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The Beltrami equation

Problem: Given µ ∈ L∞(C) complex valued with ∥µ∥∞ < 1, �nd a
homeomorphism of the plane whose distribution derivatives are locally
L2 and such that

∂ f

∂ z̄
= µ

∂ f

∂ z

almost everywhere.

This can be reformulated in terms of f straightening an ellipse �eld
characterized by µ: df maps these ellipses to circles (almost
everywhere). µ is called the Beltrami coefficient.

With this level of generality, the proof of the existence of a solution is
due to Morrey around 1936. With stronger hypotheses, prior proofs
authors include Gauss, Korn, Lichtenstein, Lavrentiev, . . . .

This known nowadays as the Measurable Riemann Mapping Theorem.
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Ellipse field

The ellipses encoded by some µ ∈ D have equation |z +µ× z̄ |= r . They
have ratio

major axis

minor axis
= K =

1+ |µ|
1− |µ|

and the minor axis makes an angle θ = arg(µ)/2 with the horizontal.

The Beltrami equation is usually used to change the complex structure
of a space or a subset.
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Solving

Solving explicitly or numerically this P.D.E. is quite hard.

It is quite uncommon that there is a closed formula for a solution, even
when µ is simple.
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A case study

Setting: an ellipse �eld on the plane that is constant in a square
(µ= K−1

K+1), and circles outside (µ= 0).
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Numerically solving a modified Laplacian

K = 2
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Numerically solving a modified Laplacian

K = 5
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Numerically solving a modified Laplacian

K = 10
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Numerically solving a modified Laplacian

K = 20
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The square
Reformulation into an equivalent problem

Chart 1

Chart 2

z + (i/2)

z − (i/2)

2z + 1

2z − 1

Glue the two charts
according to the in-
dicated maps1

1

1

1/2
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The square

The changes of coordinates between the two charts are of the form
z 7→ az + b, thus are holomorphic: we just de�ned a Riemann surface.

But better. . .

The change of coordinates are similitudes, so we work with a more rigid
category of geometrical object, similarity surfaces, with interesting
properties like. . .

. . . a locally trivial parallel transport.

Click here to run appletClick here to run applet
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Uniformization theorem

Theorem: (Poincaré, Koebe) A Riemann surface that is

homeomorphic to a sphere is necessarily conformally equivalent Ĉ.

In our case, we can complete our gluing by adding 5 points, one at
in�nity, four at the corners, and 5 Riemann charts near these points.
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Completing the Riemann surface

1. Near∞, the map z 7→ 1/z gives a local Riemann surface chart
(exactly like the Riemann sphere).

2. Near a corner, we can glue one side of the rectangle to one side of the
square and are left with the following local picture: a slit plane where
one side of the slit is glued to the other side by a homothety of ratio K .

Then the map

z 7→ zα, α=
2πi

2πi ± logK
is a local Riemann surface chart: in particular it glues each side of slit
exactly according to the required homothety.

Click here to run appletClick here to run applet

Arnaud Chéritat (CNRS, IMT) Similarity surfaces May 2023 10 / 35

./Applets/slit.html


Completing the Riemann surface

1. Near∞, the map z 7→ 1/z gives a local Riemann surface chart
(exactly like the Riemann sphere).

2. Near a corner, we can glue one side of the rectangle to one side of the
square and are left with the following local picture: a slit plane where
one side of the slit is glued to the other side by a homothety of ratio K .

Then the map

z 7→ zα, α=
2πi

2πi ± logK
is a local Riemann surface chart: in particular it glues each side of slit
exactly according to the required homothety.

