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Abstract
Consider a Bellman–Harris-type branching process, in which individu-

als evolve independently of one another, giving birth after a random time
T to a random number L of children. In this article, we study the asymp-
totic behaviour of the length of the longest branches of this branching
process at time t, both pendant branches (corresponding to individuals
still alive at time t) and interior branches (corresponding to individuals
dead before time t).

1 Introduction
We consider a branching particle system initiated by a single particle, defined in
the following way. Let (T, L) be a random element of R+ ×Z+. Each individual
in that process evolves independently of one another. An individual u stays
alive for Tu units of time, before giving birth to Lu children, where (Tu, Lu) is
an independent copy of (T, L). Those children reproduce independently with
the same law of their parent. We work under the conditions

P(T = 0) = P(T = ∞) = 0 and E(L) ∈ (1,∞). (1.1)

The first condition avoids considering a degenerate situation in which an in-
dividual immediately dies out or live forever, while the second one guarantees
that the population is supercritical. As a result, the process survives forever
with positive probability.

When T and L are independent, this process was introduced by Bellman and
Harris [5] as a generalisation of continuous-time Galton–Watson processes (in
which T is exponentially distributed). This model, in which the lifetime of an
individual is correlated with its number of offspring is often called a Sevast’yanov
process, after their namesake who introduced such processes in [17, 18]. An
other way to see Sevast’yanov processes is as a subclass of Crump–Mode–Jagers
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(CMJ) branching processes in which individuals can only give birth to children
at their death-time.

Let us remark that the condition T > 0 a.s. could be slightly weakened. In
particular, if we identify as children of an individual all its descendants born at
its death time, we recover a branching process satisfying (1.1), provided that
E(L;T = 0) ≤ 1 (so that the clusters of individuals born at the same time
as their parent form a sub-critical branching processes, hence have finite total
progeny). If E(L;T = 0) > 1, then the process would explode in finite time a.s.
on its survival event, which justifies its restriction.

As is usual, we can identify individuals in a Sevast’yanov process with a
label that also encodes their genealogy (see Section 2 for more details). We
then denote by T be the set of all individuals that ever live. The individual
u ∈ T is born at time bu, and dies at time du. We also let Tt = {u ∈ T : bu ≤ t}
be the set of individuals born before time t, and Nt = {u ∈ T : bu ≤ t < du}
the set of individuals alive at time t.

The objective of this article is to study the asymptotic behaviour of the ages
of the oldest living and extinct individuals at time t in this population model.
This result extends the recent work of Bocharov and Harris [10], that proved a
similar result for continuous-time Galton–Watson trees. In particular, we aim
to describe the asymptotic behaviour of

Mp
t = max

u∈Nt

(t− bu) and M i
t = max

u∈Tt\Nt

(du − bu), (1.2)

which are, respectively, the age of the oldest individual still alive at time t, and
the age of the oldest individual that died before time t. That is, Mp

t corresponds
to the longest pendant edge of the genealogical tree up to time t, and M i

t is the
longest interior edge up to time t. We will define below a deterministic function
(ℓt) such that (Mp

t − ℓt,M
i
t − ℓt) jointly converge in distribution as t → ∞.

Whenever it exists, the so-called Malthusian parameter plays an important
role in the study of CMJ branching processes. For a Sevast’yanov process, it is
defined as the unique parameter α > 0 satisfying

E(Le−αT ) = 1. (1.3)

Note that (1.1) guarantees the existence of this parameter as α 7→ E(Le−αT ) is
continuous and strictly decreasing on [0,∞), starting from E(L) > 1 down to 0.

The Malthusian parameter allows us to study the rate of exponential growth
of the population over time. Provided that

∀a > 0, P(T ∈ aN) < 1, (1.4)

i.e. that the law of T is non-lattice, Nerman [16] proved that the size of the
population grows exponentially at rate α. Specifically, in our situation, we have

lim
t→∞

e−αt#Nt = 1 − E(e−αT )
E(αTe−αTL)Z∞ in probability, (1.5)

as soon as
E(e−αTL log+ L) < ∞. (1.6)

Since supt∈R+ te
−αt < ∞, we remark that E(αTe−αTL) < ∞ by (1.1).
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The random variable Z∞ is the a.s. limit of the so-called Malthusian mar-
tingale defined as

