Stochastic Approximation Beyond Gradient

Gersende Fort

CNRS Institut de Mathématiques de Toulouse France

In collaboration with

-
-
-

• Aymeric Dieuleveut, and the Ecole Polytechnique, CMAP, France • Eric Moulines, **Ecole Polytechnique, CMAP, France • Ecole Polytechnique, CMAP**, France • Hoi-To Wai, **Markong Markong Chinese Univ.** of Hong-Kong, Hong-Kong

Publications: Stochastic Approximation Beyond Gradient for Signal Processing and Machine Learning

HAL-03979922 arXiv:2302.11147 IEEE Trans. on Signal Processing, 2023

A Stochastic Path Integrated Differential Estimator Expectation Maximization Algorithm

HAl-03029700 NeurIPS, 2020

Partly funded by Fondation Simone et Cino Del Duca, Project OpSiMorE

Outline

4 Stochastic Approximation: the algorithm and the Lyapunov framework

Stochastic Approximation:

an iterative stochastic algorithm, for finding zeros of a vector field.

2 Examples of SA: stochastic gradient and beyond

Stochastic Gradient is an example of SA, but SA encompasses broader scenarios

³ Non-asymptotic analysis

best strategy after T iterations, complexity analysis

4 Variance reduction

6 Conclusion

[Stochastic Approximation](#page-3-0)

[Stochastic Approximation](#page-3-0)

Stochastic Approximation: a root-finding method

Robbins and Monro (1951) Wolfowitz (1952), Kiefer and Wolfowitz (1952), Blum (1954), Dvoretzky (1956)

Problem:

Given a vector field $h : \mathbb{R}^d \to \mathbb{R}^d$, solve

$$
\omega \in \mathbb{R}^d \qquad \text{s.t.} \quad h(\omega) = 0
$$

Available: for all ω , stochastic oracles of $h(\omega)$.

The Stochastic Approximation method:

Choose: a sequence of positive step sizes $\{\gamma_k\}_k$ and an initial value $\omega_0 \in \mathbb{R}^d$. Repeat:

```
\omega_{k+1} = \omega_k + \gamma_{k+1} H(\omega_k, X_{k+1})
```
where $H(\omega_k, X_{k+1})$ is a stochastic oracle of $h(\omega_k)$.

Rmk: here, the field h is defined on \mathbb{R}^d ; and for all $\omega \in \mathbb{R}^d$. Example: $h(\omega)$ is an expectation; $H(\omega, X_{k+1})$ is a Monte Carlo approximation.

Stochastic Approximation: root-finding method in a Lyapunov setting

SA: $\omega_{k+1} = \omega_k + \gamma_{k+1} H(\omega_k, X_{k+1})$ with an oracle $H(\omega_k, X_{k+1}) \approx h(\omega_k)$

A Lyapunov function. $V : \mathbb{R}^d \to \mathbb{R}_{>0}$, C^1 and inf-compact s.t.

 $\langle \nabla V(\omega), h(\omega) \rangle \leq 0$

Stochastic Approximation: root-finding method in a Lyapunov setting

SA: $\omega_{k+1} = \omega_k + \gamma_{k+1} H(\omega_k, X_{k+1})$ with an oracle $H(\omega_k, X_{k+1}) \approx h(\omega_k)$

A Lyapunov function. $V : \mathbb{R}^d \to \mathbb{R}_{>0}$, C^1 and inf-compact s.t.

 $\langle \nabla V(\omega), h(\omega) \rangle \leq 0$

• Key property

A Robbins-Siegmund type inequality Robbins and Siegmund (1971) $\mathbb{E}\left[V(\omega_{k+1})\middle|\text{past}_k\right] \leq V(\omega_k) + \gamma_{k+1} \langle \nabla V(\omega_k), h(\omega_k) \rangle + \gamma_{k+1} \rho_k$ ρ_k depends on the conditional bias and conditional L^2 -moment of the oracles.

- The Lyapunov fct is not monotone along the random path $\{\omega_k, k \geq 0\}$
- Key property for the (a.s.) boundedness of the random path, and its convergence.
- \bullet SA is an *optimization* method for the minimization of V

... but, converges to $\{\langle \nabla V(\cdot), h(\cdot) \rangle = 0\}.$

[Examples of SA: Stochastic Gradient](#page-7-0) [and beyond](#page-7-0)

[Examples of SA: Stochastic Gradient and beyond](#page-7-0)

Stochastic Gradient is a SA method

Find a root of h: $\omega_{k+1} = \omega_k + \gamma_{k+1} H(\omega_k, X_{k+1})$ where $H(\omega_k, X_{k+1}) \approx h(\omega_k)$

SG is a root finding algorithm

- designed to solve $\nabla R(\omega) = 0$
- **o** for convex and **non-convex** optimization.

