Stochastic Approximation Beyond Gradient

Gersende Fort

CNRS Institut de Mathématiques de Toulouse France

In collaboration with

- Aymeric Dieuleveut,
- Eric Moulines,
- Hoi-To Wai,

Ecole Polytechnique, CMAP, France Ecole Polytechnique, CMAP, France Chinese Univ. of Hong-Kong, Hong-Kong

Publications: Stochastic Approximation Beyond Gradient for Signal Processing and Machine Learning

HAL-03979922 arXiv:2302.11147 IEEE Trans. on Signal Processing, 2023

A Stochastic Path Integrated Differential Estimator Expectation Maximization Algorithm

HAI-03029700 NeurIPS, 2020

Partly funded by Fondation Simone et Cino Del Duca, Project OpSiMorE

ANR AAPG-2019, Project MASDOL

Outline

Stochastic Approximation:

a family of iterative stochastic algorithms for finding zeros of a function.

- Stochastic Approximation: the algorithm and the Lyapunov framework
- Examples of SA: stochastic gradient and beyond Stochastic Gradient is an example of SA, but SA encompasses broader scenarios

Non-asymptotic analysis

best strategy after T iterations, complexity analysis

- Variance reduction
- Conclusion

Stochastic Approximation

Stochastic Approximation

Examples of SA: Stochastic Gradient and beyond

Non-asymptotic analysis

Variance Reduction within SA

Stochastic Approximation: a root-finding method

Robbins and Monro (1951) Wolfowitz (1952), Kiefer and Wolfowitz (1952), Blum (1954), Dvoretzky (1956)

Problem:

Given a mean field $h : \mathbb{R}^d \to \mathbb{R}^d$, solve

$$\omega \in \mathbb{R}^d$$
 s.t. $h(\omega) = 0$

Available: for all ω , stochastic oracles of $h(\omega)$.

The Stochastic Approximation method:

Choose: a sequence of step sizes $\{\gamma_k\}_k$ and an initial value $\omega_0 \in \mathbb{R}^d$. Repeat:

 $\omega_{k+1} = \omega_k + \gamma_{k+1} \ H(\omega_k, X_{k+1})$

where $H(\omega_k, X_{k+1})$ is a stochastic oracle of $h(\omega_k)$.

Rmk: here, the field h is defined on \mathbb{R}^d ; and for all $\omega \in \mathbb{R}^d$.

Stochastic Approximation: root-finding method in a Lyapunov setting

 $\mathsf{SA:}\qquad \omega_{k+1}=\omega_k+\gamma_{k+1}\,H(\omega_k,X_{k+1})\qquad \text{with an oracle}\ \ H(\omega_k,X_{k+1})\approx h(\omega_k)$

A Lyapunov function. $V: \mathbb{R}^d \to \mathbb{R}_{>0}, C^1$ and inf-compact s.t.

 $\langle \nabla V(\omega), h(\omega) \rangle \leq 0$

Stochastic Approximation: root-finding method in a Lyapunov setting

 $\mathsf{SA:}\qquad \omega_{k+1}=\omega_k+\gamma_{k+1}\,H(\omega_k,X_{k+1})\qquad \text{with an oracle}\ \ H(\omega_k,X_{k+1})\approx h(\omega_k)$

A Lyapunov function. $V : \mathbb{R}^d \to \mathbb{R}_{>0}$, C^1 and inf-compact s.t.

 $\langle \nabla V(\omega), h(\omega) \rangle \leq 0$

• Key property

A Robbins-Siegmund type inequality $\mathbb{E}\left[V(\omega_{k+1})|\text{past}_k\right] \leq V(\omega_k) + \gamma_{k+1} \langle \nabla V(\omega_k), h(\omega_k) \rangle + \gamma_{k+1} \rho_k$ $\rho_k \text{ depends on the conditional bias and conditional } L^2\text{-moment of the oracles.}$

- The Lyapunov fct is **not monotone** along the random path $\{\omega_k, k \ge 0\}$
- Key property for the (a.s.) boundedness of the random path, and its convergence.
- SA is an optimization method for the minimization of V

... but, converges to $\{\langle \nabla V(\cdot), h(\cdot) \rangle = 0\}.$

Examples of SA: Stochastic Gradient and beyond

Stochastic Approximation

Examples of SA: Stochastic Gradient and beyond

Non-asymptotic analysis

Variance Reduction within SA

Stochastic Gradient is a SA method

Find a root of h: $\omega_{k+1} = \omega_k + \gamma_{k+1} H(\omega_k, X_{k+1})$ where $H(\omega_k, X_{k+1}) \approx h(\omega_k)$

SG is a root finding algorithm

- designed to solve $\nabla R(\omega) = 0$
- for convex and **non-convex** optimization.

