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Terminology

In 1D holomorphic dynamics Siegel disks are maximal domains of
conjugacy to a rotation.

Relatively compact Siegel disks are those which are relatively compact
subset of the domain of f .

If the angle of the rotation is 2πθ radians then θ ∈ R/Z is called the
rotation number.

Expand θ as a continued fraction 1/(a1 + 1/(a2 . . ., an ∈ N∗. Recall that θ
has bounded type means �θ /∈ Q and (an) is bounded�.
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Finite type maps

De�nition (A. Epstein)

Given a Riemann surfaces X , Y with Y compact, a �nite-type map is a
holomorphic map f : X → Y which is open, whose set of singular values
Sing f is �nite, and which has no removable isolated singularity.

When X ⊂ Y we can iterate and f n is also a �nite type map.

Polynomials, rational maps, transcendental entire maps in the Spieser class,
are �nite type maps.

The horn maps (a.k.a. parabolic renormalization) of a parabolic point of a
�nite type map are also �nite type maps.

Many theorems of Fatou, Julia concerning rational maps still hold for �nite
type maps, and Sullivan's non-wandering theorem too.
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Reminder

If a �xed point of a holomorphic map has multiplier e2πiθ with θ of
bounded type then the �xed point has a Siegel disk.

In fact it is true when θ is in the bigger class of Brjuno numbers.
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Main theorem

Theorem (Chéritat, Epstein)

Let Y = Ĉ, X = U ⊂ Ĉ, f : U → Ĉ a �nite-type map with

a. Sing f ⊂ {a, b, c} for some distinct a, b, c ∈ Ĉ
b. a ∈ U, is �xed with multiplier e2πiθ and θ has bounded type

c. either c ∈ Ĉ− U or f (c) = c .

Consider an injective path γ from a to b in Ĉ− {a, b, c}. Consider its

unique lift γ̃ by f starting from a. Then either

1. γ̃ ends on a non-critical point in U and then U = Ĉ and f is a

homography,

2. γ̃ ends on a critical point in U and then ∆ is a quasidisk whose

boundary contains this critical point and no other critical point,

3. γ̃ leaves every compact of U and then ∆ does not have compact

closure in U.
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Context

Boundaries of relatively compact Siegel disks come in many �avours.

1. Jordan curve without a critical point (Ghys, Herman)

2. Smooth (Pérez Marco, Bu�-Chéritat, Ávila)

3. Jordan curve with a critical point (Douady, Herman, �wi¡tek)

4. Jordan with any kind of regularity (Bu�-Chéritat)

5. Pseudocircles (Herman, Chéritat)

1. and 3. thanks to the Ghys surgery procedure. (see further slides)
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Relatively compact Siegel disk with

a critical point on the boundary

Theorem (Graczyk, �wi¡tek 2003)

A relatively compact Siegel disk with bounded type rotation number

necessarily has a critical point on its boundary.

The proof uses the normalized Schwarzian derivative of the conjugacy from
the rotation to f , area estimates, and properties of univalent functions.

Theorem (Douady, Ghys, Herman, �wi¡tek late 1980's)

If θ ∈ R−Q has bounded type then z 7→ e2πiθz + z2 has a Siegel disk

whose boundary is a quasicircle going through the critical point.
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The Douady-Ghys surgery
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Description

A speci�c Blaschke fraction: B(z) = z2
1− āz

z − a
, a = 1/3.

B

preserves S1, but not D.
On S1, B is a homeomorphism, but not a di�eomorphism: z = 1 is a
critical point of local degree 3.

For all θ ∈ R−Q, there exists a unique ρ ∈ ∂D such that ρ.B|S1 has
rotation number θ mod Z.
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For all θ ∈ R−Q, there exists a unique ρ ∈ ∂D such that ρ.B|S1 has
rotation number θ mod Z.

(Yoccoz) There exists a Poincaré conjugacy h to the rotation x 7→ x + θ on
R/Z.

Theorem (Herman, �wi¡tek)

If θ has bounded type, then h is quasisymmetric.
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(Ahlfors, Beurling, Douady, Earle) Quasisymmetric orientation preserving
maps h : ∂D→ ∂D have quasiconformal extensions h̃ to D.

