Ablamowicz R., Fauser, B. (eds.), Clifford Algebras and their Applications in Mathematical Physics, Vol 1:Algebra and Physics, Birkhauser, Boston (2000) |
Ablamowicz. R. (ed.), Clifford Algebras, Progress in Mathematical Physics 34, Birkhauser, Boston (2004) |
Ablamowicz. R. and Sobczyk (eds.), G., Lectures on Clifford (Geometric) Algebras and Applications, Birkhauser, Boston (2004) |
L. V. Ahlfors, Möbius Transformations and Clifford Numbers, Springer, Berlin (1985) |
Pierre Anglès, Conformal Groups in Geometry and Spin Structures, Progress in Mathematical Physics, Birkhauser, Vol. 50 (2007) |
Pierre Anglès,Artibano Micali†, Daniel Parrochia, L'unification des mathématiques (algèbres géométriques, géométrie algébrique et philosophie de Langlands), Hermes, Lavoisier (2012) |
E. Artin, Geometric Algebra, Interscience, New York (1957) |
A. Baker, Matrix Groups. An Introduction to Lie Group Theory, Chapters 4,5, Springer, London 2002 |
Baylis, W. E. (ed.), Clifford (Geometric) Algebras with Applications in Physics, Mathematics and Enginnering, Birkhauser, Boston (1996) |
W. E. Baylis, Electrodynamics, A Modern Geometric Approach, Birkhäuser, Boston (1999) |
I. Benn and R. Tucker, An introduction to Spinors and Geometry, Adam Hilger (1987) |
N. Bourbaki, Algèbre , Eléments de mathématiques , Hermann (1970) pp. Chapt. II: Algèbre linéaire, Chapt 9: Formes sesquilineaires et quadratiques} |
Brackx, F., R. Delanghe, and F. Sommen, Clifford Analysis, Research Notes in Mathematics 76. Pitman, London (1982) |
E. Cartan, The Theory of Spinors, MIT Press, Cambridge (1967) |
C. Chevalley,, The Algebraic Theory of Spinors and Clifford Algebras. Collected Works vol. 2, Springer-Verlag, Berlin (1997) |
Colombo, F., Sabadini, I., Sommen, F., Struppa, D.C., Analysis of Dirac Systems and Computational Algebra, Progress in Mathematical Physics , Vol. 39, Birkahuser, Boston ( 2004) |
R. Coquereaux, A. Jadczyk, Riemannian Geometry, Fiber Bundles, Kaluza-Klein Theories and all That, World Scientific, Singapore (1988), pp.Chapt. 6.5-6.9 and Chapt. 8: Dimensional reduction of the orthogonal bundle and of the spin bundle |
Bayro-Corrochano, E., Geometrical Computing for Perception Action Systems, Springer, Berlin (2001) |
Budinich, P., and Trautman, A., The Spinorial Chessboard, Springer, Berlin (1998) |
Moshe Carmeli, Shimon Malin, Theory of Spinors: An Introduction, World Scientific, Singapore (2000) |
E.M. Corson, Introduction to tensors, spinors, and relativistic wave-equations , Chelsea (1953) |
A. Crumeyrolle, Orthogonal and Sympletic Clifford Algebras, Kluwer, Dordrecht (1990) |
Daviau, C., Equation de Dirac non Lineaire, These de Doctorat, Univ. de Nantes (1993) |
Deheuvels, Rene, Formes quadratiques et groupes classiques, Presses Universitaires De France, Paris (1981) |
Deheuvels, Rene, Tenseurs et Spineurs, Presses Universitaires De France, Paris (1993) |
R. Delanghe, F. Sommen and V. Soucek, Clifford Algebra and Spinor-Valued Functions, Kluwer Academic Publisher, Dordrecht, Boston (1992) |
J. Dieudonne, La Géométrie des groupes classiques, Springer, Berlin (1955) |
Chris Doran and Anthony Lasenby, Geometric Algebra for Physicists, Cambridge University Press, Cambridge (2003) |
Dorst, L., Doran C., Lasenby J. (eds.), Applications of Geometric Algebra in Computer Science and Engineering, Birkhauser, Boston (2002) |
Fecko, Marián, Differential Geometry and Lie Groups for Physicists, Cambdrige University Press, 2006; especially Chapter. 22.1, Clifford algebras C(p,q) |
