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Outline

Stochastic Approximation:

a family of iterative stochastic algorithms for finding zeros of a function.

Stochastic Approximation: the algorithm and the Lyapunov framework

Examples of SA: stochastic gradient and beyond

Stochastic Gradient is an example of SA, but SA encompasses broader scenarios

Non-asymptotic analysis

best strategy after T iterations, complexity analysis

Variance reduction

Conclusion
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Stochastic Approximation: a root-finding method

Robbins and Monro (1951) Wolfowitz (1952), Kiefer and Wolfowitz (1952), Blum (1954), Dvoretzky (1956)

Problem:

Given a mean field h : Rd → Rd, solve

ω ∈ Rd s.t. h(ω) = 0

Available: for all ω, stochastic oracles of h(ω).

The Stochastic Approximation method:

Choose: a sequence of step sizes {γk}k and an initial value ω0 ∈ Rd.

Repeat:

ωk+1 = ωk + γk+1 H(ωk, Xk+1)

where H(ωk, Xk+1) is a stochastic oracle of h(ωk).

Rmk: here, the field h is defined on Rd; and for all ω ∈ Rd.
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Stochastic Approximation: root-finding method in a Lyapunov setting

SA: ωk+1 = ωk + γk+1 H(ωk, Xk+1) with an oracle H(ωk, Xk+1) ≈ h(ωk)

A Lyapunov function. V : Rd → R>0, C1 and

inf-compact s.t.

⟨∇V (ω), h(ω)⟩ ≤ 0 -1
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Key property

A Robbins-Siegmund type inequality Robbins and Siegmund (1971)

E [V (ωk+1)|pastk] ≤ V (ωk) + γk+1 ⟨∇V (ωk), h(ωk)⟩+ γk+1 ρk

ρk depends on the conditional bias and conditional L2-moment of the oracles.

The Lyapunov fct is not monotone along the random path {ωk, k ≥ 0}

Key property for the (a.s.) boundedness of the random path, and its convergence.

SA is an optimization method for the minimization of V

... but, converges to {⟨∇V (·), h(·)⟩ = 0}.
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Stochastic Gradient is a SA method

Find a root of h: ωk+1 = ωk + γk+1 H(ωk, Xk+1) where H(ωk, Xk+1) ≈ h(ωk)

SG is a root finding algorithm

designed to solve ∇R(ω) = 0

for convex and non-convex optimization.

SG is a SA algorithm

ωk+1 = ωk − γk+1 ∇̂R(ωk)

see e.g. survey by Bottou (2003, 2010); Lan (2020). Non-convex case: Bottou et al (2018); Ghadimi and Lan (2013)

Empirical Risk Minimization for batch data

R(ω) =
1

n

n∑
i=1

ℓ(ω, Zi) h(ω) = −
1

n

n∑
i=1

D10ℓ(ω, Zi)

H(ω,Xk+1) = −
1

b

∑
i∈Xk+1

D10ℓ(ω, Zi) Xk+1 a random subset of {1, . . . , n}, cardinal b.
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Majorization-Minimization algorithms, with structured majorizing func-
tions

Expectation-Maximization, for curved exponential family Dempster et al (1977)

- SAEM, SA with biased or unbiased oracles Delyon et al (1999)

- Mini-batch EM, SA with unbiased oracles adapted from Online EM - Cappé and Moulines (2009)

MM algorithms for the minimization of F : Rp → R

F (·) ≤ G(·, τ), ∀τ, F (τ) = G(τ, τ)

Structured majorizing fcts: parametric family, G(·, τ) = ⟨E [S(X, τ)], ϕ(·)⟩

wk
Minimize−−−−−→ T(wk) := argminθ ⟨wk, ϕ(θ)⟩
Majorize−−−−−→ wk+1 := E [S(X,T(wk))]

A root-finding algorithm: E [S(X,T(ω))]− ω = 0

Oracles = Monte Carlo approximations of the intractable expectation
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Value function in a Reward Markov process via Bellman equation

Value function in a Reward Markov process:

Markov process (st)t with stationary distribution π

taking values in S, Card(S) = n.