SG is a SA algorithm

$$
\omega_{k+1} = \omega_k - \gamma_{k+1} \widehat{\nabla R(\omega_k)}
$$

see e.g. survey by Bottou (2003, 2010); Lan (2020). Non-convex case: Bottou et al (2018); Ghadimi and Lan (2013)

$$
\begin{array}{ll}\text{Empirical Risk Minimization for batch data} & \qquad R(\omega) = \frac{1}{n}\sum_{i=1}^n \ell(\omega,Z_i)\\ \\ \text{Vector field:} & \qquad h(\omega) = -\frac{1}{n}\sum_{i=1}^n \nabla_\omega \ell(\omega,Z_i)\\ \\ \text{Oracle:} & \qquad H(\omega,X_{k+1}) = -\frac{1}{\mathfrak{b}}\sum_{i\in X_{k+1}} \nabla_\omega \ell(\omega,Z_i); \qquad X_{k+1} \text{ is a random mini-batch, cardinal b.}\\ \\ \text{Unbiased oracles:} & \qquad \mathbb{E}[H(\omega,X_{k+1})] = h(\omega) \end{array}
$$

Majorization-Minimization algorithms, with structured majorizing functions

Expectation-Maximization, for curved exponential family Dempster et al (1977)

- SAEM, SA with biased or unbiased oracles and the Delyon et al (1999)

- Mini-batch EM, SA with unbiased oracles adapted from Online EM - Cappé and Moulines (2009)

MM algorithms for the minimization of $F : \mathbb{R}^p \to \mathbb{R}$

 $F(\cdot) \leq \mathcal{Q}(\cdot, \tau), \qquad \forall \tau, \qquad F(\tau) = \mathcal{Q}(\tau, \tau)$

Structured majorizing fcts: parametric family, $Q(\cdot, \tau) = \langle \mathbb{E} [S(X, \tau)], \phi(\cdot) \rangle$

Majorization-Minimization algorithms, with structured majorizing functions

Expectation-Maximization, for curved exponential family Dempster et al (1977)

- SAEM, SA with biased or unbiased oracles Delyon et al (1999)

- Mini-batch EM, SA with unbiased oracles adapted from Online EM - Cappé and Moulines (2009)

MM algorithms for the minimization of $F : \mathbb{R}^p \to \mathbb{R}$

 $F(\cdot) \leq \mathcal{Q}(\cdot, \tau), \qquad \forall \tau, \qquad F(\tau) = \mathcal{Q}(\tau, \tau)$

Structured majorizing fcts: parametric family, $Q(\cdot, \tau) = \langle \mathbb{E} [S(X, \tau)], \phi(\cdot) \rangle$

 $w_k \xrightarrow{\text{Minimize}} \mathsf{T}(w_k) := \mathrm{argmin}_{\theta} \langle w_k, \phi(\theta) \rangle$ $\frac{\text{Majorize}}{w_{k+1}}$:= $\mathbb{E}\left[\mathsf{S}(X,\mathsf{T}(w_k))\right]$

- A root-finding algorithm: $\mathbb{E} [S(X, T(\omega))] \omega = 0$
- \bullet Oracles $=$ Monte Carlo approximations of the intractable expectation

Value function in a Reward Markov process via Bellman equation

Value function in a Reward Markov process:

- Markov process $(s_t)_t$ with stationary distribution π
- taking values in S, $\text{Card}(\mathcal{S}) = n$.
- Reward $R(s, s')$
- Value function: $\lambda \in (0, 1)$

$$
\forall s \in S, \qquad V_{\star}(s) := \sum_{t \geq 0} \lambda^{t} \mathbb{E}\left[R(S_{t}, S_{t+1}) \middle| S_{0} = s\right].
$$

$$
\mathsf{B}[V] - V = 0
$$

$$
\mathbb{E}\left[\left[\mathsf{R}(\mathfrak{O}_0,\mathfrak{O}_1)+\lambda V\left(\mathfrak{O}_1\right)\right]\mathfrak{O}_0=s\right]-V\left(s\right)=0,\qquad\forall s\in\mathfrak{O}
$$