Fernandez, V. V., Moya, A. M. and Rodrigues, W. A., Jr., Covariant Derivatives on Minkowski Manifolds, in Ablamowicz R., Fauser, B. (eds.), Clifford Algebras and their Applications in Mathematical Physics, Vol 1:Algebra and Physics, pp.367-392, Birkhauser, Boston (2000) |
Gilbert, J. E., and M. A. M. Murray, Clifford Algebras and Dirac Operators in Harmonic Analysis, Cambridge University Press, Cambridge (1991) |
Patrick R. Girard, Quaternions, Clifford Algebras and Relativistic Physics, Birkhäuser Basel (2007) |
K. Gürlebeck, W. Sprössig, Quaternionic and Clifford Calculus for Physicists and Engineers, Wiley, Chichester (1997) |
Alexander J.Hahn,
Quadratic Algebras,Clifford Algebras and Arithmetic Witt Groups, Springer-Verlag, New York (1994) |
K. Gürlebeck, Klauss Habetha, W. Sprössig, Holomorphic Functions in the Plane and n-dimensional Space, Birkhäuser, Basel 2008 |
F. Reese Harvey, Spinors and Calibrations, Academic Press, Boston (1990) |
Michiel Hazewinkel (ed), Encyclopaedia of Mathematics, Springer, Berlin (2002), pp. Clifford Algebra and Spinor Representation |
Jacques Helmstetter, Artibano Micali, Quadratic Mappings and Clifford Algebras, Birkhäuser, Basel 2008 |
Hermann, R., Spinors, Clifford and Caley Algebras, Interdisciplinariy Mathematics vol. VII, Depart. Math., Rutgers Univ., New Brunswick, NJ (1974) |
Hestenes, D ,Space-time Algebra, Gordon & Breach, New York (1966) |
Hestenes, D., and G. Sobczyk, Clifford Algebra to Geometric Calculus, D. Reidel Publishing Company, Dordrecht (1984) |
Hestenes, D., New Foundations for Classical Mechanics, Kiuwer Academic Publishers, Dordrecht (1986) |
Hladik, J., Spinors in Physics, Springer-Verlag, Berlin (1999) |
D. A. Hurley, M. A. Vandyck, Geometry Spinors and Applications, Springer and Praxis Publishing, Chichester (2000) |
B. Jancewicz, Multivectors and Clifford Algebra in Electrodynamics, World Scientific, Singapore (1988) |
Max Karoubi, K-Theory. An Introduction, Springer (1978) |
Knus, M. A., Quadratic Forms, Clifford Algebras and Spinors, Univ. Estadual de Campinas (UNICAMP), Campinas (1988) |
T.Y. Lam, Algebraic Theory of Quadratic Forms, Addison-Wesley (1980) |
H. B. Lawson and M. L. Michelsohn, Spin Geometry, Princeton Univ. Press (1989) |
P. Lounesto, Clifford Algebras and Spinors, Cambridge University Press, Cambridge (1997) |
M. Morand, Géométrie spinorielle, Masson, Paris (1973) |
O.T. O'Meara, Introduction to quadratic forms, Springer (1973) |
R. Penrose and W. Rindler, Spinors and Spacetime, vol.1, 2: Spinor and Twistor Methods in Spacetime Geometry, Cambridge Univ. Press, Cambridge (1986) |
I. Porteous, Topological Geometry, 2nd edition, Cambridge University Press, Cambridge (1981) |
I. Porteous, Clifford Algebras and the Classical Groups, Cambridge Univ. Press, Cambridge (1995) |
A. Pressley and G. Segal, Loop Groups, Clanderon Press, Oxford (1986), pp. Chapt 12: Spinor Representation |
Marcel Riesz, Clifford Numbers and Spinors, Kluwer Academic Publisher, Dordrecht/Boston (1993) |
Ichiro Satake, Algebraic Structures of Symmetric Domains, Princeton University Press (1980), pp. Appendix |
Seguins Pazzis (de), Clément, Invitation aux formes quadratiques, Calvage & Mounet, Paris (2010) |
Snygg, J., Clifford Algebra A Computational Tool for Physicists, Oxford University Press, Oxford (1997) |
Sommer G. (ed.), Geometric Computing with Clifford Algebra, SpringerVerlag, Heidelberg (2000) |
R. Ward and R. Wells, Twistor Geometry and Field Theory, Cambridge University Press, Oxford (1990) |
Updated May 15, 2008