Numerical solution of time-dependent nonlinear Schrödinger equations using domain truncation techniques coupled with relaxation scheme

Résumé

The aim of this paper is to compare different ways for truncating unbounded domains for solving general nonlinear one- and two-dimensional Schrödinger equations. We propose to analyze Complex Absorbing Potentials, Perfectly Matched Layers and Absorbing Boundary Conditions. The time discretization is made by using a semi-implicit relaxation scheme which avoids any fixed point procedure. The spatial discretization involves finite element methods. We propose some numerical experiments to compare the approaches.

Publication
Laser Physics