USING SIMILARITY SURFACES TO STRAIGHTEN THE sQuAre and to reprove Ahlfors-Bers

Arnaud Chéritat

CNRS, Institut de Mathématiques de Toulouse
May 2023

The Beltrami equation

Problem: Given $\mu \in L^{\infty}(\mathbb{C})$ complex valued with $\|\mu\|_{\infty}<1$, find a homeomorphism of the plane whose distribution derivatives are locally L^{2} and such that

$$
\frac{\partial f}{\partial \bar{z}}=\mu \frac{\partial f}{\partial z}
$$

almost everywhere.

The Beltrami equation

Problem: Given $\mu \in L^{\infty}(\mathbb{C})$ complex valued with $\|\mu\|_{\infty}<1$, find a homeomorphism of the plane whose distribution derivatives are locally L^{2} and such that

$$
\frac{\partial f}{\partial \bar{z}}=\mu \frac{\partial f}{\partial z}
$$

almost everywhere.
This can be reformulated in terms of f straightening an ellipse field characterized by μ : df maps these ellipses to circles (almost everywhere). μ is called the Beltrami coefficient.

The Beltrami equation

Problem: Given $\mu \in L^{\infty}(\mathbb{C})$ complex valued with $\|\mu\|_{\infty}<1$, find a homeomorphism of the plane whose distribution derivatives are locally L^{2} and such that

$$
\frac{\partial f}{\partial \bar{z}}=\mu \frac{\partial f}{\partial z}
$$

almost everywhere.
This can be reformulated in terms of f straightening an ellipse field characterized by μ : df maps these ellipses to circles (almost everywhere). μ is called the Beltrami coefficient.

With this level of generality, the proof of the existence of a solution is due to Morrey around 1936. With stronger hypotheses, prior proofs authors include Gauss, Korn, Lichtenstein, Lavrentiev,

The Beltrami equation

Problem: Given $\mu \in L^{\infty}(\mathbb{C})$ complex valued with $\|\mu\|_{\infty}<1$, find a homeomorphism of the plane whose distribution derivatives are locally L^{2} and such that

$$
\frac{\partial f}{\partial \bar{z}}=\mu \frac{\partial f}{\partial z}
$$

almost everywhere.
This can be reformulated in terms of f straightening an ellipse field characterized by μ : df maps these ellipses to circles (almost everywhere). μ is called the Beltrami coefficient.

With this level of generality, the proof of the existence of a solution is due to Morrey around 1936. With stronger hypotheses, prior proofs authors include Gauss, Korn, Lichtenstein, Lavrentiev,

This known nowadays as the Measurable Riemann Mapping Theorem.

Ellipse field

The ellipses encoded by some $\mu \in \mathbb{D}$ have equation $|z+\mu \times \bar{z}|=r$. They have ratio

$$
\frac{\text { major axis }}{\text { minor axis }}=K=\frac{1+|\mu|}{1-|\mu|}
$$

and the minor axis makes an angle $\theta=\arg (\mu) / 2$ with the horizontal.

Ellipse field

The ellipses encoded by some $\mu \in \mathbb{D}$ have equation $|z+\mu \times \bar{z}|=r$. They have ratio

$$
\frac{\text { major axis }}{\text { minor axis }}=K=\frac{1+|\mu|}{1-|\mu|}
$$

and the minor axis makes an angle $\theta=\arg (\mu) / 2$ with the horizontal.
The Beltrami equation is usually used to change the complex structure of a space or a subset.

Solving

Solving explicitly or numerically this P.D.E. is quite hard.

Solving

Solving explicitly or numerically this P.D.E. is quite hard.
It is quite uncommon that there is a closed formula for a solution, even when μ is simple.

A case study

Setting: an ellipse field on the plane that is constant in a square $\left(\mu=\frac{K-1}{K+1}\right)$, and circles outside $(\mu=0)$.

Numerically solving a modified Laplacian

$K=2$

Numerically solving a modified Laplacian

$K=5$

Numerically solving a modified Laplacian

K = 10

Numerically solving a modified Laplacian

$$
K=20
$$

The square

Reformulation into an equivalent problem

The square

The changes of coordinates between the two charts are of the form $z \mapsto a z+b$, thus are holomorphic: we just defined a Riemann surface.

The square

The changes of coordinates between the two charts are of the form $z \mapsto a z+b$, thus are holomorphic: we just defined a Riemann surface. But better. . .

The square

The changes of coordinates between the two charts are of the form $z \mapsto a z+b$, thus are holomorphic: we just defined a Riemann surface. But better...