Reward R(s, s′)

Value function: λ ∈ (0, 1)

∀ s ∈ S, V⋆(s) :=
∑
t≥0

λ
t E

[
R(St, St+1)

∣∣S0 = s
]
.

with linear fct approximation:

V ω ∈ Span(ϕ1, · · · , ϕd) ⇔ findω ∈ Rd V ω = Φω

The Bellman equation B[V ]− V = 0

E [R(S0, S1) + λV (S1) |S0 = s ]− V (s) = 0, ∀s ∈ S

TD(0) is a SA Sutton (1987); Tsitsiklis and Van Roy (1997)

with mean field h(ω) := Φ′ diag(π) (B[Φω]− Φω)

Oracle: H(ω, (Sk, Sk+1, R(Sk, Sk+1))) :=
(
R(Sk, Sk+1) + λV ω(Sk+1) − V ω(Sk)

)
(ΦSk,:)

′
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SA beyond the gradient case

Understanding the behavior of SA algorithms and designing improved algorithms

require new insights that depart from the study of traditional SG algorithms.

What is the “gradient case” ?

the mean field h is a gradient: h(ω) = −∇R(ω)

the oracle is unbiased: E [H(ω,X)] = h(ω)
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Non-asymptotic analysis

Stochastic Approximation

Examples of SA: Stochastic Gradient and beyond

Non-asymptotic analysis

Variance Reduction within SA

Conclusion
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Analyses

▶ Asymptotic convergence analysis, when the horizon tends to infinity

Benveniste et al (1987/2012), Benäım (1999), Kushner and Yin (2003), Borkar (2009)

almost-sure convergence of the sequence {ωk, k ≥ 0}

to (a connected component of) the set L := {ω : ⟨∇V (ω), h(ω)⟩ = 0}

CLT, · · ·

▶ Non-asymptotic analysis

Given a total number of iterations T

After T calls to an oracle, what can be obtained ?

ϵ-approximate stationary point and sample complexity

How many iterations to reach an ϵ-approximate stationary point

∀ϵ > 0, E [W (ω•)] ≤ ϵ
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The assumptions

ωk+1 = ωk + γk+1 H(ωk, Xk+1)

Lyapunov function V and control W

There exist V : Rd → [0,+∞), W : Rd → [0,+∞) and positive constants s.t.

V and W : ∀ω ⟨∇V (ω), h(ω)⟩ ≤ −ρW (ω)

V smooth ∀ω, ω′ ∥∇V (ω) − ∇V (ω′)∥ ≤ LV ∥ω − ω′∥

h(ω) V (ω) W (ω)

Gradient case −∇R(ω) R(ω) ∥h(ω)∥2

and R convex ω⋆ solution −∇R(ω) 0.5∥ω − ω⋆∥2 −⟨ω − ω⋆, h(ω)⟩
and R strongly cvx ω⋆ solution −∇R(ω) 0.5∥ω − ω⋆∥2 W = V or, as above

Stochastic EM s̄(T(ω)) − ω F (T(ω)) ∥h(ω)∥2

TD(0) Φω⋆ solution Φ′D(BΦω − Φω) 0.5∥ω − ω⋆∥2 (ω − ω⋆)′Φ′DΦ(ω − ω⋆)
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The assumptions

ωk+1 = ωk + γk+1 H(ωk, Xk+1)

On the oracles and the mean field

There exist non-negative constants s.t.

The mean field ∀ω ∥h(ω)∥2 ≤ c0 + c1W (ω)

for all k, almost-surely,

Bias ∥E
[
H(ωk, Xk+1)

∣∣∣Fk

]
− h(ωk)∥2 ≤ τ0 + τ1W (ωk)

Variance E
[
∥H(ωk, Xk+1) − E

[
H(ωk, Xk+1)

∣∣∣Fk

]
∥2

∣∣∣Fk

]
≤ σ2

0 + σ2
1W (ωk)

If biased oracles i.e. τ0 + τ1 > 0,

√
cV (

√
τ0/2 +

√
τ1) < ρ, cV := sup

ω

∥∇V (ω)∥2

W (ω)
< ∞.