Algorithm TD(0): with linear fct approximation: $V^{\omega} := \Phi \omega = \omega_1 \Phi_1(\cdot) + \cdots + \omega_d \Phi_d(\cdot)$

TD(0) is a SA Sutton (1987); Tsitsiklis and Van Roy (1997) with mean field $h(\omega) := \Phi' \text{diag}(\pi) (\mathsf{B}[\Phi \omega] - \Phi \omega)$ Oracle: $H(\omega, (S_k, S_{k+1}, R(S_k, S_{k+1}))) := \left(R(S_k, S_{k+1}) + \lambda V^{\omega}(S_{k+1}) - V^{\omega}(S_k)\right) (\Phi_{S_k,:})'$

SA beyond the gradient case

Understanding the behavior of SA algorithms and designing improved algorithms require new insights that depart from the study of *traditional SG* algorithms.

What is the "gradient case" ?

- the mean field h is a gradient: $h(\omega) = -\nabla R(\omega)$
- the oracle is unbiased: $\mathbb{E}[H(\omega, X)] = h(\omega)$

[Non-asymptotic analysis](#page-13-0)

[Non-asymptotic analysis](#page-13-0)

Analyses

▶ Asymptotic convergence analysis, when the horizon tends to infinity

Benveniste et al (1987/2012), Bena¨ım (1999), Kushner and Yin (2003), Borkar (2009)

- almost-sure convergence of the sequence $\{\omega_k, k \geq 0\}$
- to (a connected component of) the set $\mathcal{L} := {\omega : \langle \nabla V(\omega), h(\omega) \rangle = 0}$
- \bullet CLT, \cdots

▶ Non-asymptotic analysis

Given a total number of iterations T

 \bullet After T calls to an oracle, what can be obtained ?

 ϵ -approximate stationary point and sample complexity

■ How many iterations to reach an ϵ -approximate stationary point

$$
\forall \epsilon > 0, \quad \mathbb{E}\left[W(\omega_{\bullet})\right] \leq \epsilon
$$

The assumptions

 $\omega_{k+1} = \omega_k + \gamma_{k+1} H(\omega_k, X_{k+1})$

Lyapunov function V and control W There exist $V : \mathbb{R}^d \to [0, +\infty)$, $W : \mathbb{R}^d \to [0, +\infty)$ and positive constants s.t. • *V* and *W*: $\forall \omega \ \langle \nabla V(\omega), h(\omega) \rangle \leq -\rho W(\omega)$ V smooth $\forall \omega, \omega' \|\nabla V(\omega) - \nabla V(\omega')\| \leq L_V \|\omega - \omega'\|$

The assumptions

 $\omega_{k+1} = \omega_k + \gamma_{k+1} H(\omega_k, X_{k+1})$

On the oracles and the mean field

There exist non-negative constants s.t.
\n• The mean field
\n
$$
\forall \omega \ \|h(\omega)\|^2 \le c_0 + c_1 W(\omega)
$$
\nfor all k, almost-surely,
\n• Bias
\n• Variance
\n
$$
\mathbb{E}\left[\|H(\omega_k, X_{k+1}) - \mathbb{E}\left[H(\omega_k, X_{k+1})\big| \mathcal{F}_k\right] - h(\omega_k)\|^2 \le \tau_0 + \tau_1 W(\omega_k)
$$
\n• If biased oracles i.e. $\tau_0 + \tau_1 > 0$,
\n
$$
\sqrt{c_V} (\sqrt{\tau_0}/2 + \sqrt{\tau_1}) < \rho, \qquad c_V := \sup_{\omega} \frac{\|\nabla V(\omega)\|^2}{W(\omega)} < \infty.
$$

Includes cases:

- **•** Biased oracles, unbiased oracles
- Bounded variance of the oracles, unbounded variance of the oracles

A non-asymptotic convergence bound in expectation

Theorem 1, Dieuleveut-F.-Moulines-Wai (2023)