The change of coordinates are similitudes, so we work with a more rigid category of geometrical object, similarity surfaces, with interesting properties like...

The square

The changes of coordinates between the two charts are of the form $z \mapsto a z+b$, thus are holomorphic: we just defined a Riemann surface. But better. . .

The change of coordinates are similitudes, so we work with a more rigid category of geometrical object, similarity surfaces, with interesting properties like. . .
... a locally trivial parallel transport.
Click here to run applet

Uniformization theorem

Theorem: (Poincaré, Koebe) A Riemann surface that is homeomorphic to a sphere is necessarily conformally equivalent $\widehat{\mathbb{C}}$.

In our case, we can complete our gluing by adding 5 points, one at infinity, four at the corners, and 5 Riemann charts near these points.

Completing the Riemann surface

1. Near ∞, the map $z \mapsto 1 / z$ gives a local Riemann surface chart (exactly like the Riemann sphere).
2. Near a corner, we can glue one side of the rectangle to one side of the square and are left with the following local picture: a slit plane where one side of the slit is glued to the other side by a homothety of ratio K.

Completing the Riemann surface

1. Near ∞, the map $z \mapsto 1 / z$ gives a local Riemann surface chart (exactly like the Riemann sphere).
2. Near a corner, we can glue one side of the rectangle to one side of the square and are left with the following local picture: a slit plane where one side of the slit is glued to the other side by a homothety of ratio K. Then the map

$$
z \mapsto z^{\alpha}, \quad \alpha=\frac{2 \pi i}{2 \pi i \pm \log K}
$$

is a local Riemann surface chart: in particular it glues each side of slit exactly according to the required homothety.

Click here to run applet

A cultural remark

M.C. Escher's lithography: Print Gallery (1956)

Source: de Smit and Lenstra, Notices of the AMS.

A solution via uniformization

\longrightarrow this allows to create a solution of the Beltrami equation:

A solution via uniformization

\longrightarrow this allows to create a solution of the Beltrami equation:

A solution via uniformization

\longrightarrow this allows to create a solution of the Beltrami equation:

But usually, finding the explicit uniformization of abstract Riemann surfaces is a very hard problem. So why does it help us here?
$\begin{aligned} & \text { polygon } \\ & \text { decomp. } \\ & \text { of } \mathbb{C}\end{aligned}$
similarities $\underset{\text { polygons: }}{\text { sim. charts }} \xrightarrow{\text { gluing }} \begin{aligned} & \mathscr{S} \text { sim. } \\ & \begin{array}{l}\text { surface } \\ \text { (abstract) }\end{array} \\ & \text { unif. }\end{aligned}$

We can consider $\mathbb{C}-\left\{z_{1}, \ldots, z_{4}\right\}$ as a Riemann chart of \mathscr{S} but it is not a sim-chart. The change of coordinates from this chart to the sim-charts are holomorphic functions $\phi: U \rightarrow \mathbb{C}$ with $U \subset \mathbb{C}-\left\{z_{1}, \ldots, z_{4}\right\}$.

We can consider $\mathbb{C}-\left\{z_{1}, \ldots, z_{4}\right\}$ as a Riemann chart of \mathscr{S} but it is not a sim-chart. The change of coordinates from this chart to the sim-charts are holomorphic functions $\phi: U \rightarrow \mathbb{C}$ with $U \subset \mathbb{C}-\left\{z_{1}, \ldots, z_{4}\right\}$. Two such sim-charts, ϕ_{1}, ϕ_{2} satisfy locally on $U_{1} \cap U_{2}$:

$$
\phi_{1}=a \phi_{2}+b
$$

for some constants a, b. Hence

$$
\frac{\phi_{2}^{\prime \prime}}{\phi_{2}^{\prime}}=\frac{\phi_{1}^{\prime \prime}}{\phi_{1}^{\prime}}
$$

It follows that there exists a global holomorphic function

$$
\eta: \mathbb{C}-\left\{z_{1}, \ldots, z_{4}\right\} \rightarrow \mathbb{C}
$$

such that locally sim-charts are exactly the solutions ϕ of

$$
\frac{\phi^{\prime \prime}}{\phi^{\prime}}=\eta
$$

It follows that there exists a global holomorphic function

$$
\eta: \mathbb{C}-\left\{z_{1}, \ldots, z_{4}\right\} \rightarrow \mathbb{C}
$$

such that locally sim-charts are exactly the solutions ϕ of

$$
\frac{\phi^{\prime \prime}}{\phi^{\prime}}=\eta
$$

From η, one retrieves ϕ as follows:

$$
\phi=\int \exp \int \eta
$$

More generally any holomorphic η promotes a Riemann surface to a a sim-surface atlas via the above formula in Riemann charts.

