Intégration et probabilités

ENS Paris, 2022/2023

Bastien Mallein mallein@dma.ens.fr

TD1: Tribus, mesurabilité, liminf et limsup

Exercice 1. [Limsup et liminf de suites] Soit $(a_n)_{n\geq 0}$ une suite de réels, on pose

$$\limsup_{n \to \infty} a_n = \lim_{n \to \infty} \sup_{k \ge n} a_k \quad \text{et} \quad \liminf_{n \to \infty} a_n = \lim_{n \to \infty} \inf_{k \ge n} a_k.$$

- a) Expliquer pourquoi les deux limites ci-dessus sont nécessairement bien définies.
- b) Calculer $\limsup_{n\to\infty} (-1)^n$ et $\liminf_{n\to\infty} \frac{(-1)^n}{n}$.
- c) Montrer que $\limsup_{n\to\infty} a_n$ et $\liminf_{n\to\infty} a_n$ sont respectivement la plus grande et la plus petite valeur d'adhérence de la suite $(a_n)_{n\geq 0}$ dans $\overline{\mathbb{R}} = \mathbb{R} \cup \{\pm \infty\}$.
- d) Vérifier que a_n converge vers $\ell \in \mathbb{R}$ si et seulement si $\limsup_{n \to \infty} a_n = \liminf_{n \to \infty} a_n = \ell$.
- e) Soit $(b_n)_{n\geq 0}$ une autre suite de réels. Montrer que

$$\lim_{n \to \infty} \sup (a_n + b_n) \le \lim_{n \to \infty} \sup a_n + \lim_{n \to \infty} \sup b_n.$$

A-t-on toujours $\limsup_{n\to\infty} (a_n + b_n) = \limsup_{n\to\infty} a_n + \limsup_{n\to\infty} b_n$?

Exercice 2. [Union et intersection de tribus]

- a) Montrer qu'une intersection quelconque de tribus est une tribu, mais qu'une union de tribus n'est pas forcément une tribu.
- b) Pour chaque entier n soit \mathcal{F}_n la tribu de \mathbb{N} engendrée par l'ensemble $\{0\}, \{1\}, \ldots, \{n\}$. Montrer que (\mathcal{F}_n) est une suite croissante de tribus mais que $\bigcup \mathcal{F}_n$ n'est pas une tribu.

Exercice 3. [Restriction d'une tribu] Soit \mathcal{F} une tribu sur E et B un élément de \mathcal{F} . Montrer que $\mathcal{F}_B := \{A \cap B, A \in \mathcal{F}\}$ est une tribu de B.

Exercice 4. [Image directe] Soit (E, A) un espace mesurable, soit F un ensemble et soit $f: E \to F$ une application. Montrer par un contre-exemple que la classe des images directes $\{f(A): A \in A\}$ n'est pas en général une tribu sur F.

Exercice 5. [Tribu image réciproque] Soit E un ensemble et soit (F, \mathcal{F}) un espace mesurable. Soit $f: E \to F$ une application. On définit $\mathcal{E} := \{f^{-1}(B) : B \in \mathcal{F}\}.$

- a) Montrer que \mathcal{E} est une tribu sur E.
- b) Vérifier qu'il s'agit de la plus petite tribu sur E qui rende f mesurable de E dans (F, \mathcal{F}) .
- c) Soit Y un ensemble fini muni de la tribu $\mathcal{P}(Y)$ constituée de toutes les parties de Y. Soit $g:(E,\mathcal{E})\to (Y,\mathcal{P}(Y))$ une application mesurable. Montrer qu'il existe $h:(F,\mathcal{F})\to (Y,\mathcal{P}(Y))$ mesurable tel que $g=h\circ f$.

Pour aller plus loin

Exercice 6. [Dénombrabilité] Déterminer le cardinal (fini, dénombrable, en bijection avec \mathbb{R} ...) des ensembles suivants :

- a) $\mathbb{N} \times \mathbb{N}$,
- b) $\{0,1\}^{\mathbb{N}}$,
- c) l'ensemble des points de discontinuité d'une fonction croissante $f:[0,1]\to\mathbb{R}$.
- d) l'ensemble des ouverts de \mathbb{R} .

Exercice 7. [Quelques exemples de tribus] Donner des conditions sur l'ensemble E pour que les classes suivantes soient des tribus :

- a) $\{\emptyset, \{x\}, E\}$ où $x \in E$ est fixé.
- b) $\{\emptyset, \{x\}, \{x\}^c, E\}$ où $x \in E$ est fixé.
- c) La classe des singletons de E.
- d) La classe des parties finies de E.
- e) La classe des parties dénombrables de E.
- f) La classe des parties finies ou cofinies de E. (On dit qu'une partie est cofinie si son complémentaire est fini).
- g) La classe des parties dénombrables ou codénombrables de E. (On dit qu'une partie est codénombrable si son complémentaire est dénombrable).

Exercice 8. [Tribu dyadique] On définit $\mathcal{B}_n = \sigma(\{(k/2^n, (k+1)/2^n], 0 \le k \le 2^n - 1\})$ pour tout $n \in \mathbb{N}$.

- a) Décrire la tribu \mathcal{B}_n . Quel est son cardinal?
- b) Montrer que la tribu engendrée par $\cup_{n\in\mathbb{N}}\mathcal{B}_n$ est la tribu des boréliens de l'intervalle [0,1].

Exercice 9. [Tribu infinie] On montre ici qu'il n'existe pas de tribu infinie dénombrable. Soit E un ensemble et soit \mathcal{A} une tribu sur E. Pour tout $x \in E$, on introduit l'atome de la tribu \mathcal{A} engendré par x comme l'ensemble $\dot{x} := \bigcap_{\{A \in \mathcal{A}: x \in A\}} A$.

- a) Montrer que les atomes de \mathcal{A} forment une partition de E.
- b) Montrer que si la tribu \mathcal{A} est dénombrable alors elle contient tous ses atomes et que tout élément de \mathcal{A} peut être obtenu comme une union dénombrable d'atomes.
- c) En déduire que si \mathcal{A} est dénombrable alors \mathcal{A} est finie.

Exercice 10. [Partie dénombrable engendrant une tribu] Soit E un espace, \mathcal{C} une famille de parties de E et $B \in \sigma(\mathcal{C})$. Montrer qu'il existe une famille dénombrable $\mathcal{D} \subset \mathcal{C}$ telle que $B \in \sigma(D)$.