Zt :=
∑
u∈Nt

Lue
−αdu =

∑
v∈T

e−αbv1{bv>t≥bπv}, (1.7)

where πv represents the parent of v. Here, (Zt, t ≥ 0) is a non-negative martin-
gale with respect to the filtration F↑ where F↑

t := σ ((Tu, Lu), u ∈ T : bu < t).
This is often called the filtration of the coming generation, as information on
the death time and number of children of individuals alive at time t is already
available at that time, thereby looking a generation into the future. This coming
generation at time t consists of all individuals who are born after t but whose
parents were born before t. For more details, see the classic book of Jagers [12].

The exponential growth of branching population models have a long history.
Kesten and Stigum [14] proved that when E(L logL) < ∞, a discrete time
Galton-Watson process1 (#Nn) grows at the same rate as E(#Nn). This result
was then extended to continuous-time Galton-Watson processes2 by Athreya
and Karlin [4]. Athreya [2] then showed that for a Bellman–Harris process, the
convergence in (1.5) holds in distribution, identifying the law of Z∞ as a fixed
point of the smoothing transform. This result was extended by Doney [11] to
general CMJ branching processes. Next, Athreya and Kaplan [3] proved the
stronger result (1.5) for Bellman–Harris processes, and Nerman [16] extended it
to CMJ processes, under the optimal integrability conditions.

Refinements of these results have been made available under more generality.
Indeed, observe that the process (bu, u ∈ T) can be thought of as a branching
random walk with non-decreasing paths. Additive martingales of branching
random walks have been studied since at least [19], with optimal integrabil-
ity conditions given by Biggins [7] (see also Lyons [15] for a simple proof) and
Alsmeyer and Iksanov [1]. The martingale (Zt) can then be seen as an ad-
ditive martingale estimated along a stopping line, uniform integrability of the
martingale along genealogical lines therefore extends along stopping lines [8].

To study the asymptotic behaviour of the length of the longest edges in the
Sevast’yanov process, we impose a regularity assumption on the tail of law of
the lifetime T of individuals. We assume that x 7→ P(T > log x) is a regularly
varying function at ∞. This assumption can be restated in a clearer fashion as
follows: there exists β ≥ 0 such that for all a ∈ R+, we have

lim
t→∞

P(T > t+ a|T > t) = lim
t→∞

P(T > t+ a)
P(T > t) = e−βa. (1.8)

Let us underscore that this condition includes lifetimes with heavy tail distri-
butions. In particular, if P(T > t) ≈ t−c, then (1.8) holds with β = 0.

The characteristic length ℓt of the longest edges at time t is defined by the
formula

ℓt = inf{ℓ > 0 : e−αℓP(T > ℓ) ≤ e−αt}. (1.9)

The intuition for this being a good characteristic length choice is as follows.
First observe that, due to the exponential growth of the process, branches of
large length ℓ are most likely to be born around time t − ℓ. Around this time,

1That is, T = 1 a.s.
2That is, T is exponentially distributed.
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by (1.5), there are around eα(t−ℓ) newborn individuals, each of which having
probability P(T > ℓ) to create such a long edge. The characteristic length ℓt is
then chosen in such a way that on average there are O(1) such long branches
of length ℓt at time t, whilst in contrast, we do not expect to find any branch
significantly longer than the characteristic length ℓt at time t. We prove in
forthcoming Lemma 2.2 that ℓt grows linearly with t, specifically that

lim
t→∞

ℓt
t

= α

α+ β
. (1.10)

Our first main result is that the a.s. growth rate of the longest edges in Tt
is identical to the growth rate of ℓt as t → ∞.

Theorem 1.1. Under assumptions (1.1), (1.6) and (1.8), we have

lim
t→∞

Mp
t

t
= α

α+ β
a.s. on the survival event.

In addition, if β > 0 then

lim
t→∞

M i
t

t
= α

α+ β
a.s. on the survival event.

We believe that in a typical heavy tail scenario with β = 0, we would still
have limt→∞

M i
t

t = 1 a.s. However, our method of proof would need to be
adapted to treat this particular case. We postpone to Remark 1.5 the discussion
related to this particular case.

