Bastien Mallein mallein@math.univ-paris13.fr

DM 1 : Quelques applications des équations différentielles linéaires du premier ordre

Exercice 1 (La variole). On considère une population humaine soumise à une épidémie de variole, une maladie extrêmement contagieuse, qui tue une proportion b des gens qui l'attrapent. Les personnes qui survivent à cette maladie y deviennent immunisées. On note x(t) la taille de la population au temps t, ainsi que y(t) le nombre de personnes qui n'ont pas encore été touchées par cette maladie. On a l'équation d'évolution suivante

$$\begin{cases} x'(t) = -aby(t) \\ y'(t) = -ay(t). \end{cases}$$

On supposera que x(0) = y(0) = 1.

- 1. Déterminer y(t).
- 2. Déterminer l'équation différentielle satisfaite par la proportion d'individus nontouchés par la maladie z=y/x.
- 3. Résoudre cette équation différentielle, et en déduire la valeur de x(t).
- 4. Que vaut $\lim_{t\to+\infty} x(t)$?
- 5. On suppose maintenant qu'une proportion $\lambda \in (0,1)$ de la population a été vaccinée contre la variole. Cela correspond à poser x(0) = 1 et $y(0) = 1 \lambda$. Quelle est maintenant la valeur de $\lim_{t\to +\infty} x(t)$?
- 6. (*) On suppose ensuite que la proportion de personnes vaccinées varie en fonction du nombre de personnes infectées à un instant donné. Plus l'infection est forte, plus les gens se vaccinent. On posera $\lambda(t)=1-e^{-y'(t)}$. Proposer une équation différentielle satisfaite par y. L'écrire sous forme résolue en y'. Que proposeriez-vous pour la résoudre?

Exercice 2 (La loi de l'offre et de la demande). On suppose que l'offre Q_o et la demande Q_d d'un bien sont données par

$$\begin{cases} Q_o = a_1 - b_1 P + \theta P' \\ Q_d = -a_2 + b_2 P, \end{cases}$$

où P(t) est le prix du bien au temps t, a_1, b_1, a_2, b_2 sont des paramètres positifs et θ est un paramètre additionnel. On suppose qu'à tout instant l'offre et la demande sont égales.

- 1. Déterminer l'équation différentielle satisfaite par P.
- 2. Quelle est la valeur du prix d'équilibre P^* ?
- 3. Sous quelles conditions sur θ a-t-on $\lim_{t\to+\infty} P(t) = P^*$.

Exercice 3 (Théorème fondamental de la sélection naturelle). On considère une population de N espèces numérotées 1, 2, ... N. Pour tout $i \leq N$ et $t \in \mathbb{R}$, on note $x_i(t)$ la taille de la population de type i. On suppose que ces tailles de populations satisfont les équations différentielles

$$x_i'(t) = \sigma_i x_i(t),$$

avec condition initiale $x_i(0) > 0$. Le nombre $\sigma_i > 0$ est appelé fitness de la population. On s'intéressera au comportement asymptotique de

$$\langle \sigma \rangle_t = \frac{\sum_{i=1}^N \sigma_i x_i(t)}{\sum_{i=1}^N x_i(t)},$$

la valeur moyenne de cette fitness au cours du temps.

1. Montrer que la dérivée de $\langle \sigma \rangle$ vaut

$$\langle \sigma \rangle_t' = \frac{\sum_{i=1}^N \sigma_i^2 x_i(t)}{\sum_{i=1}^N x_i(t)} - \left(\frac{\sum_{i=1}^N \sigma_i x_i(t)}{\sum_{i=1}^N x_i(t)}\right).$$

2. Justifier que pour tout $\mu \in \mathbb{R}$, on a

$$\left(\frac{\sum_{i=1}^{N} (\sigma_i - \mu)^2 x_i(t)}{\sum_{i=1}^{N} x_i(t)}\right) > 0.$$

En utilisant cette égalité pour $\mu = \langle \sigma \rangle_t$, montrer que $t \mapsto \langle \sigma \rangle$ est une fonction croissante.

- 3. Déterminer la valeur de $x_i(t)$ en fonction de $x_i(0)$ en résolvant l'équation différentielle qui lui est associée.
- 4. Calculer $\lim_{t\to+\infty} \langle \sigma \rangle_t$.

Exercice 4 (En dents de scie). On définit la fonction h par

$$h(t) = \begin{cases} t - 2k & \text{si } t \in [2k, 2k + 1] \\ 2k + 2 - t & \text{si } t \in [2k + 1, 2k + 2], \end{cases}$$
 pour tout k entier.

On introduit l'équation différentielle

$$y' + \lambda y = h$$
,

avec λ une constante positive.

- 1. Montrer que h est continue, périodique et déterminer sa période.
- 2. Montrer que $t \mapsto \frac{t}{\lambda} \frac{1}{\lambda^2}$ est une solution de l'équation différentielle sur l'intervalle [0,1].
- 3. Déterminer l'ensemble des solutions de cette équation différentielle sur les intervalles [0,1] et [1,2].
- 4. En déduire l'ensemble des solutions de cette équation différentielle sur l'intervalle [0,2]
- 5. Déterminer la solution f de cette équation différentielle qui satisfait f(0) = f(2).
- 6. Montrer que g(t) = f(t-2k) pour $t \in [2k, 2k+2]$ est une solution sur \mathbb{R} de l'équation différentielle. Tracer le graphe de g et h sur le même graphique.
- 7. Prouver que g est la seule solution périodique de cette équation différentielle.
- 8. Quelle est la limite de λg quand λ tend vers l'infini?