Assume also that
$$
\gamma_k \in (0, \gamma_{\text{max}})
$$
,
\n
$$
\gamma_{\text{max}} := \frac{2(\rho - b_1)}{L_V \eta_1}
$$
\nThen, there exist non-negative constants s.t. for any $T \ge 1$
\n
$$
\sum_{k=1}^{T} \frac{\gamma_k \mu_k}{\sum_{\ell=1}^{T} \gamma_{\ell} \mu_{\ell}} \mathbb{E}\left[W(\omega_{k-1})\right] \le 2 \frac{\mathbb{E}\left[V(\omega_0)\right]}{\sum_{\ell=1}^{T} \gamma_{\ell} \mu_{\ell}} + L_V \eta_0 \frac{\sum_{k=1}^{T} \gamma_k^2}{\sum_{\ell=1}^{T} \gamma_{\ell} \mu_{\ell}} + c_V \sqrt{\tau_0} \frac{\sum_{k=1}^{T} \gamma_k^2}{\sum_{\ell=1}^{T} \gamma_{\ell} \mu_{\ell}} + c_V \sqrt{\tau_0} \frac{\sum_{k=1}^{T} \gamma_k}{\sum_{\ell=1}^{T} \gamma_{\ell} \mu_{\ell}} + e_{\mu_{\ell} = 2(\rho - b_1) - \gamma_{\ell} L_V \eta_1 > 0}
$$

- η_{ℓ} depends on the bias and variance of the oracles; $\eta_0 > 0$.
- For unbiased oracles: $\tau_0 = b_1 = 0$
- **Better bounds when** $V = W$; not discussed here ex.: SGD for strongly cvx fct; TD(0)

After T iterations

The strategy

- Choose a constant stepsize $\frac{\gamma_{\max}}{2} \wedge \frac{\sqrt{2\mathbb{E}[V(\omega_0)]}}{\sqrt{\eta_0 L_V} \sqrt{T}}$
- Random stopping: return $ω_{\mathcal{R}_T}$ where $\mathcal{R}_T \sim \mathcal{U}(\{0, \cdots, T-1\})$ or when W is convex: return the averaged iterate $T^{-1} \sum_{k=0}^{T-1} \omega_k$

yields

$$
\mathbb{E}\left[W(\omega_{\mathcal{R}_T})\right] \le \frac{2\sqrt{2L_V\eta_0}\sqrt{\mathbb{E}\left[V(\omega_0)\right]}}{(\rho - b_1)\sqrt{T}} \vee \frac{8\mathbb{E}\left[V(\omega_0)\right]}{\gamma_{\max}(\rho - b_1)T} + c_V \frac{\sqrt{\tau_0}}{\rho - b_1}
$$

When $\tau_0 = 0$ i.e. unbiased oracles, or bias scaling with W, it is an optimal control in expectation.

When $\tau_0 > 0$:

- the term can not be made small with constant step size
- ad-hoc strategies: play with "design parameters" to make this term small.

ϵ -approximate stationary point, for unbiased oracles

For all $\epsilon > 0$, let $\mathcal{T}(\epsilon) \subset \mathbb{N}$ s.t. for all $T \in \mathcal{T}(\epsilon)$, $\qquad \mathbb{E}\left[W(\omega_{\mathcal{R}_T})\right] \leq \epsilon$.

For unbiased oracles,

 $\mathcal{T}(\epsilon) = [T_{\epsilon}, +\infty)$ with $T_\epsilon := 8\, \mathbb{E}[V(\omega_0)] \, \frac{\eta_0 L_V}{\rho^2}$ $\left(1\right)$ $\frac{1}{\epsilon^2}\vee \frac{\eta_1}{2\eta_0}$ $2\eta_0\epsilon$ λ

• Low precision regime: $\epsilon > 2n_0/n_1$.

$$
T_{\epsilon} = 4 \mathbb{E}[V(\omega_0)] \frac{\eta_1 L_V}{\rho^2 \epsilon}, \qquad \gamma = \frac{\gamma_{\text{max}}}{2}
$$

• High precision regime: $\epsilon \in (0, 2\eta_0/\eta_1]$,

$$
T_{\epsilon} = 8 \mathbb{E}[V(\omega_0)] \frac{\eta_0 L_V}{\rho^2 \epsilon^2}, \qquad \gamma = \frac{\rho \epsilon}{2 \eta_0 L_V}
$$

 ϵ -approximate stationary point, when biased oracles: on an example

EM
$$
h(\omega) = \frac{1}{n} \sum_{i=1}^{n} \bar{S}_i(T(\omega)) - \omega
$$
 where $\bar{S}_i(\tau) := \int_{\mathcal{X}} S_i(x) \pi(x; \tau) dx$
The SA-EM oracle

- Monte Carlo sum with m points,
- case "Self-normalized Importance Sampling": bias β_0/m and variance β_1/m .