SG is a SA algorithm

$$\omega_{k+1} = \omega_k - \gamma_{k+1} \,\widehat{\nabla R(\omega_k)}$$

see e.g. survey by Bottou (2003, 2010); Lan (2020). Non-convex case: Bottou et al (2018); Ghadimi and Lan (2013)

Empirical Risk Minimization for batch data
$$R(\omega) = \frac{1}{n} \sum_{i=1}^{n} \ell(\omega, Z_i) \qquad h(\omega) = -\frac{1}{n} \sum_{i=1}^{n} \mathsf{D}_{10}\ell(\omega, Z_i)$$
$$H(\omega, X_{k+1}) = -\frac{1}{\mathsf{b}} \sum_{i \in X_{k+1}} \mathsf{D}_{10}\ell(\omega, Z_i) \qquad X_{k+1} \text{ a random subset of } \{1, \dots, n\}, \text{ cardinal b.}$$

Majorization-Minimization algorithms, with structured majorizing functions

Expectation-Maximization, for curved exponential family

Dempster et al (1977) Delyon et al (1999)

- SAEM. SA with biased or unbiased oracles
- Mini-batch EM, SA with unbiased oracles

adapted from Online EM - Cappé and Moulines (2009)

MM algorithms for the minimization of $F : \mathbb{R}^p \to \mathbb{R}$

 $F(\cdot) < G(\cdot, \tau), \quad \forall \tau, \quad F(\tau) = G(\tau, \tau)$

Structured majorizing fcts: parametric family, $G(\cdot, \tau) = \langle \mathbb{E}[\mathsf{S}(X, \tau)], \phi(\cdot) \rangle$

Majorization-Minimization algorithms, with structured majorizing functions

Expectation-Maximization, for curved exponential family

Dempster et al (1977) Delvon et al (1999)

- SAEM, SA with biased or unbiased oracles
- Mini-batch EM, SA with unbiased oracles

adapted from Online EM - Cappé and Moulines (2009)

MM algorithms for the minimization of $F : \mathbb{R}^p \to \mathbb{R}$

 $F(\cdot) \leq G(\cdot,\tau), \qquad \forall \tau, \qquad \qquad F(\tau) = G(\tau,\tau)$

Structured majorizing fcts: parametric family,

$$G(\cdot, \tau) = \langle \mathbb{E} [\mathsf{S}(X, \tau)], \phi(\cdot) \rangle$$

 $w_k \xrightarrow{\text{Minimize}} \mathsf{T}(w_k) := \operatorname{argmin}_{\theta} \langle w_k, \phi(\theta) \rangle$ $\xrightarrow{\text{Majorize}} w_{k+1} := \mathbb{E} \left[\mathsf{S}(X, \mathsf{T}(w_k)) \right]$

- A root-finding algorithm: $\mathbb{E}\left[\mathsf{S}(X,\mathsf{T}(\omega))\right] \omega = 0$
- Oracles = Monte Carlo approximations of the intractable expectation

Value function in a Reward Markov process via Bellman equation

Value function in a Reward Markov process:

- Markov process $(s_t)_t$ with stationary distribution π
- taking values in S, Card(S) = n.
- Reward R(s, s')
- Value function: $\lambda \in (0, 1)$

$$\forall \ s \in \mathcal{S}, \qquad V_\star(s) := \sum_{t \geq 0} \lambda^t \ \mathbb{E} \left[\mathbb{R}(S_t, S_{t+1}) \big| S_0 = s \right].$$

with linear fct approximation:

$$V^{\omega} \in \operatorname{Span}(\phi_1, \cdots, \phi_d) \Leftrightarrow \operatorname{find} \omega \in \mathbb{R}^d \qquad V^{\omega} = \Phi \omega$$