It follows that there exists a global holomorphic function

$$
\eta: \mathbb{C}-\left\{z_{1}, \ldots, z_{4}\right\} \rightarrow \mathbb{C}
$$

such that locally sim-charts are exactly the solutions ϕ of

$$
\frac{\phi^{\prime \prime}}{\phi^{\prime}}=\eta
$$

From η, one retrieves ϕ as follows:

$$
\phi=\int \exp \int \eta
$$

More generally any holomorphic η promotes a Riemann surface to a a sim-surface atlas via the above formula in Riemann charts.

Note: (differential geometry viewpoint) the function η is the expression* of a holomorphic and locally flat conformal connection.
(*) a.k.a. a Christoffel symbol.

Example

For the slit plane glued with a factor K homothety, recall the gluing is conformally realized by $z \mapsto z^{\alpha}$ with $\alpha=\frac{2 \pi i}{2 \pi i t \log K}$.

Example

For the slit plane glued with a factor K homothety, recall the gluing is conformally realized by $z \mapsto z^{\alpha}$ with $\alpha=\frac{2 \pi i}{2 \pi i t \log K}$.
This map goes from the sim-chart to the Riemann chart. So $\phi(z)=z^{1 / \alpha}$ is the inverse map.

Example

For the slit plane glued with a factor K homothety, recall the gluing is conformally realized by $z \mapsto z^{\alpha}$ with $\alpha=\frac{2 \pi i}{2 \pi i \pm \log K}$.
This map goes from the sim-chart to the Riemann chart. So $\phi(z)=z^{1 / \alpha}$ is the inverse map.
Then $\phi^{\prime \prime} / \phi^{\prime}=\frac{\frac{1}{\alpha}-1}{z}$ and the Christoffel symbol on the uniformization \mathbb{C}^{*} has the extremely simple expression

$$
\eta(z)=\frac{\log K}{2 \pi i} \cdot \frac{1}{z} .
$$

Analyzing η at the singularities

Change of variable for the connection: if one expresses η in two Riemann charts C_{1} and C_{2} with change of coordinates ψ between them, then the expressions η_{1} and η_{2} in the respective charts are related by:

$$
\begin{equation*}
\eta_{1}=\psi^{\prime} \times \eta_{2} \circ \psi+\frac{\psi^{\prime \prime}}{\psi^{\prime}} \tag{1}
\end{equation*}
$$

(It is almost like a differential form).

Solution

As a consequence:

- η has a simple pole at z_{k} with residue $\pm \log (K) / 2 \pi i$.
- $\eta \longrightarrow 0$ when $z \longrightarrow \infty$
and recall η is holomorphic on $\mathbb{C}-\left\{z_{1}, \ldots, z_{4}\right\}$. Hence. ..

Solution

As a consequence:

- η has a simple pole at z_{k} with residue $\pm \log (K) / 2 \pi i$.
- $\eta \longrightarrow 0$ when $z \longrightarrow \infty$
and recall η is holomorphic on $\mathbb{C}-\left\{z_{1}, \ldots, z_{4}\right\}$. Hence...

$$
\eta=\frac{\log K}{2 \pi i} \cdot\left(\frac{-1}{z-z_{1}}+\frac{1}{z-z_{2}}+\frac{-1}{z-z_{3}}+\frac{1}{z-z_{4}}\right)
$$

Solution

As a consequence:

- η has a simple pole at z_{k} with residue $\pm \log (K) / 2 \pi i$.
- $\eta \longrightarrow 0$ when $z \longrightarrow \infty$
and recall η is holomorphic on $\mathbb{C}-\left\{z_{1}, \ldots, z_{4}\right\}$. Hence...

$$
\eta=\frac{\log K}{2 \pi i} \cdot\left(\frac{-1}{z-z_{1}}+\frac{1}{z-z_{2}}+\frac{-1}{z-z_{3}}+\frac{1}{z-z_{4}}\right)
$$

Now solving $\phi^{\prime \prime} / \phi^{\prime}=\eta$ gives:

$$
\phi=b+a \int\left(\frac{z-z_{2}}{z-z_{4}} \cdot \frac{z-z_{1}}{z-z_{3}}\right)^{\frac{\log K}{2 \pi i}} d z
$$

Solution

As a consequence:

- η has a simple pole at z_{k} with residue $\pm \log (K) / 2 \pi i$.
- $\eta \longrightarrow 0$ when $z \longrightarrow \infty$
and recall η is holomorphic on $\mathbb{C}-\left\{z_{1}, \ldots, z_{4}\right\}$. Hence...

$$
\eta=\frac{\log K}{2 \pi i} \cdot\left(\frac{-1}{z-z_{1}}+\frac{1}{z-z_{2}}+\frac{-1}{z-z_{3}}+\frac{1}{z-z_{4}}\right)
$$

Now solving $\phi^{\prime \prime} / \phi^{\prime}=\eta$ gives:

$$
\phi=b+a \int\left(\frac{z-z_{2}}{z-z_{4}} \cdot \frac{z-z_{1}}{z-z_{3}}\right)^{\frac{\log K}{2 \pi i}} d z
$$

The conformal map sought for is locally the inverse mapping of ϕ (for appropriate choices of the integration constants $a, b)$.

The Schwarz-Christoffel formula

The formula we found

$$
a+b \int\left(\frac{z-z_{2}}{z-z_{4}} \cdot \frac{z-z_{1}}{z-z_{3}}\right)^{\frac{\log K}{2 \pi i}} d z
$$

is an analogue of the Schwarz-Christoffel formula that gives an expression of the conformal map from the upper half plane to any polygon in the plane: for an n-gon with angles $\alpha_{k} \in(0,2 \pi)$, there exists real numbers x_{1}, \ldots, x_{n} such that

$$
f=a+b \int \frac{d z}{\left(z-x_{1}\right)^{\beta_{1} \cdots\left(z-x_{n}\right)^{\beta_{n}}}}
$$

with $\beta_{k}=1-\frac{\alpha_{k}}{\pi}$.

The Schwarz-Christoffel formula

The formula we found

$$
a+b \int\left(\frac{z-z_{2}}{z-z_{4}} \cdot \frac{z-z_{1}}{z-z_{3}}\right)^{\frac{\log K}{2 \pi i}} d z
$$

is an analogue of the Schwarz-Christoffel formula that gives an expression of the conformal map from the upper half plane to any polygon in the plane: for an n-gon with angles $\alpha_{k} \in(0,2 \pi)$, there exists real numbers x_{1}, \ldots, x_{n} such that

$$
f=a+b \int \frac{d z}{\left(z-x_{1}\right)^{\beta_{1} \cdots\left(z-x_{n}\right)^{\beta_{n}}}}
$$

with $\beta_{k}=1-\frac{\alpha_{k}}{\pi}$.
The x_{i} are mapped to the vertices of the polygon. They can be hard to determine: each depends on all the angles and the length of all sides of the polygon. This is called the parameter problem.
$K=2$

$K=5$

$K=15$

$K=50$

$K=200$

$K=1000$

$$
K=10^{4}
$$

$$
K=10^{6}
$$

$$
K=10^{9}
$$

$K=10^{20}$

$K=10^{50}$

The limit

As $K \longrightarrow+\infty$ we see a limit shape and can prove

$$
\eta_{K} \longrightarrow \eta_{\infty}=\frac{\sigma_{0}}{\left(z-x_{0}\right)^{2}}-\frac{\sigma_{0}}{\left(z+x_{0}\right)^{2}}
$$

This limit shape also has an interpretation in terms of similarity surfaces:

The limit

Ahlfors-Bers

Collaboration with Guillaume Tahar (currently in Sanya University)

Ahlfors-Bers

Collaboration with Guillaume Tahar (currently in Sanya University)
Solutions of the Beltrami equation are unique up to post-composition by holomorphic isomorphisms.

Ahlfors-Bers

Collaboration with Guillaume Tahar (currently in Sanya University)
Solutions of the Beltrami equation are unique up to post-composition by holomorphic isomorphisms. Isomorphisms of \mathbb{C} are just the maps $a z+b$.

Ahlfors-Bers

Collaboration with Guillaume Tahar (currently in Sanya University)
Solutions of the Beltrami equation are unique up to post-composition by holomorphic isomorphisms. Isomorphisms of \mathbb{C} are just the maps $a z+b$. A solution of the Beltrami equation that is defined on all of \mathbb{C} is called normalized if $f(0)=0$ and $f(1)=1$.