Complexity

For all $\epsilon > 0$, let $\mathcal{T}(\epsilon) \subset \mathbb{N}^2$ s.t. for all $(T, m) \in \mathcal{T}(\epsilon)$, $\qquad \mathbb{E}\left[W(\omega_{\mathcal{R}_T})\right] \leq \epsilon$.

$$
T \geq \frac{16 \mathbb{E}[V(\omega_{0})](1+\sigma_{1}^{-2}/m)}{v_{\min}^2 \kappa \epsilon} \vee \frac{32 \mathbb{E}[V(\omega_{0})]\bar{\sigma}_{0}^2 L_V}{m v_{\min}^2 \kappa^2 \epsilon^2} \hspace{1cm} m \geq \frac{4c_b}{(1-\kappa) v_{\min} \epsilon}
$$

For low precision regime,

$$
T_{\epsilon} = \frac{C_1}{\epsilon}, \qquad m_{\epsilon} = \frac{C_2}{\epsilon}, \qquad \text{cost}_{\text{comp}} = T_{\epsilon} \ (nm_{\epsilon} \text{ cost}_{\text{MC}} + \text{cost}_{\text{opt}})
$$

Other rates for low precision regime.

[Variance Reduction within SA](#page-21-0)

[Variance Reduction within SA](#page-21-0)

- Add a random variable to the natural oracle $H(\omega, X)$
- **Control variates U, classical in Monte Carlo:**

 $\mathbb{E}[H(\omega, X) + U] = \mathbb{E}[H(\omega, X)]$ Var $(H(\omega, X) + U) < \text{Var}(H(\omega, X))$.

Introduced in Stochastic Gradient, in the case *finite sum*

$$
h(\omega) = \frac{1}{n} \sum_{i=1}^{n} h_i(\omega)
$$

Extended to SA

Survey on Variance Reduction in ML: Gower et al (2020)

Gradient case: Johnson and Zhang (2013), Defazio et al (2014), Nguyen et al (2017), Fang et al (2018), Wang et al (2018), Shang et al (2020)

Riemannian non-convex optimization: Han and Gao (2022)

Mirror Descent: Luo et al (2022)

Stochastic EM: Chen et al (2018), Karimi et al (2019), Fort et al. (2020, 2021), Fort and Moulines (2021,2023)

The SPIDER control variate when h is a finite sum

Adapted from the gradient case: Stochastic Path-Integrated Differential EstimatoR

Nguyen et al (2017), Fang et al (2018), Wang et al (2019)

In the finite sum setting:
$$
h(\omega) = \frac{1}{n} \sum_{i=1}^{n} h_i(\omega)
$$
 and *n* large

• At iteration $\#(k+1)$, a natural oracle for $h(\omega_k)$ is

$$
H(\omega_k,X_{k+1}):=\frac{1}{\mathsf{b}}\sum_{i\in X_{k+1}}h_i(\omega_k)\qquad x_{k+1}\text{ mini-batch from }\{1,\ldots,n\}\text{, of size } \mathsf{b}
$$

o The SPIDER oracle is

$$
H_{k+1}^{\text{sp}} := \frac{1}{\mathsf{b}} \sum_{i \in X_{k+1}} h_i(\omega_k) + \underbrace{H_k^{\text{sp}}}_{\text{for } h(\omega_{k-1})} - \underbrace{1}_{\mathsf{b}} \sum_{i \in X_{k+1}} h_i(\omega_{k-1})}_{\text{oracle}}
$$

• Implementation: *refresh* the control variate every K_{in} iterations

Efficiency ... via plots (here)

Application: Stochastic EM with ctt step size, mixture of twelve Gaussian in \mathbb{R}^{20} ; unknown weights, means and covariances.

Estimation of 20 parameters, one path of SA

epoch Estimation of 20 parameters, one path of SPIDER-SA

SPIDER-SA

20 40 60 80 100 120 140

Squared norm of the mean field h , after 20 and 40 epochs; for SA and three variance reduction methods

-2 ص ہ z ۰۳, Iterates

Application: Stochastic EM with ctt step size, mixture of two Gaussian in R, unknown means.

For a fixed accuracy level, for different values of the problem size n , display the number of examples processed to reach the accuracy level (mean nbr over 50 indep runs).

[Conclusion](#page-25-0)

[Conclusion](#page-25-0)

Conclusion

- SA methods with non-gradient mean field and/or biased oracles in ML and compurational statistics.
- A non-asymptotic analysis for general Stochastic Approximation schemes
- \bullet For *finite sum field h:* variance reduction within SA via control variates.
- Oracles, from Markovian examples
- Roots of $h = 0$, on $\Omega \subset \mathbb{R}^d$
- Federated SA: compression, control variateS, partial participation, heterogeneity, local iterations, ...