ρ.B

Rθ

B̃

Douady-Earle extension of h

B̃ = ρ.B outside D
B̃ = h̃−1 ◦ Rθ ◦ h̃ in D

∅

h

h̃

Invariant Beltrami form µ = h̃∗(0) in D.
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B̃-invariant Beltrami form µ = h̃∗(0) on D.

pulled-back by B̃ into a B̃-invariant µ on C.
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By Morrey's theorem, there exists a quasiconformal homeomorphism
S : C→ C straightening µ, i.e. S∗µ = 0.

The map S ◦ B̃ ◦ S−1 sends the null Beltrami form to itself: it is thus
holomorphic.

It can be nothing but z 7→ e2iπθz + z2.
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In the Douady-Ghys Surgery, B̃ is cover-equivalent to z 7→ z2 (eq. 1− z2):

C C

C
B̃

φ0

1−z2

φ0

1−z2

and the q.c. homeo. φ0 is analytic outside D.

B can be recovered from the restriction to C− D of (z 7→ 1− z2) ◦ φ0 by
Schwarz re�ection.

Chéritat Epstein (CNRS, IMT) Siegel disks, few singular values Sept. 2021 16 / 30



In the Douady-Ghys Surgery, B̃ is cover-equivalent to z 7→ z2 (eq. 1− z2):

C C

C
B̃

φ0

1−z2

φ0

1−z2

and the q.c. homeo. φ0 is analytic outside D.

B can be recovered from the restriction to C− D of (z 7→ 1− z2) ◦ φ0 by
Schwarz re�ection.

Chéritat Epstein (CNRS, IMT) Siegel disks, few singular values Sept. 2021 16 / 30



Developments

In my thesis (2001): I found a trick to adapt this to horn maps of
quadratic polynomials.

In �Ghys-like model providing trick for Lavaurs and simple entire maps�
[Chéritat 2006]: the trick works for a sub class of the set of entire functions
with at most two singular values (determined thanks to a discussion with
Dierk Schleicher in 2002). Uncountably many examples.

In 2006 I had the honor of having A. Epstein present my proof in Douady's
70th birthday's conference. At the end of his lecture, Adam noted that we
could simplify the argument. As a consequence: generalization of the
above two results to a much bigger class of �nite type maps with few
singular values.
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Philosophy of the method

map −→ premodel −→ model −→ (new?) map
unif.+re�. qc rot. in D straighten
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The main theorem, again

Theorem (Chéritat, Epstein)

Let f : U → Ĉ be a �nite-type map with U ⊂ Ĉ and

a. Sing f ⊂ {a, b, c} for some distinct a, b, c ∈ Ĉ
b. a ∈ U, is �xed with multiplier e2πiθ and θ has bounded type

c. either c ∈ Ĉ− U or f (c) = c .

Consider an injective path γ from a to b in Ĉ− {a, b, c}. Consider its

unique lift γ̃ by f starting from a. Then either

1. γ̃ ends on a non-critical point in U and then U = Ĉ and f is a

homography,

2. γ̃ ends on a critical point in U and then ∆ is a quasidisk whose

boundary contains this critical point and no other critical point,

3. γ̃ leaves every compact of U and then ∆ does not have compact

closure in U.
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Note

In the theorem: the injective path γ goes from a to b in Ĉ− {a, b, c} and
γ̃ is its unique lift by f starting from a.

The endpoint of γ̃ in the Alexandrov compacti�cation of U (a point of U
or the leave-every-compact-point) is independent of the choice of γ.
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Proof of the main theorem

w.l.o.g. a = 0, b = 1, c =∞

D has a unique pull-back D0 that contains 0 and f : D0 → D is a bijection

Case 1. γ̃ ends on a non-critical point in U. [. . . ]

Case 2. γ̃ ends on a critical point in U. Then D0 is a tear.
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Case 2.

Perform the surgery and get a model map f̃ with an invariant Beltrami form µ̃
de�ned on Ĉ. Let Ũ = dom f̃ .

Objective: prove that the domain of the resulting map is the same, i.e. Ũ = U.

