Corrigé de l'examen de septembre 2001

- I.1) Lorsqu'on identifie tout polynôme à la suite de ses coefficients, $\| \|$ n'est autre que la restriction à E (vu comme l'espace des suites réelles nulles à partir d'un certain rang) de la norme usuelle sur ℓ^1 ($\|a\|_1 = \sum_{n \in \mathbb{N}} |a_k|$).
- I.2.a) $\sum_{k \le n} |ka_k| \le n \sum_{k \le n} |a_k|$ donc D est continue sur E_n (de norme $\le n$).
- I.2.a) $||X^n|| = 1$ tandis que $||D(X^n)|| = n$, donc D n'est pas continue sur E (car non bornée sur la sphère unité).
 - I.3) A est réunion de deux convexes (donc connexes) qui se rencontrent (en 1) donc est connexe.
- II.1) La suite des $A_n(\epsilon)$ est décroissante parce que la suite des $d(f_n, f)$ l'est. $A_n(\epsilon)$ est fermé parce que l'application $d(f_n, f): X \to Y$ est continue.
- II.2) L'intersection des $A_n(\epsilon)$ est vide parce que $d(f_n, f)$ converge (simplement) vers 0.
- II.3) D'après 1 et 2, les $A_n(\epsilon)$ forment une suite décroissante de fermés d'intersection vide, dans X compact. Donc ils sont vides à partir d'un certain rang, i.e. $\exists N_{\epsilon}, \forall n \geq N_{\epsilon}, \forall x \in X, d(f_n(x), f(x)) < \epsilon$.
- III) Appliquons l'hypothèse à un $B \ge f(0)$. A l'extérieur de la boule fermée de centre 0 et de rayon A, f est strictement minorée par B. Par ailleurs la restriction de f à cette boule (compacte par Riesz) a un minimum absolu en un certain x. En particulier $f(x) \le f(0) \le B$. Donc f elle-même a un minimum absolu en x.
- IV.1.a) L'image par $r \mapsto r(1-r)$ de]0,1/2[est]0,1/4[donc contient des majorants de ||g||.
- IV.1.b) Soit r comme ci-dessus, alors $\Phi(B'_r) \subset B'_s$ avec $s = \frac{1}{2}(\|g\| + r^2 + r) \le r$.
- IV.1.c) $\Phi(f) \Phi(k) = \frac{1}{2}((f-k)(f+k) (f-k) \circ h)$ donc $\forall f, k \in B'_r, \|\Phi(f) \Phi(k)\| \le \frac{1}{2}\|f k\|(2r+1)$.
- IV.2.a) L'équation équivaut à $\Phi(f) = f$. Pour r comme dans 1) le théorème de Picard s'applique (B'_r) est complet car fermé dans le complet E, et $\varphi: B'_r \to B'_r$ est k-lipschitzienne avec $k = \frac{2r+1}{2} < 1$) donc Φ admet un unique point fixe dans B'_r .
- IV.2.b) Non en général : par exemple si g = C < 9/4 (constante), l'équation a au moins deux solutions constantes (quelle que soit h) même si $C \in]-1/4,1/4[$. Tout ce qu'on peut affirmer est que la solution est unique dans la boule ouverte de centre 0 et de rayon 1/2.