To explore in more details the length of the longest edges in Tt we now
define the following point processes on R,

Ep
t =

∑
u∈Nt

δ(t−bu)−ℓt
and E i

t =
∑

u∈Tt\Nt

δ(du−bu)−ℓt
. (1.11)

The point process Ep
t allows us to study the length of all pendant edges relative

to length ℓt, while E i
t gives a convenient way to encode the length of interior

edges compared to length ℓt. In particular, we observe that the right-most atom
in Ep

t is located at Mp
t −ℓt, and the right-most atom in E i

t corresponds to M i
t−ℓt.

The main result of the article can be expressed as follows.

Theorem 1.2. Under assumptions (1.1), (1.6) and (1.8), (Ep
t , E i

t) jointly con-
verge in distribution, for the topology of vague convergence of point processes, to
(Ep

∞, E i
∞) whose law can be described as follows: conditionally on Z∞, Ep

∞ and
E i

∞ are independent Poisson point processes with intensity c⋆Z∞αe
−(α+β)xdx

and c⋆Z∞βe
−(α+β)xdx on R respectively, where

c⋆ = E(αTe−αTL)−1. (1.12)

In addition, we have the convergence in distribution of the longest pendant and
interior edges relative to ℓt given by:

lim
t→∞

(Mp
t − ℓt,M

i
t − ℓt) = (max Ep

∞,max E i
∞),

with the convention that the largest element of the empty point measure is −∞.
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Remark 1.3. We mention that proving the convergence of a family (Et) of point
processes on R towards E∞ in distribution for the topology of vague convergence,
as well as the convergence in distribution of max Et to max E∞, is equivalent to
proving, for all k ∈ N, the joint convergence in distribution of the positions of
the first k atoms of Et to the position of the first k atoms of E∞. We refer to [6,
Lemma 4.4] for more details.
Remark 1.4. By immediate Poisson computation, when considering the super-
position of (the conditionally on Z∞) independent Poisson point processes E i

∞
and Ep

∞, corresponding to the limiting point measure of all edges of length
around ℓt in Tt, each atom of the combined point process will belong to Ep

∞
with probability α

α+β , independently of its position. In particular, the longest
edge in Tt will be pendant with probability converging to α

α+β as t → ∞.
Remark 1.5. Observe that in the previous theorem, if β = 0 then E i

t converges in
law to the null point measure, and limt→∞ Mp

t −M i
t = ∞ in probability. This is

due to the fact that this situation corresponds to individual lifetimes with a tail
that decays at a sub-exponential rate. Therefore, conditionally on T > x, one
expects that T ≫ x with high probability, and the large majority of long edges
in the process therefore correspond to individuals that are still alive at time t.
Introducing more precise assumptions on the tail decay of T , such as P(T > t)
is regularly varying at ∞, one could define, using similar methods as the ones we
develop here, a function ℓt such that M i

t − ℓt converges in distribution towards
a non-degenerate limit.

We prove our main results in the next section.

2 Proof of the main theorems
This section is divided into three parts. We first provide in Section 2.1 an
explicit construction of the Sevast’yanov process using the Ulam–Harris–Neveu
notation. We then give in Section 2.2 some properties on the characteristic
length ℓt of the longest branches in Tt. Finally, Section 2.3 is dedicated to
prove, first Theorem 1.2, then Theorem 1.1.

2.1 Construction of the Sevast’yanov process
We introduce here some of the notation and setup for our model. The Sev-
ast’yanov process can classically be constructed using the Ulam–Harris–Neveu
notation as follows. Let U = ∪n≥0Nn the set of finite words over the alphabet
N. We let {(Tu, Lu), u ∈ U} be a family of i.i.d. copies of (T, L). We then define

T =
{
u ∈ U : ∀ 1 ≤ j ≤ |u|, u(j) ≤ Luj−1

}
,

where given u = (u(1), . . . , u(n)) ∈ Nn, we write |u| = n the length of u,
uk = (u(1), . . . , u(k)) the prefix consisting of the first k ≤ n letters of u, and
u0 = ∅ with |u0| = 0. For u ∈ T, we write

bu =
∑

0≤j<|u|

Tuj , and du = bu + Tu =
∑

0≤j≤|u|

Tuj .