Value function in a Reward Markov process via Bellman equation

Value function in a Reward Markov process:

- Markov process $(s_t)_t$ with stationary distribution π
- taking values in S, Card(S) = n.
- Reward R(s, s')
- Value function: $\lambda \in (0, 1)$

$$\forall \ s \in \mathcal{S}, \qquad V_{\star}(s) := \sum_{t \ge 0} \lambda^t \ \mathbb{E}\left[\mathbb{R}(S_t, S_{t+1}) \middle| S_0 = s \right].$$

with linear fct approximation: $V^{\omega} := \Phi \omega$

The Bellman equation B[V] - V = 0

$$\mathbb{E}\left[\mathsf{R}(S_0, S_1) + \lambda V(S_1) \,|\, S_0 = s\,\right] - V(s) = 0, \qquad \forall s \in \mathcal{S}$$

$$\begin{split} & \mathsf{TD}(\mathbf{0}) \text{ is a SA} & \text{Sutton (1987); Tsitsiklis and Van Roy (1997)} \\ & \text{with mean field} & h(\omega) := \Phi' \operatorname{diag}(\pi) \ \big(\mathsf{B}[\Phi\omega] - \Phi\omega\big) \\ & \text{Oracle:} & H(\omega, (S_k, S_{k+1}, R(S_k, S_{k+1}))) := \big(\mathsf{R}(S_k, S_{k+1}) + \lambda V^{\omega}(S_{k+1}) - V^{\omega}(S_k)\big) \ (\Phi_{S_k,:})' \end{split}$$

SA beyond the gradient case

Understanding the behavior of SA algorithms and designing improved algorithms require new insights that depart from the study of *traditional SG* algorithms.

What is the "gradient case" ?

- the mean field h is a gradient: $h(\omega) = -\nabla R(\omega)$
- the oracle is unbiased: $\mathbb{E}\left[H(\omega, X)\right] = h(\omega)$

Non-asymptotic analysis

Stochastic Approximation

Examples of SA: Stochastic Gradient and beyond

Non-asymptotic analysis

Variance Reduction within SA

Analyses

► Asymptotic convergence analysis, when the horizon tends to infinity

Benveniste et al (1987/2012), Benaïm (1999), Kushner and Yin (2003), Borkar (2009)

- \bullet almost-sure convergence of the sequence $\{\omega_k, k\geq 0\}$
- to (a connected component of) the set $\mathcal{L} := \{ \omega : \langle \nabla V(\omega), h(\omega) \rangle = 0 \}$
- CLT, · · ·

► Non-asymptotic analysis

Given a total number of iterations \boldsymbol{T}

• After T calls to an oracle, what can be obtained ?

 $\epsilon\textsc{-approximate}$ stationary point and sample complexity

• How many iterations to reach an ϵ -approximate stationary point

$$\forall \epsilon > 0, \quad \mathbb{E}\left[W(\omega_{\bullet})\right] \le \epsilon$$

The assumptions

 $\omega_{k+1} = \omega_k + \gamma_{k+1} H(\omega_k, X_{k+1})$

Lyapunov function \boldsymbol{V} and control \boldsymbol{W}

There exist $V : \mathbb{R}^d \to [0, +\infty)$, $W : \mathbb{R}^d \to [0, +\infty)$ and positive constants s.t. • V and W: • V smooth $\forall \omega, \omega' \ \|\nabla V(\omega) - \nabla V(\omega')\| \le L_V \|\omega - \omega'\|$

	$h(\omega)$	$V(\omega)$	$W(\omega)$
Gradient case	$-\nabla R(\omega)$	$R(\omega)$	$ h(\omega) ^2$
and R convex ω_{\star} so	ution $-\nabla R(\omega)$	$0.5 \ \omega - \omega_{\star} \ ^2$	$-\langle \omega - \omega_{\star}, h(\omega) \rangle$
and R strongly cvx ω_{\star} so	ution $-\nabla R(\omega)$	$0.5 \ \omega - \omega_{\star} \ ^2$	W = V or, as above
Stochastic EM	$\bar{s}(T(\omega)) - \omega$	$F(T(\omega))$	$\ h(\omega)\ ^{2}$
TD(0) Φω*	solution $\Phi' D(B\Phi\omega - \Phi\omega)$	$0.5 \ \omega - \omega_* \ ^2$	$(\omega - \omega_{\star})' \Phi' D \Phi(\omega - \omega_{\star})$