Ahlfors-Bers

Collaboration with Guillaume Tahar (currently in Sanya University)
Solutions of the Beltrami equation are unique up to post-composition by holomorphic isomorphisms. Isomorphisms of \mathbb{C} are just the maps $a z+b$. A solution of the Beltrami equation that is defined on all of \mathbb{C} is called normalized if $f(0)=0$ and $f(1)=1$. The normalized solution exists and is unique.

Ahlfors-Bers

Collaboration with Guillaume Tahar (currently in Sanya University)
Solutions of the Beltrami equation are unique up to post-composition by holomorphic isomorphisms. Isomorphisms of \mathbb{C} are just the maps $a z+b$. A solution of the Beltrami equation that is defined on all of \mathbb{C} is called normalized if $f(0)=0$ and $f(1)=1$. The normalized solution exists and is unique.

Theorem (Ahlfors-Bers)

The normalized solution of the Beltrami equation depends holomorphically on μ.

Ahlfors-Bers

Collaboration with Guillaume Tahar (currently in Sanya University)
Solutions of the Beltrami equation are unique up to post-composition by holomorphic isomorphisms. Isomorphisms of \mathbb{C} are just the maps $a z+b$. A solution of the Beltrami equation that is defined on all of \mathbb{C} is called normalized if $f(0)=0$ and $f(1)=1$. The normalized solution exists and is unique.

Theorem (Ahlfors-Bers)

The normalized solution of the Beltrami equation depends holomorphically on μ.

What is meant: if $\mu[\tau](z)$ depends holomorphically on $\tau \in \mathbb{D}$ for all $z \in \mathbb{C}$ then $f[\tau](z)$ also does.

Ahlfors-Bers

All proofs I know or heard of use the Ahlfors-Beurling operator, a singular integral operator with degenerate kernel, or similar tools.

Ahlfors-Bers

All proofs I know or heard of use the Ahlfors-Beurling operator, a singular integral operator with degenerate kernel, or similar tools.

The one we propose is based on the Poincaré-Koebe theorem, of which there are softer proofs.

An approach without the $A B$ operator

Inspired by Lavrentiev's

We consider the square $|\operatorname{lm} z|<n,|\operatorname{Re} z|<n$ and divide it into litte squares of side $1 / n$, totalling $\left(2 n^{2}\right)^{2}$ squares.

An approach without the AB operator

Inspired by Lavrentiev's

We consider the square $|\operatorname{lm} z|<n,|\operatorname{Re} z|<n$ and divide it into litte squares of side $1 / n$, totalling $\left(2 n^{2}\right)^{2}$ squares.

For all $n>0$ we define the Beltrami form μ_{n} as 0 outside the big square and constant on each little square S, where it equals its average on S.

An approach without the AB operator

Inspired by Lavrentiev's

We consider the square $|\operatorname{lm} z|<n,|\operatorname{Re} z|<n$ and divide it into litte squares of side $1 / n$, totalling $\left(2 n^{2}\right)^{2}$ squares.

For all $n>0$ we define the Beltrami form μ_{n} as 0 outside the big square and constant on each little square S, where it equals its average on S.

Then $\left\|\mu_{n}\right\|_{\infty} \leq\|\mu\|_{\infty}$ and for all $R>0, \int_{B(0, R)}\left|\mu-\mu_{n}\right| \longrightarrow 0$.

Bounds

MRMT: Measurable Riemann Mapping Theorem (Morrey's theorem)

Bounds

MRMT: Measurable Riemann Mapping Theorem (Morrey's theorem) Except Gauss's, all proofs of the MRMT and its variants use bounds on quasiconformal homeomorphisms or similar bounds. Ours is no exception.

Bounds

MRMT: Measurable Riemann Mapping Theorem (Morrey's theorem)
Except Gauss's, all proofs of the MRMT and its variants use bounds on quasiconformal homeomorphisms or similar bounds. Ours is no exception.

Solutions of the Beltrami equation are K-quasiconformal homeomorphisms where $K=\left(1+\|\mu\|_{\infty}\right) /\left(1-\|\mu\|_{\infty}\right) \in[1,+\infty)$.

Bounds

MRMT: Measurable Riemann Mapping Theorem (Morrey's theorem)
Except Gauss's, all proofs of the MRMT and its variants use bounds on quasiconformal homeomorphisms or similar bounds. Ours is no exception.

Solutions of the Beltrami equation are K-quasiconformal homeomorphisms where $K=\left(1+\|\mu\|_{\infty}\right) /\left(1-\|\mu\|_{\infty}\right) \in[1,+\infty)$.

Quasiconformal homeomorphisms have several equivalent definitions, the proofs of these equivalences do not use the MRMT.