U Ũ

f̃ g holo

φ̃0 S

S

f
f̃ ext. s.t. f̃ (0) = 0

φ0 s.t. rot. nb. = θ

φ̃0 ext. φ0 s.t. diagr. comm.

φ̃0(0) = 0, φ̃0(∞) =∞
S �xes 0, 1 and ∞
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U Ũ

f g

T

S

with T = S ◦ φ̃−10 .

∂̄S = 0 on Ĉ− Ũ and φ̃0 is conformal outside D hence

∂̄T = 0 on Ĉ− U

T (0) = 0, T (∞) =∞
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T is a q.c. homeo of Ĉ, its restriction from U to Ũ is a lift of S .

U Ũ

Ĉ Ĉ

f

T

g

S

Let µt = t.µ. Straighten µt by the unique q.c. isomorphism St of Ĉ �xing
a, b and c . Note that t 7→ St is an isotopy and S0 = id. Lift this isotopy
starting from t = 1 down to t = 0 as a family of homeomorphisms
Tt : U → Ũ starting from T1 = T :

U Ũ

Ĉ Ĉ

f

Tt

g

St

Note that t 7→ Tt is the restriction to t ∈ [0, 1] of a holomorphic motion.
Also, Tt maps f −1{a, b, c} to g−1{a, b, c} and is immobile on this set. In
particular Tt(0) = 0.
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Specializing to t = 0, using S0 = id:

U Ũ

Ĉ Ĉ

f

T0

g

id

in particular T0 is holomorphic.
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Ũ U Ũ

Ĉ Ĉ Ĉ

g

T−1

f

Tt

g

S−1 St

The family t 7→ Tt ◦ T−1 : Ũ → Ũ is also a holomorphic motion and is the
identity of Ũ for t = 1.

Use T to extend Tt to T̃t : Ĉ→ Ĉ by setting T̃t(z) = T (z) when z /∈ Ũ.
Then T̃t ◦ T−1 is a holomorphic motion of Ĉ.

The map T̃0 is quasiconformal, is holomorphic in U. Moreover on Ĉ− U
we have T0 = T and ∂̄T = 0. Rickman's lemma implies T̃0 is holomorphic
everywhere, and hence T̃0 is a homography.
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f = g ◦ T̃0

T̃0 is a homography.

U Ũ

Ĉ Ĉ

f

Tt

g

St

T̃0 �xes 0

For rotation number reasons, f ′(0) = g ′(0) hence T̃ ′0(0) = 1.

� Case 1: ∞ /∈ U. Since T̃0 = T on Ĉ− U, and T (∞) =∞, we get
T̃0(∞) =∞.

� Case 2: f (∞) =∞. Since Tt(z) is independent of t when
z ∈ f −1{0, 1,∞}, we get T̃0(∞) = T0(∞) = T1(∞) =∞.

� Other cases: not covered by our theorem.

Finally: T̃0 = id i.e. g = f . Q.E.D.
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Case 3

Case 3. γ̃ eventually leaves every compact subset of U.

We proceed by contradiction and assume ∆ compactly contained in U.

We then use Graczyk-�wi¡tek : there must be a critical point p ∈ ∂∆.

Case 3.1: c /∈ U.

f (p) ∈ {a, b, c} ∩ ∂∆, hence f (p) = b

One can then construct an injective path from a to b whose lift ends on p.
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Case 3.1: f (c) = c .

There are �nitely many critical points p1, p2, . . . , pn on ∂∆.

By an injective path construction as above, b /∈ ∂∆. As a consequence, all
critical points map to c in one iteration. The point c cannot be critical
otherwise its basin would separate c from U. Similarly, it cannot be
attracting or Siegel.

We then use the technique of Graczyk and �wi¡tek, using an area form

that is in�nite and cylindrical ω =
(∑

k
1

|z−pk |2

)
dx ∧ dy in place of the

Lebesgue measure.

We �nally prove that the area of ∆ w.r.t. ω is �nite, in which case the
technique of Graczyk and �wi¡tek prove ∂∆ is locally connected, which
prevents the existence of a �xed point thereon, leading to a contradiction
with f (c) = c .

The proof of �niteness splits in three case, according to the �xed point c
being parabolic, repelling or Cremer.
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Thanks
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