The assumptions

 $\omega_{k+1} = \omega_k + \gamma_{k+1} H(\omega_k, X_{k+1})$

On the oracles and the mean field

There exist non-negative constants s.t.
• The mean field
$$\forall \omega \| h(\omega) \|^2 \leq c_0 + c_1 W(\omega)$$

for all k , almost-surely,
• Bias $\|\mathbb{E} \left[H(\omega_k, X_{k+1}) \Big| \mathcal{F}_k \right] - h(\omega_k) \|^2 \leq \tau_0 + \tau_1 W(\omega_k)$
• Variance $\mathbb{E} \left[\| H(\omega_k, X_{k+1}) - \mathbb{E} \left[H(\omega_k, X_{k+1}) \Big| \mathcal{F}_k \right] \|^2 \Big| \mathcal{F}_k \right] \leq \sigma_0^2 + \sigma_1^2 W(\omega_k)$
• If biased oracles i.e. $\tau_0 + \tau_1 > 0$,
 $\sqrt{c_V} (\sqrt{\tau_0}/2 + \sqrt{\tau_1}) < \rho$, $c_V := \sup_{\omega} \frac{\| \nabla V(\omega) \|^2}{W(\omega)} < \infty$.

Includes cases:

- Biased oracles, unbiased oracles
- Bounded variance of the oracles, unbounded variance of the oracles

A non-asymptotic convergence bound in expectation

Theorem 1, Dieuleveut-F.-Moulines-Wai (2023)

Assume also that
$$\gamma_k \in (0, \gamma_{\max})$$
, $\eta_1 \ge \sigma_1^2 + c_1 > 0$
 $\gamma_{\max} := \frac{2(\rho - b_1)}{L_V \eta_1}$
Then, there exist non-negative constants s.t. for any $T \ge 1$
 $\sum_{k=1}^T \frac{\gamma_k \mu_k}{\sum_{\ell=1}^T \gamma_\ell \mu_\ell} \mathbb{E}\left[W(\omega_{k-1})\right] \le 2 \frac{\mathbb{E}\left[V(\omega_0)\right]}{\sum_{\ell=1}^T \gamma_\ell \mu_\ell}$
 $+ L_V \eta_0 \frac{\sum_{k=1}^T \gamma_k^2}{\sum_{\ell=1}^T \gamma_\ell \mu_\ell}$
 $+ c_V \sqrt{\tau_0} \frac{\sum_{k=1}^T \gamma_k}{\sum_{\ell=1}^T \gamma_\ell \mu_\ell}$
 $\mu_\ell = 2(\rho - b_1) - \gamma_\ell L_V \eta_1 > 0$

- η_{ℓ} depends on the bias and variance of the oracles; $\eta_0 > 0$.
- For unbiased oracles: $\tau_0 = b_1 = 0$
- Better bounds when V = W; not discussed here

ex.: SGD for strongly cvx fct; TD(0)

After T iterations

The strategy

- Choose a constant stepsize $\gamma_k = \gamma := \frac{\gamma_{\max}}{2} \wedge \frac{\sqrt{2\mathbb{E}[V(\omega_0)]}}{\sqrt{nc L_V}\sqrt{T}}$
- Random stopping: return $\omega_{\mathcal{R}_T}$ where $\mathcal{R}_T \sim \mathcal{U}(\{0, \cdots, T-1\})$ or when W is convex: return the averaged iterate $T^{-1} \sum_{k=0}^{T-1} \omega_k$

yields

$$\mathbb{E}\left[W(\omega_{\mathcal{R}_{T}})\right] \leq \frac{2\sqrt{2L_{V}\eta_{0}}\sqrt{\mathbb{E}\left[V(\omega_{0})\right]}}{(\rho-b_{1})\sqrt{T}} \vee \frac{8\mathbb{E}\left[V(\omega_{0})\right]}{\gamma_{\max}(\rho-b_{1})T} + c_{V}\frac{\sqrt{\tau_{0}}}{\rho-b_{1}}$$

When $\tau_0 = 0$ i.e. unbiased oracles, or bias scaling with W, it is an optimal control in expectation.