Bounds

MRMT: Measurable Riemann Mapping Theorem (Morrey's theorem)
Except Gauss's, all proofs of the MRMT and its variants use bounds on quasiconformal homeomorphisms or similar bounds. Ours is no exception.

Solutions of the Beltrami equation are K-quasiconformal homeomorphisms where $K=\left(1+\|\mu\|_{\infty}\right) /\left(1-\|\mu\|_{\infty}\right) \in[1,+\infty)$.

Quasiconformal homeomorphisms have several equivalent definitions, the proofs of these equivalences do not use the MRMT.

Bounds: One can also prove without the MRMT that:

- the set of normalized K-quasiconformal homeomorphisms for a fixed K forms a normal family;
- there is a locally uniform bound on the L^{2} norm of their first-order distribution partial derivatives.

Recall that:

- K-quasiconformal homeomorphisms form a normal family, and $\int_{B(0, R)}\left|\frac{\partial f}{\partial z}\right|^{2}+\left|\frac{\partial f}{\partial \bar{z}}\right|^{2} \leq C(K, R)$,
- $\left\|\mu_{n}\right\|_{\infty} \leq\|\mu\|_{\infty}$ and for all $R>0, \int_{B(0, R)}\left|\mu-\mu_{n}\right| \longrightarrow 0$.

Recall that:

- K-quasiconformal homeomorphisms form a normal family, and $\int_{B(0, R)}\left|\frac{\partial f}{\partial z}\right|^{2}+\left|\frac{\partial f}{\partial \bar{z}}\right|^{2} \leq C(K, R)$,
- $\left\|\mu_{n}\right\|_{\infty} \leq\|\mu\|_{\infty}$ and for all $R>0, \int_{B(0, R)}\left|\mu-\mu_{n}\right| \longrightarrow 0$.

Standard arguments then allow to show that from the sequence of straightenings f_{n} for μ_{n}, one can extract a subsequence that converges locally uniformly to a straightening f for μ.

Recall that:

- K-quasiconformal homeomorphisms form a normal family, and $\int_{B(0, R)}\left|\frac{\partial f}{\partial z}\right|^{2}+\left|\frac{\partial f}{\partial \bar{z}}\right|^{2} \leq C(K, R)$,
- $\left\|\mu_{n}\right\|_{\infty} \leq\|\mu\|_{\infty}$ and for all $R>0, \int_{B(0, R)}\left|\mu-\mu_{n}\right| \longrightarrow 0$.

Standard arguments then allow to show that from the sequence of straightenings f_{n} for μ_{n}, one can extract a subsequence that converges locally uniformly to a straightening f for μ.

More generaly:

- To reprove MRMT it is enough to have any dense sub-family of μ for which we know a solution f.
- To reprove Ahlfors-Bers it is enough to have any dense family of holomorphic maps $\tau \in \mathbb{D} \mapsto \mu[\tau]$ for which we know a solution $f[\tau]$ that depends holomorphically on τ.

Consider the following propositions:
A : $\mu[\tau]$ depends holomorphically on the parameter
$\mathrm{B}: \mu_{n}[\tau]$ depends holomorphically on the parameter
C : $f_{n}[\tau]$ depends holomorphically on the parameter
D : $f[\tau]$ depends holomorphically on the parameter

Consider the following propositions:
A : $\mu[\tau]$ depends holomorphically on the parameter
$\mathrm{B}: \mu_{n}[\tau]$ depends holomorphically on the parameter
C : $f_{n}[\tau]$ depends holomorphically on the parameter
D : $f[\tau]$ depends holomorphically on the parameter
Then it is easy to prove $A \Longrightarrow B$ and $C \Longrightarrow D$.

Consider the following propositions:
A : $\mu[\tau]$ depends holomorphically on the parameter
$\mathrm{B}: \mu_{n}[\tau]$ depends holomorphically on the parameter
C : $f_{n}[\tau]$ depends holomorphically on the parameter
D : $f[\tau]$ depends holomorphically on the parameter
Then it is easy to prove $A \Longrightarrow B$ and $C \Longrightarrow D$.
But $B \Longrightarrow C$ is not immediate, even in the particular case of Beltrami forms constant on a fixed finite polygonal subdivision of \mathbb{C}

Consider the following propositions:
A : $\mu[\tau]$ depends holomorphically on the parameter
$\mathrm{B}: \mu_{n}[\tau]$ depends holomorphically on the parameter
C : $f_{n}[\tau]$ depends holomorphically on the parameter
D : $f[\tau]$ depends holomorphically on the parameter
Then it is easy to prove $A \Longrightarrow B$ and $C \Longrightarrow D$.
But $B \Longrightarrow C$ is not immediate, even in the particular case of Beltrami forms constant on a fixed finite polygonal subdivision of \mathbb{C}

The idea is to use the fact that the Schwarz-Christoffel formula depends holomorphically on the affix and residues of the poles and recompose the values of μ_{n} on each little square using the formula and use an inversion principle.

