FICHE 2 – ESPÉRANCE (ET LOI) CONDITIONNELLE

Premières propriétés

Exercice 1. On se donne un espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$, des variables aléatoire X, Y positives (resp. intégrables) et $\mathcal{G} \subset \mathcal{F}$ une tribu.

- 1. Rappelez la définition de l'espérance conditionnelle de X sachant \mathcal{G} .
- 2. Démontrer les propriétés suivantes :
 - a) $\mathbb{E}[\mathbb{E}[X \mid \mathcal{G}]] = \mathbb{E}[X]$;
 - b) Si X est indépendante de \mathcal{G} , alors $\mathbb{E}[X \mid \mathcal{G}] = \mathbb{E}[X]$. En déduire $\mathbb{E}[c \mid \mathcal{G}]$ où $c \in \mathbb{R}$ est une constante;
 - c) Si Y est \mathcal{G} -mesurable et positive (resp. bornée), alors $\mathbb{E}[XY \mid \mathcal{G}] = Y\mathbb{E}[X \mid \mathcal{G}]$;
 - d) Si $Y \geq X$ p.s., alors $\mathbb{E}[Y \mid \mathcal{G}] \geq \mathbb{E}[X \mid \mathcal{G}]$ p.s.
 - e) $\mathbb{E}[X + Y \mid \mathcal{G}] = \mathbb{E}[X \mid \mathcal{G}] + \mathbb{E}[Y \mid \mathcal{G}]$
- **3.** Si X et Y sont des v.a. réelles indépendantes, et $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}_+$ est une fonction mesurable, montrer que

$$\mathbb{E}[f(X,Y) \mid X] = g(X)$$

où on a défini la fonction $g: x \mapsto \mathbb{E}[f(x,Y)]$.

Autrement dit, ceci montre que si X et Y sont indépendantes alors on calcule $\mathbb{E}[f(X,Y) \mid X]$ en faisant comme si X était une constante et en prenant l'espérance par rapport à Y seulement. C'est à rapprocher de la formule de Fubini.

Exercice 2. Soit X,Y deux variables aléatoires indépendantes, de loi $\mathcal{N}(0,1)$.

Calculer $\mathbb{E}[XY^2 \mid X]$, $\mathbb{E}[(X+Y)^2 \mid X]$, $\mathbb{E}[e^{-XY} \mid X]$, $\mathbb{E}[e^{-XY} \mid X, Y]$.

On donne $\mathbb{E}[e^{\lambda Y}] = e^{\lambda^2/2}$ (Pour les rapides : comment obtient-on cette formule?)

Exercice 3. Soit X_1, X_2, \ldots des variables aléatoires indépendantes et de même loi, intégrables. On note $m = \mathbb{E}[X_i]$ et, pour $n \geq 0$,

$$S_n = X_1 + \dots + X_n.$$

Soit $n \ge 1$. Que valent $\mathbb{E}[S_n \mid X_1]$ et $\mathbb{E}[S_{n+1} \mid S_n]$? Justifier que $\mathbb{E}[X_1 \mid S_n] = \mathbb{E}[X_2 \mid S_n] = \cdots = \mathbb{E}[X_n \mid S_n]$ et en déduire $\mathbb{E}[X_1 \mid S_n]$.

Lois discrètes

Exercice 4. Soit X,Y des variables aléatoires indépendantes, de loi de Poisson de paramètres λ et μ .

- **1.** Calculer la loi de X + Y. Quelle est la loi du couple (X, X + Y)?
- **2.** Calculer la loi de X sachant Z = X + Y. Quel nom porte-t-elle?
- **3.** Calculer $\mathbb{E}[X \mid X + Y]$

Exercice 5. Soit X_1, \ldots, X_n des variables aléatoires indépendantes, de loi de Bernoulli de paramètre $p \in]0,1[$. On note $S_n = X_1 + \cdots + X_n$.

- **1.** Calculer $\mathbb{E}[S_n \mid X_1]$.
- **2.** Calculer la loi de (X_1, \ldots, X_n) conditionnellement à S_n .
- **3.** Calculer la loi de X_1 conditionnellement à S_n .
- **4.** Calculer $\mathbb{E}[X_1 \mid S_n]$.

Lois à densité

Exercice 6. Soit (X,Y) un vecteur aléatoire dont la loi a pour densité

$$f(x,y) = \lambda x^{-1} e^{-\lambda x} \mathbf{1}_{\{0 < y < x\}}.$$

- 1. Déterminer la loi conditionnelle de Y sachant X.
- **2.** Calculer $\mathbb{E}[Y^2 \mid X]$.

Exercice 7. Soit X,Y deux variables aléatoires indépendantes, de loi $\mathcal{N}(0,1)$.

- 1. Vérifier que $\mathbb{E}[X\varphi(X^2)]=0$ pour toute fonction borélienne bornée φ (penser à la symétrie $x\mapsto -x$). En déduire $\mathbb{E}[X\mid X^2]$. Que vaut $\mathbb{E}[X\mid X^3]$?
- $\mathbf{2.} \, \text{Calculer} \, \, \mathbb{E}[X \, | \, \text{sgn}(X)], \, \, \text{où} \, \, \text{sgn}(x) = \begin{cases} 1 & \text{si } x > 0, \\ 0 & \text{si } x = 0 \\ -1 & \text{si } x < 0. \end{cases}$
- 3. On pose Z = X + Y.
- **3.a)** Calculer la densité de la loi du vecteur (X,Z).
- **3.b)** Déterminer la loi conditionnelle de X sachant Z = z pour tout $z \in \mathbb{R}$.
- **3.c)** En déduire $\mathbb{E}[X \mid Z]$.

Exercice 8. Soit X une variable aléatoire de loi exponentielle de paramètre 1. Déterminer

- 1. $\mathbb{E}(X | X > 1)$;
- 2. $\mathbb{E}(X | \mathbf{1}_{\{X>1\}});$
- 3. $\mathbb{E}(X \mid \min(X,1))$.

Exercice 9. Soit Y une variables aléatoire de densité

$$f(y) = \frac{1}{\sqrt{\pi y}} e^{-y} \mathbf{1}_{\{y > 0\}}.$$

On suppose que la loi conditionnelle de X sachant Y est une loi gaussienne $\mathcal{N}(0,1/(2Y))$.

- **1.** Calculer la loi du couple (X,Y).
- **2.** Calculer la loi conditionnelle de Y sachant X.
- **3.** Calculer $\mathbb{E}[X^2Y]$.