Click here to run appletClick here to run applet

Arnaud Chéritat (CNRS, IMT) Similarity surfaces May 2023 10 / 35

./Applets/slit.html


A cultural remark
M.C. Escher’s lithography: Print Gallery (1956)

Source: de Smit and Lenstra, Notices of the AMS.
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A solution via uniformization

−→ this allows to create a solution of the Beltrami equation:

conformal

z 7→ z

(x ,y) 7→ (x ,
y

K
)

gluings

Ĉ

But usually, �nding the explicit uniformization of abstract Riemann
surfaces is a very hard problem. So why does it help us here?
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polygon
decomp.
of C

similarities polygons:
sim. charts

gluing S sim.
surface
(abstract)

unif.o
C− {z1,z2,z3,z4}

We can consider C− {z1, . . . , z4} as a Riemann chart of S but it is not a
sim-chart. The change of coordinates from this chart to the sim-charts
are holomorphic functions φ : U → C with U ⊂ C− {z1, . . . , z4}.
Two such sim-charts, φ1, φ2 satisfy locally on U1 ∩U2:

φ1 = aφ2 + b

for some constants a, b. Hence

φ′′2
φ′2

=
φ′′1
φ′1
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It follows that there exists a global holomorphic function

η : C− {z1, . . . , z4} → C

such that locally sim-charts are exactly the solutions φ of

φ′′

φ′
= η.

From η, one retrieves φ as follows:

φ =

∫

exp

∫

η

More generally any holomorphic η promotes a Riemann surface to a a
sim-surface atlas via the above formula in Riemann charts.

Note: (di�erential geometry viewpoint) the function η is the
expression* of a holomorphic and locally �at conformal connection.

(*) a.k.a. a Christo�el symbol.
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Example

For the slit plane glued with a factor K homothety, recall the gluing is
conformally realized by z 7→ zα with α= 2πi

2πi±logK .

This map goes from the sim-chart to the Riemann chart. So
φ(z) = z1/α is the inverse map.

Then φ′′/φ′ =
1
α−1
z and the Christo�el symbol on the uniformization C∗

has the extremely simple expression

η(z) =
logK

2πi
·
1

z
.
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Analyzing η at the singularities

Change of variable for the connection: if one expresses η in two
Riemann charts C1 and C2 with change of coordinates ψ between them,
then the expressions η1 and η2 in the respective charts are related by:

η1 =ψ
′ ×η2◦ψ+

ψ′′

ψ′
. (1)

(It is almost like a di�erential form).
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Solution

As a consequence:

• η has a simple pole at zk with residue ± log(K )/2πi .

• η −→ 0 when z −→∞
and recall η is holomorphic on C− {z1, . . . , z4}. Hence. . .

η=
logK

2πi
·
�

−1
z − z1

+
1

z − z2
+
−1

z − z3
+

1

z − z4

�

Now solving φ′′/φ′ = η gives:

φ = b+ a

∫

�

z − z2
z − z4

·
z − z1
z − z3

�
logK
2πi

dz .

The conformal map sought for is locally the inverse mapping of φ (for
appropriate choices of the integration constants a, b).

Arnaud Chéritat (CNRS, IMT) Similarity surfaces May 2023 17 / 35



Solution

As a consequence:

• η has a simple pole at zk with residue ± log(K )/2πi .

• η −→ 0 when z −→∞
and recall η is holomorphic on C− {z1, . . . , z4}. Hence. . .

η=
logK

2πi
·
�

−1
z − z1

+
1

z − z2
+
−1

z − z3
+

1

z − z4

�

Now solving φ′′/φ′ = η gives:

φ = b+ a

∫

�

z − z2
z − z4

·
z − z1
z − z3

�
logK
2πi

dz .

The conformal map sought for is locally the inverse mapping of φ (for
appropriate choices of the integration constants a, b).

Arnaud Chéritat (CNRS, IMT) Similarity surfaces May 2023 17 / 35



Solution

As a consequence:

• η has a simple pole at zk with residue ± log(K )/2πi .

• η −→ 0 when z −→∞
and recall η is holomorphic on C− {z1, . . . , z4}. Hence. . .

η=
logK

2πi
·
�

−1
z − z1

+
1

z − z2
+
−1

z − z3
+

1

z − z4

�

Now solving φ′′/φ′ = η gives:

φ = b+ a

∫

�

z − z2
z − z4

·
z − z1
z − z3

�
logK
2πi

dz .

The conformal map sought for is locally the inverse mapping of φ (for
appropriate choices of the integration constants a, b).