A first generalization

Holomorphic dependence of the straightening of Beltrami forms constant on a fixed finite polygonal subdivision of \mathbb{C}

A first generalization

Holomorphic dependence of the straightening of Beltrami forms constant on a fixed finite polygonal subdivision of \mathbb{C}

Note that the affix of the vertices of the polygons in the second frame vary holomorphically with μ.

Holo. dep. on the polygons

of the Christoffel symbol on \mathbb{C} given by of a finite polygonal gluing

On the Riemann sphere in the last frame there is also a meromorphic Christoffel symbol, of expression $\zeta=$ $\sum \frac{r_{s}}{z-z_{k}}$ in the canonical chart \mathbb{C}, such that the similarity charts are locally the holomorphic solutions ϕ of $\phi^{\prime \prime} / \phi^{\prime}=\zeta$.

Holo. dep. on the polygons

of the Christoffel symbol on \mathbb{C} given by of a finite polygonal gluing

On the Riemann sphere in the last frame there is also a meromorphic Christoffel symbol, of expression $\zeta=$ $\sum \frac{r_{s}}{z-z_{k}}$ in the canonical chart \mathbb{C}, such that the similarity charts are locally the holomorphic solutions ϕ of $\phi^{\prime \prime} / \phi^{\prime}=\zeta$.

It is very easy to see that res ${ }_{k}$ depends holomorphically on the polygons: $\exp \left(2 \pi i \mathrm{res}_{k}\right)$ is the monodromy factor of the stick figure around the singularity z_{k}.

Holo. dep. on the polygons

of the Christoffel symbol on \mathbb{C} given by of a finite polygonal gluing

On the Riemann sphere in the last frame there is also a meromorphic Christoffel symbol, of expression $\zeta=$ $\sum \frac{r_{s}}{z-z_{k}}$ in the canonical chart \mathbb{C}, such that the similarity charts are locally the holomorphic solutions ϕ of $\phi^{\prime \prime} / \phi^{\prime}=\zeta$.

It is very easy to see that res ${ }_{k}$ depends holomorphically on the polygons: $\exp \left(2 \pi i \mathrm{res}_{k}\right)$ is the monodromy factor of the stick figure around the singularity z_{k}.

Lemma

The z_{k} depend holomorphically on the polygons.

Lemma

The z_{k} depend holomorphically on the polygons.
The lemma is easy to prove with the Ahlfors-Bers theorem but we are proving the Ahlfors-Bers theorem, so we cannot use it.

Lemma

The z_{k} depend holomorphically on the polygons.
The lemma is easy to prove with the Ahlfors-Bers theorem but we are proving the Ahlfors-Bers theorem, so we cannot use it.

Once the lemma is proved, the implication $B \Longrightarrow C$ follows easily, which will complete our proof of the Ahlfors-Bers theorem. But the lemma itself is not that easy to prove.

Generalization of the lemma

We allow ourselves any finite collection of bounded or unbounded polygons with finitely many sides in \mathbb{C}, that we glue affinely along a chosen pairing of bounded sides and of unbounded sides. We fix this combinatorics.

Generalization of the lemma

We allow ourselves any finite collection of bounded or unbounded polygons with finitely many sides in \mathbb{C}, that we glue affinely along a chosen pairing of bounded sides and of unbounded sides. We fix this combinatorics.

We add two assumptions:

- Gluing gives a surface homeomorphic to a sphere.
- If there are unbounded polygons, their angle at infinity is not 0 .

Generalization of the lemma

We allow ourselves any finite collection of bounded or unbounded polygons with finitely many sides in \mathbb{C}, that we glue affinely along a chosen pairing of bounded sides and of unbounded sides. We fix this combinatorics.

We add two assumptions:

- Gluing gives a surface homeomorphic to a sphere.
- If there are unbounded polygons, their angle at infinity is not 0 .

Up to refining we may assume that all polygons are strictly convex, and that unbounded polygons have at least one bounded vertex.

Generalization of the lemma

We allow ourselves any finite collection of bounded or unbounded polygons with finitely many sides in \mathbb{C}, that we glue affinely along a chosen pairing of bounded sides and of unbounded sides. We fix this combinatorics.