In words, ∅ ∈ N0 corresponds to the initial ancestor of the population, whose
genealogical tree is given by T. The individual u ∈ T is born at time bu,
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and dies at time du. An individual u ∈ Nn is from the nth generation and is
identified as the u(n)th child of the u(n− 1)th child of ... of the u(1)th child of
the initial ancestor of the population.

For all t ≥ 0, we write

Tt = {u ∈ T : bu ≤ t} and Nt = {u ∈ T : bu ≤ t < du}

which are, respectively, the set of individuals born before time t and the set of
individuals alive at time t. The length of the branch associated to individual
u ∈ Tt is then defined as min(t, du) − bu, which is consistent with the point
processes defined in (1.11).

2.2 Properties of the characteristic length of the longest
edges

The definition of the characteristic length ℓt in (1.9) can be explained informally
as follows. The population in the Sevast’yanov process growing at exponential
rate 1.5, the large majority of branches of length ℓ come from individuals that
were born around time t− ℓ. Since there are approximately eα(t−ℓ) individuals
born around this time, and that each of them have probability P(T > ℓ) to give
birth to a branch of length at least ℓ, we conclude that there will be branches of
length ℓ inTt if eα(t−ℓ) ≫ 1, while no branches will exist if eα(t−ℓ)P(T > ℓ) ≪ 1.

We show in the next lemma that the function ℓt defined above corresponds
to the critical situation.

Lemma 2.1. If P(T > 0) = 1 and (1.8) holds, then the function ℓ defined in
(1.9) verifies

lim
t→∞

eα(t−ℓt)P(T > ℓt) = 1.

Proof. We observe that f : ℓ 7→ e−αℓP(T > ℓ) is a càdlàg decreasing function
on [0,∞) with f(0) = 1 and limℓ→∞ f(ℓ) = 0. Writing f−1 its right-continuous
generalised inverse, we have

ℓt = f−1(e−αt) for all t > 0.

In particular, we observe that

e−αℓtP(T > ℓt) ≤ e−αt ≤ e−αℓtP(T ≥ ℓt).

Using (1.8), we have

lim
t→∞

P(T ≥ t)
P(T > t) = 1,

which allows us to complete the proof.

We now remark that under assumption (1.8), ℓt grows at a linear rate.

Lemma 2.2. Under assumption (1.8), we have limt→∞
ℓt

t = α
α+β .

Proof. We write φ(t) = exp
(
ℓα−1 log t

)
, we observe that

φ(t) = inf{x > 0 : x−αP(T > log x) ≤ 1/t},

6



therefore φ is the right-continuous inverse of x 7→ xα

P(T>log x) , which is a regularly
varying function at ∞ with index α + β (see e.g. [9, Theorem 1.5.12]). As a
result, we deduce that φ(t) is regularly varying at ∞ with index 1

α+β > 0. In
particular, this yields

1
α+ β

= lim
t→∞

logφ(t)
log t = lim

t→∞

ℓα−1 log t

log t ,

which completes the proof.

Remark 2.3. As a slight refinement of Lemma 2.2, let us mention that if T has
an exponential tail, i.e. there exist c, β > 0 such that P(T > t) ∼ ce−βt, then
ℓt = αt+log c

α+β + o(1) as t → ∞. In particular, if T and L are independent with T
exponentially distributed with parameter β , then (Nt, t ≥ 0) is a continuous-
time Galton-Watson tree. In this case, the Malthusian exponent is given by
β(E(L) − 1), and we obtain that the length of the longest edges in that tree are
of order

ℓt =
(

1 − 1
E(L)

)
t+ o(t) as t → ∞,

in accordance with the results of Bocharov and Harris [10].

2.3 Proof of the main theorems
We prove in this section Theorems 1.1 and 1.2. We begin by the proof of this
second theorem, that will be used to the first one as a consequence.

The proof of Theorem 1.2 relies on the study of the joint asymptotic be-
haviour of Ep

t and E i
t, the latter of which we approximate by

Ẽ i
t :=

∑
u∈Tt\Nt

δ(du−bu)−ℓt
1{bu>t−3ℓt/2} =

∑
u∈T

1{du<t, bu>t−3ℓt/2}δ(du−bu)−ℓt
.