Arnaud Chéritat (CNRS, IMT) Similarity surfaces May 2023 17 / 35



Solution

As a consequence:

• η has a simple pole at zk with residue ± log(K )/2πi .

• η −→ 0 when z −→∞
and recall η is holomorphic on C− {z1, . . . , z4}. Hence. . .

η=
logK

2πi
·
�

−1
z − z1

+
1

z − z2
+
−1

z − z3
+

1

z − z4

�

Now solving φ′′/φ′ = η gives:

φ = b+ a

∫

�

z − z2
z − z4

·
z − z1
z − z3

�
logK
2πi

dz .

The conformal map sought for is locally the inverse mapping of φ (for
appropriate choices of the integration constants a, b).

Arnaud Chéritat (CNRS, IMT) Similarity surfaces May 2023 17 / 35



The Schwarz-Christoffel formula

The formula we found

a+ b

∫

�

z − z2
z − z4

·
z − z1
z − z3

�
logK
2πi

dz

is an analogue of the Schwarz-Christo�el formula that gives an
expression of the conformal map from the upper half plane to any
polygon in the plane: for an n-gon with angles αk ∈ (0,2π), there exists
real numbers x1,. . . ,xn such that

f = a+ b

∫

dz

(z − x1)β1 · · · (z − xn)βn

with βk = 1− αkπ .

The xi are mapped to the vertices of the polygon. They can be hard to
determine: each depends on all the angles and the length of all sides of
the polygon. This is called the parameter problem.
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K = 2

Arnaud Chéritat (CNRS, IMT) Similarity surfaces May 2023 19 / 35



K = 5
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K = 15
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K = 50
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K = 200
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K = 1000
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K = 10
4
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K = 10
6
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K = 10
9
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K = 10
20
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K = 10
50
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The limit

As K −→+∞ we see a limit shape and can prove

ηK −→ η∞ =
σ0

(z − x0)2
−

σ0

(z + x0)2

This limit shape also has an interpretation in terms of similarity surfaces:
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The limit
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Ahlfors-Bers

Collaboration with Guillaume Tahar (currently in Sanya University)

Solutions of the Beltrami equation are unique up to post-composition by
holomorphic isomorphisms. Isomorphisms of C are just the maps az + b.
A solution of the Beltrami equation that is de�ned on all of C is called
normalized if f (0) = 0 and f (1) = 1. The normalized solution exists and
is unique.

Theorem (Ahlfors-Bers)
The normalized solution of the Beltrami equation depends

holomorphically on µ.

What is meant: if µ[τ](z) depends holomorphically on τ ∈ D for all
z ∈ C then f [τ](z) also does.
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Ahlfors-Bers

All proofs I know or heard of use the Ahlfors-Beurling operator, a
singular integral operator with degenerate kernel, or similar tools.

The one we propose is based on the Poincaré-Koebe theorem, of which
there are softer proofs.
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An approach without the AB operator
Inspired by Lavrentiev’s

We consider the square | Im z |< n, |Re z |< n and divide it into litte
squares of side 1/n, totalling (2n2)2 squares.

For all n > 0 we de�ne the Beltrami form µn as 0 outside the big square
and constant on each little square S , where it equals its average on S .

Then ∥µn∥∞ ≤ ∥µ∥∞ and for all R > 0,
∫

B(0,R) |µ−µn| −→ 0.
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Bounds

MRMT: Measurable Riemann Mapping Theorem (Morrey's theorem)

Except Gauss's, all proofs of the MRMT and its variants use bounds on
quasiconformal homeomorphisms or similar bounds. Ours is no
exception.

Solutions of the Beltrami equation are K -quasiconformal
homeomorphisms where K = (1+ ∥µ∥∞)/(1− ∥µ∥∞) ∈ [1,+∞).

Quasiconformal homeomorphisms have several equivalent de�nitions, the
proofs of these equivalences do not use the MRMT.

Bounds: One can also prove without the MRMT that:

• the set of normalized K -quasiconformal homeomorphisms for a
�xed K forms a normal family;

• there is a locally uniform bound on the L2 norm of their �rst-order
distribution partial derivatives.