We add two assumptions:

- Gluing gives a surface homeomorphic to a sphere.
- If there are unbounded polygons, their angle at infinity is not 0 .

Up to refining we may assume that all polygons are strictly convex, and that unbounded polygons have at least one bounded vertex.

Problem: the affine map gluing unbounded sides is not unique. To recover uniqueness we add marked points on the unbounded sides and require the gluing to match them.

Generalization of the lemma

Let z_{k} be the image in $\hat{\mathbb{C}}$ of the vertices and marked points. We normalize by $z_{1}=\infty, z_{2}=0, z_{3}=1$.

Lemma (Generalized)
The z_{k} depend holomorphically on the polygons vertices.

Generalization of the lemma

Let z_{k} be the image in $\hat{\mathbb{C}}$ of the vertices and marked points. We normalize by $z_{1}=\infty, z_{2}=0, z_{3}=1$.

Lemma (Generalized)
The z_{k} depend holomorphically on the polygons vertices.

Again, the point is to prove the lemma without Ahlfors-Bers.

Notations

There are p polygons P_{j}, each has s_{j} sides.
Let S-Conf be the set of collections of p strictly convex polygons P_{j} with s_{j} sides each considered up to the action of the \mathbb{C}-affine group Aff \mathbb{C}.
Let m be the total number of vertices and marked points in the similarity surface \mathscr{S} (after gluing).
To a polygon configuration $\mathscr{P} \in S$-Conf the construction associates a similarity surface \mathscr{S} and a Christoffel symbol ζ on $\widehat{\mathbb{C}}$, normalized so that $z_{1}=\infty, z_{2}=0, z_{3}=1$. The data of ζ is equivalent to the data of the z_{k} and res $_{k}$.
If we decide for a basepoint in $\mathscr{P}_{0} \in$ S-Conf, the construction allows to also define a point in the Teichmüller space of $\widehat{\mathbb{C}}$ with m marked points.

$$
\begin{aligned}
& \text { Let Conf }=\prod_{j=1}^{p}\left(\mathbb{C}^{s_{j}} / \text { Aff } \mathbb{C}\right) \\
& \text { Let Conf*}=\prod_{j=1}^{p}\left(\left(\mathbb{C}^{s_{j}}-\Delta\right) / \text { Aff } \mathbb{C}\right) \text { where } \Delta=\{(z, \ldots, z) \mid z \in \mathbb{C}\} \\
& \qquad \text { S-Conf } \subset \text { Conf }^{*} \subset \text { Conf }
\end{aligned}
$$

Conf* is a complex manifold by Conf* is not.
Let TR $=\left\{\left([\phi],\left(\right.\right.\right.$ res $\left.\left.\left._{k}\right)\right)\right\} \subset$ Teich $\times \mathbb{C}^{m}$ so that the res ${ }_{k}$ are 0 if z_{k} corresponds to a marked points, of real part >1 if z_{k} corresponds to a bounded vertex, of real part <1 if z_{k} corresponds to an unbounded vertex, and so that $\sum \mathrm{res}_{k}=2$.
A map Glu: $\mathscr{P}_{0} \in \mathrm{~S}$-Conf $\rightarrow \mathrm{TR}$ is thus defined, we want to prove it is holomorphic but it is not even obvious that it is continuous.
A map Per: TR \rightarrow Conf can be defined by integration along homotopy classes on the edges of the cell-complex. It is not hard to prove that it is analytic on the preimage of Conf*.

$$
\text { Glu : S-Conf } \rightarrow \text { TR, Per : TR } \rightarrow \text { Conf }
$$

We have Pero $\left.\mathrm{Glu}\right|_{\mathrm{S}-\text { Conf }}=\mathrm{Id}_{\mathrm{S} \text {-Conf }}$ (almost tautological).
Let $\mathrm{Eff}=\mathrm{Glu}(\mathrm{S}$-Conf) $\subset \mathrm{TR}$ (the effective Teichmüller-residue pairs).
A key step is to prove that every point in Eff has a neighbourhood $W \subset \operatorname{Per}^{-1}$ (S-Conf) on which Glu $\left.\circ \operatorname{Per}\right|_{W}=\mathrm{Id}_{W}$. This is obtained by following continuously the saddle connections and completing carefully the picture.

Analyticity of Glu then follows from a classical theorem in several variable complex analysis.

Thanks

for listening

and
 "Joyeux anniversaire, Mitsu !"