Includes cases:

Biased oracles, unbiased oracles

Bounded variance of the oracles, unbounded variance of the oracles
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A non-asymptotic convergence bound in expectation

Theorem 1, Dieuleveut-F.-Moulines-Wai (2023)

Assume also that γk ∈ (0, γmax), η1 ≥ σ2
1 + c1 > 0

γmax :=
2(ρ− b1)

LV η1

Then, there exist non-negative constants s.t. for any T ≥ 1

T∑
k=1

γkµk∑T
ℓ=1 γℓµℓ

E [W (ωk−1)] ≤ 2
E [V (ω0)]∑T

ℓ=1 γℓµℓ

+ LV η0

∑T
k=1 γ

2
k∑T

ℓ=1 γℓµℓ

+ cV
√
τ0

∑T
k=1 γk∑T

ℓ=1 γℓµℓ

µℓ = 2(ρ − b1) − γℓLV η1 > 0

ηℓ depends on the bias and variance of the oracles; η0 > 0.

For unbiased oracles: τ0 = b1 = 0

Better bounds when V = W ; not discussed here ex.: SGD for strongly cvx fct; TD(0)
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After T iterations

The strategy

Choose a constant stepsize γk = γ :=
γmax

2
∧

√
2E[V (ω0)]√
η0LV

√
T

Random stopping: return ωRT
where RT ∼ U({0, · · · , T − 1})

or when W is convex: return the averaged iterate T−1 ∑T−1
k=0

ωk

yields

E
[
W (ωRT

)
]
≤

2
√
2LV η0

√
E [V (ω0)]

(ρ− b1)
√
T

∨
8E [V (ω0)]

γmax(ρ− b1)T
+ cV

√
τ0

ρ− b1

When τ0 = 0 i.e. unbiased oracles, or bias scaling with W , it is an optimal control in expectation.

When τ0 > 0:
- the term can not be made small with constant step size

- ad-hoc strategies: play with ”design parameters” to make this term small.
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ϵ-approximate stationary point, for unbiased oracles

For all ϵ > 0, let T (ϵ) ⊂ N s.t. for all T ∈ T (ϵ), E
[
W (ωRT

)
]
≤ ϵ.

For unbiased oracles,

T (ϵ) = [Tϵ,+∞) with

Tϵ := 8E[V (ω0)]
η0LV

ρ2

(
1

ϵ2
∨

η1

2η0ϵ

)

Low precision regime: ϵ > 2η0/η1,

Tϵ = 4E[V (ω0)]
η1LV

ρ2 ϵ
, γ =

γmax

2

High precision regime: ϵ ∈ (0, 2η0/η1],

Tϵ = 8E[V (ω0)]
η0LV

ρ2 ϵ2
, γ =

ρ ϵ

2η0LV
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Variance Reduction within SA
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Control variates for variance reduction

Add a random variable to the natural oracle H(ω,X)

Control variates U , classical in Monte Carlo:

E [H(ω,X) + U ] = E [H(ω,X)] Var (H(ω,X) + U) < Var (H(ω,X)) .

Introduced in Stochastic Gradient, in the case finite sum

h(ω) =
1

n

n∑
i=1

hi(ω)

Extended to SA

Survey on Variance Reduction in ML: Gower et al (2020)

Gradient case: Johnson and Zhang (2013), Defazio et al (2014), Nguyen et al (2017), Fang et al (2018), Wang et al (2018), Shang et al

(2020)

Riemannian non-convex optimization: Han and Gao (2022)

Mirror Descent: Luo et al (2022)

Stochastic EM: Chen et al (2018), Karimi et al (2019), Fort et al. (2020, 2021), Fort and Moulines (2021,2023)
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Efficiency ... via plots (here)

Application: Stochastic EM with ctt step size, mixture of twelve Gaussian in R20 ; unknown weights, means and covariances.
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Application: Stochastic EM with ctt step size, mixture of two Gaussian in R, unknown means.
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For a fixed accuracy level, for different values of the problem size n, display

the number of examples processed to reach the accuracy level (mean nbr over

50 indep runs).
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Conclusion

SA methods with non-gradient mean field and/or biased oracles - in ML and

compurational statistics.

A non-asymptotic analysis for general Stochastic Approximation schemes

For finite sum field h: variance reduction within SA via control variates.

Oracles, from Markovian examples

Roots of h = 0, on Ω ⊂ Rd

Federated SA: compression, control variateS, partial participation, heterogeneity,

local iterations, . . .
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