When $\tau_0 > 0$:

- the term can not be made small with constant step size
- ad-hoc strategies: play with "design parameters" to make this term small.

ϵ -approximate stationary point, for unbiased oracles

For all $\epsilon > 0$, let $\mathcal{T}(\epsilon) \subset \mathbb{N}$ s.t. for all $T \in \mathcal{T}(\epsilon)$, $\mathbb{E}\left[W(\omega_{\mathcal{R}_T})\right] \leq \epsilon$.

For unbiased oracles,

 $\mathcal{T}(\epsilon) = [T_{\epsilon}, +\infty)$ with $T_{\epsilon} := 8 \mathbb{E}[V(\omega_0)] \, \frac{\eta_0 L_V}{\rho^2} \, \left(\frac{1}{\epsilon^2} \lor \frac{\eta_1}{2\eta_0 \epsilon} \right)$

• Low precision regime: $\epsilon > 2\eta_0/\eta_1$,

$$T_{\epsilon} = 4 \mathbb{E}[V(\omega_0)] \frac{\eta_1 L_V}{\rho^2 \epsilon}, \qquad \gamma = \frac{\gamma_{\max}}{2}$$

• High precision regime: $\epsilon \in (0, 2\eta_0/\eta_1]$,

$$T_{\epsilon} = 8 \mathbb{E}[V(\omega_0)] \frac{\eta_0 L_V}{\rho^2 \epsilon^2}, \qquad \gamma = \frac{\rho \epsilon}{2\eta_0 L_V}$$

FGS Conference on Optimization, June 2024

Variance Reduction within SA

Stochastic Approximation

Examples of SA: Stochastic Gradient and beyond

Non-asymptotic analysis

Variance Reduction within SA

Control variates for variance reduction

- Add a random variable to the *natural oracle* $H(\omega, X)$
- Control variates U, classical in Monte Carlo:

 $\mathbb{E}\left[H(\omega, X) + U\right] = \mathbb{E}\left[H(\omega, X)\right] \qquad \qquad \operatorname{Var}\left(H(\omega, X) + U\right) < \operatorname{Var}\left(H(\omega, X)\right).$

Introduced in Stochastic Gradient, in the case finite sum

$$h(\omega) = \frac{1}{n} \sum_{i=1}^{n} h_i(\omega)$$

Extended to SA

Survey on Variance Reduction in ML: Gower et al (2020)

Gradient case: Johnson and Zhang (2013), Defazio et al (2014), Nguyen et al (2017), Fang et al (2018), Wang et al (2018), Shang et al (2020)

Riemannian non-convex optimization: Han and Gao (2022)

Mirror Descent: Luo et al (2022)

Stochastic EM: Chen et al (2018), Karimi et al (2019), Fort et al. (2020, 2021), Fort and Moulines (2021,2023)

Efficiency ... via plots (here)

Application: Stochastic EM with ctt step size, mixture of twelve Gaussian in \mathbb{R}^{20} ; unknown weights, means and covariances.

Estimation of 20 parameters, one path of SA

Estimation of 20 parameters, one path of SPIDER-SA

Squared norm of the mean field h, after 20 and 40 epochs; for SA and three variance reduction methods

Application: Stochastic EM with ctt step size, mixture of two Gaussian in R, unknown means.

For a fixed accuracy level, for different values of the problem size n, display the number of examples processed to reach the accuracy level (mean nbr over 50 indep runs).

Conclusion

Stochastic Approximation

Examples of SA: Stochastic Gradient and beyond

Non-asymptotic analysis

Variance Reduction within SA

- SA methods with non-gradient mean field and/or biased oracles in ML and compurational statistics.
- A non-asymptotic analysis for general Stochastic Approximation schemes
- For finite sum field h: variance reduction within SA via control variates.
- Oracles, from Markovian examples
- Roots of h = 0, on $\Omega \subset \mathbb{R}^d$
- Federated SA: compression, control variateS, partial participation, heterogeneity, local iterations, ...