This modified extremal process counts the long interal edges born after time
t − 3ℓt/2. As a result, we can guarantee that each edge counted in Ep

t (R+) or
Ẽ i
t(R+) exists at time t− ℓt, which will allow us to use the spine decomposition

at that time.
The main result of the section is the following convergence of the joint

Laplace transform of Ep and Ẽ i, proving their convergence to randomly shifted
Poisson point processes.

Proposition 2.4. Let A > 0 and φ,ψ two continuous non-negative bounded
functions with support in [−A,∞), we have

lim
t→∞

E
(

exp
(

−⟨Ep
t , φ⟩ − ⟨Ẽ i

t, ψ⟩
))

= E
(

exp
(

−c⋆Z∞

∫
R

{
α(1 − e−φ(x)) + β(1 − e−ψ(x))

}
e−(α+β)xdx

))
.

Before turning to the proof of this proposition, we first show that Ẽ i
t is a

good approximation of E i
t, more specifically that E i

t − Ẽ i
t → 0 in probability for

the topology of vague convergence.
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Lemma 2.5. For all A > 0, we have

lim
t→∞

E i
t([−A,∞)) − Ẽ i

t([−A,∞)) = 0

in probability.

Proof. We first remark that E i
t([−A,∞)) − Ẽ i

t([−A,∞)) ≥ 0 a.s. Therefore, to
complete the proof, we only have to show that

lim
t→∞

E(E i
t([−A,∞)) − Ẽ i

t([−A,∞))) = 0,

using the Markov inequality.
Using that Tu = du − bu is independent of bu, we observe that

E(E i
t([−A,∞)) − Ẽ i

t([−A,∞))) = E
(∑
u∈T

1{du−bu−ℓt≥−A, bu≤t−3ℓt/2}

)

= E
(∑
u∈T

1{Tu≥ℓt−A, bu≤t−3ℓt/2}

)
= E

(
#Tt−3ℓt/2

)
P(T ≥ ℓt −A).

By [16, Proposition 2.2] with φ ≡ 1, we observe that

lim
t→∞

e−αt E(#Tt) = c⋆, (2.1)

with c⋆ the constant defined in (1.12). Therefore, there exists C > 0 such that
for all t ≥ 0, we have

E(E i
t([−A,∞)) − Ẽ i

t([−A,∞))) ≤ Ceα(t−3ℓt/2)P(T ≥ ℓt −A),

which converges to 0 as t → ∞ since P(T > ℓt −A) ∼ eβAe−α(t−ℓt).

In order to estimate the asymptotic behaviour of the joint Laplace trans-
form of Ep

t and Ẽ i
t, we rely on the convergence of general branching processes

counted with their characteristics [12, Section 6.9]. In particular, we will use
the following result, which is an adaptation to our settings of [16, Theorem 3.1].

Fact 2.6. Let φ be an càdlàg function R+ → R+, we write

Zφt =
∑
u∈Nt

φ(t− bu).

Under assumptions (1.1), (1.6) and (1.4), we have

lim
t→∞

e−αtZφt = mφZ∞ in probability,

where mφ = c⋆
∫∞

0 αe−αtφ(t)P(T > t)dt and c⋆ is the constant defined in
(1.12). If mφ = ∞, the equality remains valid using the convention that mφZ∞
is zero if Z∞ = 0 and infinite otherwise.

We now have introduced all the necessary tools to prove Proposition 2.4.
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Proof of Proposition 2.4. For all t > 0, we write ct = t − ℓt. Observe that any
individual contributing to ⟨Ep

t , φ⟩ has to satisfy t−bu−ℓt ≥ −A, thus being born
before time ct + A and still alive at time t. Similarly, individuals contributing
to ⟨Ẽ i

t, ψ⟩ must have a lifetime longer than ℓt − A while being born after time
t − 3ℓt/2. Therefore, for t large enough, all these individuals must be alive at
time ct +A.

