Examen : Équations et systèmes différentiels La calculatrice n'est pas autorisée.

Une feuille de notes A4 recto-verso nominative est autorisée.

Exercice 1. On rappelle que

$$\cosh(t) = \frac{e^t + e^{-t}}{2}, \quad \sinh(t) = \frac{e^t - e^{-t}}{2}, \quad \tanh(t) = \frac{\sinh(t)}{\cosh(t)}$$

Le but de cet exercice est de déterminer l'ensemble des solutions sur $\mathbb R$ de l'équation différentielle

$$\begin{cases} y' + \tanh(t)y = y^2 \\ y(1) = 1. \end{cases}$$
 (1)

- 1. Montrer qu'il existe une unique solution à l'équation (1).
- 2. On pose $z(t) = \frac{1}{y(t)}$. Montrer que z est solution de l'équation différentielle

$$z' - \tanh(t)z = -1. \tag{2}$$

- 3. Déterminer l'ensemble des solutions de l'équation homogène.
- 4. Calculer la dérivée de la fonction $t\mapsto 2\mathrm{Arctan}(\tanh(t/2))$, et l'exprimer en fonction de $\cosh(t)$.
- 5. En déduire l'ensemble des solutions de l'équation (2).
- 6. Donner la solution y de l'équation (1).

Exercice 2. On définit la matrice $A = \begin{pmatrix} 1 & 3 & 0 \\ 3 & 1 & 4 \\ 0 & 4 & 1 \end{pmatrix}$, et on considère le système différentiel X'(t) = AX(t) pour tout $t \in \mathbb{R}$.

- 1. Calculer le polynôme caractéristique $P(\lambda) = \det(A \lambda I)$, et montrer que P(1) = 0.
- 2. Déterminer les valeurs propres de A.
- 3. On note e_1 un vecteur propre associé à la plus grande valeur propre λ_1 , e_2 un vecteur propre associé à la deuxième plus grande valeur propre λ_2 , et e_3 un vecteur propre associé à la troisième valeur propre λ_3 . Déterminer e_1 , e_2 et e_3 .
- 4. Vérifier par un calcul direct que $Ae_1 = \lambda_1 e_1$, $Ae_2 = \lambda_2 e_2$ et $Ae_3 = \lambda_3 e_3$.
- 5. Calculer la matrice de passage P ainsi que P^{-1} telle que

$$A = P \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix} P^{-1}.$$

- 6. Déterminer la solution X(t) du système différentiel X' = AX avec $X(0) = X_0$ en termes des matrices P, P^{-1} d'une matrice diagonale, et de X_0 .
- 7. On pose $X(0) = ae_1 + be_2 + ce_3$. Exprimer X(t) en fonction de a, b, c et e_1, e_2, e_3 .
- 8. Montrer que si $X(0) = e_3$, alors $\lim_{t \to +\infty} X(t) = 0$.
- 9. Montrer que si $X(0) \in \text{Vect}(e_1, e_2)$ alors $\lim_{t \to -\infty} X(t) = 0$ (attention, c'est la limite quand t tend vers moins l'infini).
- 10. On considère à nouveau $X(0) \in \mathbb{R}^3$ quelconque. On pose $X(t) = \begin{pmatrix} u(t) \\ v(t) \\ w(t) \end{pmatrix}$. Déterminer $\lim_{t \to +\infty} \frac{v(t)}{u(t)}$, $\lim_{t \to +\infty} \frac{w(t)}{u(t)}$.
- 11. Quelle est la limite de $\frac{X(t)}{||X(t)||}$ quand $t \to +\infty$? Et quand $t \to -\infty$? Même question si $X(0) \in \text{Vect}(e_1, e_2)$.

Exercice 3. On considère le système d'équations différentielles non-linéaires

$$\begin{cases} u'(t) &= -2u(t) - 5v(t) + 10u(t)v(t) \\ v'(t) &= u(t) - 4v(t) - 2u(t)^2 \end{cases}$$

- 1. Montrer que (0,0) est un point d'équilibre de ce système. Est-il stable ou instable ?
- 2. On pose $E(t) = u(t)^2 + 5v(t)^2$, avec u, v une solution du système. Montrer que l'on a

$$E'(t) = -4u(t)^2 - 40v(t)^2.$$

- 3. En déduire que $t \mapsto e^{4t}E(t)$ est une fonction décroissante.
- 4. Montrer que quelle que soit la valeur de u(0), v(0), on a $\lim_{t\to\infty} E(t) = 0$. Conclure que (0,0) est le seul point d'équilibre de ce système, en justifiant soigneusement.

Exercice 4. On considère le système d'équations différentielles

$$\begin{cases} u' = 4u - 5 - v \\ v' = v + u^2 \end{cases}$$

- 1. Déterminer les deux points d'équilibres de ce système. On note (u_1, v_1) et (u_2, v_2) ces deux points, avec $u_1 < u_2$.
- 2. Pour (u_1, v_1) :
 - (a) Calculer la matrice A_1 du système linéarisé au voisinage de ce point d'équilibre (la jacobienne prise en le point d'équilibre).
 - (b) Déterminer si 0 est un point d'équilibre stable ou instable du système linéarisé. On justifiera rapidement et précisément ce point.
 - (c) Conclure sur la stabilité de (u_1, v_1) .
- 3. Pour (u_2, v_2) :
 - (a) Calculer la matrice A_2 du système linéarisé au voisinage de ce point d'équilibre (la jacobienne prise en le point d'équilibre).
 - (b) Diagonaliser la matrice A_2 , en précisant valeurs propres et vecteurs propres de cette matrice.
 - (c) Tracer le diagramme de phase associée au système $X' = A_2X$, en indiquant précisément les sous-espaces propres de A_2 , l'évolution des trajectoires le long de cees courbes, ainsi que l'allure d'une solution restant dans chacune des quatre régions restantes du plan.
 - (d) Est-ce que (u_2, v_2) est un point d'équilibre stable de A_2 ?

Exercice 5. On introduit la matrice $A(r) = \begin{pmatrix} 1 & -2 \\ 3 & r \end{pmatrix}$.

- 1. Pour quelles valeurs de r la matrice A(r) est-elle diagonalisable dans $\mathbb C$ mais pas dans $\mathbb R$?
- 2. Existe-t-il r tel que la solution du système X'=A(r)X est une fonction périodique?
- 3. Déterminer l'ensemble des valeurs de r telles que 0 est un point d'équilibre stable pour le système différentiel précédent.

2