < 1− et/2−σ/2 ≤ e−t/2.(9)

In particular, for t → ∞ we must have σ − t → 0, and in particular 0 < σ − t �
2π. Therefore projected points b−(σ) ∈ PB (a(t)) lie on the same tour of the spiral as
a(t), b−(t), and one does not take shortcuts by jumping down a full turn of the spiral B−
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or more. Repeating the argument of 5), we also see that b−(σ) = PB− (a(t)) is unique for
t > 0 large enough.

8) Let us now generate our Douglas–Rachford sequence xn, starting at x1 = b−(t1) ∈ B−
with t1 > 0, excluding t1 = 0 for simplicity to have a unique projection on the cylinder
mantle at the start.

We get a1 = PA(x1) = a(t1), hence RA(x1) = b+(t1). Since b+(t1) ∈ B, it is its own
reflection in B, and we get b1 = b+(t1). Averaging then gives x2 = (b1+x1)/2 = a1 = a(t1),
which concludes the first DR-step.

The second DR-step proceeds as follows. Since x2 = a(t1) ∈ A, it is its own reflection
in A, so a2 = x2 = a1 = RA(x1). Now let b2 = PB(RA(x2)), then b2 = PB (a(t1)) =
PB− (a(t1)), so b2 = b−(t2) for some t2 > t1, where t2 is for t1 what σ was for t in part 7).
So the reflected point is 2b−(t2)− a(t2) and averaging then gives x3 = b−(t2) ∈ B−.

Proceeding in this way, we generate a strictly increasing sequence tn such that
x2k−1 = b−(tk) ∈ B−, x2k = a(tk) ∈ A.(10)

Moreover, the shadow and reflected shadow are
PA (x2k−1) = a2k−1 = a(tk), PB (RA (x2k−1)) = b2k−1 = b+(tk)

respectively,
PA (x2k) = a2k = a(tk), PB (RA (x2k)) = b2k = b− (tk) .

Furthermore, note that we generate a sequence of alternating projections between A and
B−. Namely

b0 := x1
PA→ a1 = a2

PB−→ b2
PA→ a3 = a4

PB−→ b4 . . .(11)
9) We now argue that tn so constructed tends to ∞. Suppose on the contrary that

tn < tn+1 → t∗ <∞. Then from the construction we see that we create a pair a(t∗) ∈ A,
b−(t∗) ∈ B− such that a(t∗) ∈ PA(b−(t∗)) and b−(t∗) ∈ PB−(a(t∗)). Arguing as before,
this would imply that τ 7→ 1

2
‖a(t∗) − b−(τ)‖2 had a local minimum at τ = t∗, which it

does not because its derivative at t∗ is −e−2t∗ < 0. Hence t∗ < ∞ is impossible, and we
have tn → ∞. As a consequence, the statements about uniqueness of the operators and
the estimate (7) are now satisfied from some counter n0 onward.

10) To conclude, observe that xn−xn+1 → 0 by (9), and that the a(tn) are 2e−tn-dense
in the interval [tn, tn + 2π], because of
‖a(tn)− a(tn+1)‖ ≤ ‖a(tn)− b−(tn+1)‖+ ‖b−(tn+1)− a(tn+1)‖ ≤ e−tn + e−tn+1 ≤ 2e−tn .

Using (6) and the fact that every a(t) with t ∈ [tn, tn + 2π] is at distance ≤ e−tn/2 to the
set F , we deduce that every point in F is an accumulation point of both the DR-sequence
(10) and the MAP sequence (11). �

Remark 9. (Strong fixed points need not be stable). The system-theoretic in-
terpretation of this result is that a strong fixed-point x∗ ∈ F ⊂ F(T ) need not be a
stable steady state. This is in contrast with Theorem 1, where this was shown to be true
when A,B are finite unions of convex sets. A second interpretation is that F is a stable
attractor for the dynamical system x+ = T (x).

Remark 10. (Shadows need not converge). We note that not only does the DR
sequence xn fail to converge in Theorem 3, also the sequences an = PA(xn) ∈ A, bn =
PB(RA(xn)) ∈ B fail to converge and have the same continuum set of accumulation
points F . Presently no example of failure of convergence of a bounded DR-sequence xn
satisfying xn − xn+1 → 0 is known, where the shadow sequence an converges to a single
limit a∗ ∈ A∩B. It is clear that this could only happen when F ⊂ {x : ‖x− a∗‖ = ε} for
some ε > 0.
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Corollary 1. (Continuous limit cycle for MAP). Let xn be the Douglas–Rachford
sequence constructed above, and let an ∈ A, bn ∈ B be the shadows associated with xn.
Then b2n, a2n+1 is a sequence of alternating projections between the cylinder A and the
inner spiral B−. This sequence also fails to converge and has the same set of accumulation
points F = A ∩B. �

Corollary 2. (Limit cycle for MAP with one set convex). Every sequence of
alternating projections an, bn between the outer spiral B+ and the solid cylinder conv(A)
started at b1 ∈ B+ \ F is bounded, satisfies an − bn → 0, but fails to converge and has the
set F = B+ ∩ conv(A) as its set of accumulation points.

Proof. In part 2) of the proof of Theorem 3 we analyzed this sequence, which is generated
by the building blocks a(t)→ b+(τ)→ a(τ). �

Remark 11. Here we have an example of a semi-algebraic convex set conv(A), and the
spiral B+, which is the projection of a semi-analytic set in R4, where the MAP sequence
fails to converge and leads to a continuous limit cycle. The first example with a continuous
limit cycle appears in [4], but with more pathological sets A,B. The fact that B+ is not
subanalytic can be deduced from [13, Cor. 7]. Currently we do not have an example where
the DR-algorithm fails to converge and creates a continuous limit cycle with one of the
sets convex.
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