Let Ft = σ(bu, u ∈ Tt) the natural filtration associated to the Sevast’yanov
process. Under this filtration, information on the birth time and genealogical
relationships of individuals alive at time t are available, as well as the fact that
their death time occurs after time t. Using the branching property, at time
ct +A, we observe that

E
(

exp
(

−⟨Ep
t , φ⟩ − ⟨Ẽ i

t, ψ⟩
)∣∣∣Fct+A

)
=

∏
u∈Nct+A

E
(
e−φ(ct−bu)

1{Tu>t−bu} + e−ψ(Tu−ℓt)
1{Tu≤t−bu}

∣∣∣Fct+A

)
=

∏
u∈Nct+A

(1 − g(ct +A− bu)) ,

where, for x ≥ 0, we write

g(x) = (1 − e−φ(x−A))P (T > t− (ct +A− x)|T > x)

+ E
(

(1 − e−ψ(T−ℓt))1{T≤t−(ct+A−x)}

∣∣∣T > x
)
.

We first use (1.8) to obtain that

(1 − e−φ(x−A))P (T > t− (ct +A− x)|T > x)

∼t→∞ (1 − e−φ(x−A))e−β(x−A) P(T > ℓt)
P(T > x) .

Moreover, using again that for all z ∈ R,

lim
t→∞

P(T > ℓt + z)
P(T > ℓt)

= e−βz,

we deduce that P(T∈ℓt+·)
P(T>ℓt) converges vaguely to the distribution βe−βxdx on R.

Then, as 1 − e−ψ is continuous, bounded, and supported on [−A,∞), we have

E
(

(1 − e−ψ(T−ℓt))1{T≤t−(ct+A−x)}

∣∣∣T > x
)

∼t→∞

∫ x−A

−A
(1 − e−ψ(y))βe−βydyP(T > ℓt)

P(T > x) .

Consequently, as P(T > ℓt) ∼t→∞ e−αct , we conclude that

log E
(

exp
(

−⟨Ep
t , φ⟩ − ⟨Ẽ i

t, ψ⟩
)∣∣∣Fct+A

)
∼t→∞ −eαAe−α(ct+A)

∑
u∈Nct+A

h(ct +A− bu),
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with h(x) = 1
P(T>x)

(
(1 − e−φ(x−A))e−β(x−A) +

∫ x−A
−A (1 − e−ψ(y))βe−βydy

)
.

We now use Fact 2.6, observing that

mh = c⋆

∫ ∞

0
h(t)αe−αtP(T > t)dt < ∞,

to deduce that

lim
t→∞

log E
(

exp
(

−⟨Ep
t , φ⟩ − ⟨Ẽ i

t, ψ⟩
)∣∣∣Fct+A

)
= −eαAmhZ∞ in probability,

therefore, by the dominated convergence theorem and the tower property of
conditional expectation, we have

lim
t→∞

E
(

exp
(

−⟨Ep
t , φ⟩ − ⟨Ẽ i

t, ψ⟩
))

= E
(
e−eαAmhZ∞

)
.

Finally, since φ,ψ are supported on [−A,∞), we note that the positive constant
mh satisfies

c−1
⋆ eαAmh =

∫ ∞

0
h(x)P(T > x)αe−α(x−A)dx

=
∫ ∞

0
(1 − e−φ(x−A))αe−(α+β)(x−A)dx+

∫ ∞

0

{∫ x−A

−A
(1 − e−ψ(y))βe−βydy

}
αe−α(x−A)dx

=
∫
R
α(1 − e−φ(x))e−(α+β)xdx+

∫
R

∫ x

−∞
β(1 − e−ψ(y))e−βydyαe−αxdx

=
∫
R

{
α(1 − e−φ(x)) + β(1 − e−ψ(x))

}
e−(α+β)xdx.

The proof is now complete.

We now turn to the proof of Theorem 1.2, using Proposition 2.4 and Lemma 2.5.

Proof of Theorem 1.2. By Proposition 2.4, we obtain immediately that

lim
t→∞

(Ep
t , Ẽ i

t) = (Ep
∞, E i

∞),

in law for the topology of vague convergence, by identification of the Laplace
transform of the limit, see [13, Chapter 15]. In addition, as the test functions
we considered are unbounded on the right, we also obtain the convergence in
distribution

lim
t→∞

(max Ep
t ,max Ẽ i

t) = (max Ep
∞,max E i

∞).

Finally the proof of Theorem 1.2 follows from Lemma 2.5 and Slutsky’s lemma.

We end this article with the proof of Theorem 1.1, that can be decomposed
into two parts. We first show an upper bound on the growth rate of the longest
edges, before obtaining an analogue lower bound.

Lemma 2.7. Under assumptions (1.1), (1.3) and (1.8), we have

lim sup
t→∞

max
{
M i
t,M

p
t

}
t

≤ α

α+ β
a.s.

where α is the constant defined in (1.3) and β the one defined in (1.8).
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Proof. We write Mt = max
{
M i
t,M

p
t

}
the length of the longest overall branch

alive at time t. Using that Mt ≤ t, this result is immediate in the case β = 0,
we therefore restrict ourselves in this proof to the case β > 0.

Let ε > 0. Using that a branch of length ℓ as to be born before time t − ℓ,
we have by union bound:

P(Mt > ℓ) ≤ E

 ∑
u∈Tt−ℓ

1{Tu>ℓ}

 = E(#Tt−ℓ)P(T > ℓ),

in a similar way as in the proof of Lemma 2.5. Using (1.8), we observe that for
all β′ ∈ (0, β), we have

lim
ℓ→∞

P(T > ℓ)eβ
′ℓ = 0.

As a result of taking β′ sufficiently close to β in this, and also using (2.1), we
obtain that for all ε ∈ (0, β

α+β ), there exists C > 0 such that for all t large
enough,

P(Mt > ( α
α+β + ε)t) ≤ Cetα( β

α+β −ε)e−tβ( α
α+β + ε

2 )

≤ Ce−tε(α+ β
2 ).

Therefore, from a direct application of Borel-Cantelli lemma, we have

lim sup
n→∞

Mn

n
≤ α

α+ β
a.s.

To extend this result at all positive times, we remark that t 7→ Mt is a.s. non-
decreasing, therefore M⌊t⌋ ≤ Mt ≤ M⌈t⌉, which completes the proof.

The lower bound is obtained again with an application of the Borel-Cantelli
lemma, using a classical two-steps decomposition of the branching process ex-
pressing that each inherited event occurring with positive probability will occur
almost surely on the survival event of the branching process.

Lemma 2.8. Under the assumptions of Theorem 1.1, we have

liminft→∞
Mp
t

t
≥ α

α+ β
a.s. on the survival event.

In addition, if β > 0 then

lim inf
t→∞

M i
t

t
≥ α

α+ β
a.s. on the survival event.

Proof. We only present the proof for M i
t in the case β > 0, the proof for Mp

t

following from the same computation. Using Theorem 1.2 and that ℓt ∼ t α
α+β ,

for all δ > 0 we have

lim
t→∞

P(M i
t ≤ t α

α+β (1 − δ)) = P(Z∞ = 0) < 1,

since the Sevast’yanov process survives with positive probability. Consequently,
for all δ > 0, there exists ρ < 1 such that for all t large enough, we have

P(M i
t ≤ t α

α+β (1 − δ)) < ρ. (2.2)
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We now write N t =
∑
u∈T 1{bu∈[t−1,t]} the number of individuals born be-

tween time t and t+ 1. For n ∈ N, we take interest in the event

An = {M i
n ≤ n α

α+β (1 − δ)2} ∩ {Nδn ≥ n}.

Using the branching property, i.e. the conditional independence of the Nδn

subtrees born between times nδ − 1 and nδ, we have

P(An) ≤ E
(
ρNδn1{Nδn≥n}

)
≤ ρn.

Therefore, by Borel-Cantelli lemma, almost surely for n large enough, we have
M i
n ≥ n α

α+β (1 − δ)2 or Nδn ≤ n.
By Fact 2.6, we have

lim
t→∞

e−αtN t = cZ∞ a.s.

with c a strictly positive constant. Consequently, almost surely for n large
enough, we have Nδn ≥ n or Z∞ = 0. In view of the previous result, and using
that {Z∞ = 0} corresponds to the extinction time of the Sevast’yanov process,
we conclude that a.s. on the survival event, lim infn→∞

M i
n

n ≥ α
α+β . This result

is extended to (M i
t, t ∈ R+) using the monotonicity of t 7→ M i

t.

Proof of Theorem 1.1. The theorem is obtain as an immediate consequence of
Lemmas 2.7 and 2.8.
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