Arnaud Chéritat (CNRS, IMT) Similarity surfaces May 2023 25 / 35



Bounds

MRMT: Measurable Riemann Mapping Theorem (Morrey's theorem)

Except Gauss's, all proofs of the MRMT and its variants use bounds on
quasiconformal homeomorphisms or similar bounds. Ours is no
exception.

Solutions of the Beltrami equation are K -quasiconformal
homeomorphisms where K = (1+ ∥µ∥∞)/(1− ∥µ∥∞) ∈ [1,+∞).

Quasiconformal homeomorphisms have several equivalent de�nitions, the
proofs of these equivalences do not use the MRMT.

Bounds: One can also prove without the MRMT that:

• the set of normalized K -quasiconformal homeomorphisms for a
�xed K forms a normal family;

• there is a locally uniform bound on the L2 norm of their �rst-order
distribution partial derivatives.

Arnaud Chéritat (CNRS, IMT) Similarity surfaces May 2023 25 / 35



Bounds

MRMT: Measurable Riemann Mapping Theorem (Morrey's theorem)

Except Gauss's, all proofs of the MRMT and its variants use bounds on
quasiconformal homeomorphisms or similar bounds. Ours is no
exception.

Solutions of the Beltrami equation are K -quasiconformal
homeomorphisms where K = (1+ ∥µ∥∞)/(1− ∥µ∥∞) ∈ [1,+∞).

Quasiconformal homeomorphisms have several equivalent de�nitions, the
proofs of these equivalences do not use the MRMT.

Bounds: One can also prove without the MRMT that:

• the set of normalized K -quasiconformal homeomorphisms for a
�xed K forms a normal family;

• there is a locally uniform bound on the L2 norm of their �rst-order
distribution partial derivatives.

Arnaud Chéritat (CNRS, IMT) Similarity surfaces May 2023 25 / 35



Bounds

MRMT: Measurable Riemann Mapping Theorem (Morrey's theorem)

Except Gauss's, all proofs of the MRMT and its variants use bounds on
quasiconformal homeomorphisms or similar bounds. Ours is no
exception.

Solutions of the Beltrami equation are K -quasiconformal
homeomorphisms where K = (1+ ∥µ∥∞)/(1− ∥µ∥∞) ∈ [1,+∞).

Quasiconformal homeomorphisms have several equivalent de�nitions, the
proofs of these equivalences do not use the MRMT.

Bounds: One can also prove without the MRMT that:

• the set of normalized K -quasiconformal homeomorphisms for a
�xed K forms a normal family;

• there is a locally uniform bound on the L2 norm of their �rst-order
distribution partial derivatives.

Arnaud Chéritat (CNRS, IMT) Similarity surfaces May 2023 25 / 35



Bounds

MRMT: Measurable Riemann Mapping Theorem (Morrey's theorem)

Except Gauss's, all proofs of the MRMT and its variants use bounds on
quasiconformal homeomorphisms or similar bounds. Ours is no
exception.

Solutions of the Beltrami equation are K -quasiconformal
homeomorphisms where K = (1+ ∥µ∥∞)/(1− ∥µ∥∞) ∈ [1,+∞).

Quasiconformal homeomorphisms have several equivalent de�nitions, the
proofs of these equivalences do not use the MRMT.

Bounds: One can also prove without the MRMT that:

• the set of normalized K -quasiconformal homeomorphisms for a
�xed K forms a normal family;

• there is a locally uniform bound on the L2 norm of their �rst-order
distribution partial derivatives.

Arnaud Chéritat (CNRS, IMT) Similarity surfaces May 2023 25 / 35



Recall that:

• K -quasiconformal homeomorphisms form a normal family, and
∫

B(0,R)

�

�

∂ f
∂ z

�

�

2
+
�

�

∂ f
∂ z̄

�

�

2
≤ C (K ,R),

• ∥µn∥∞ ≤ ∥µ∥∞ and for all R > 0,
∫

B(0,R) |µ−µn| −→ 0.

Standard arguments then allow to show that from the sequence of
straightenings fn for µn, one can extract a subsequence that converges
locally uniformly to a straightening f for µ.

More generaly:

• To reprove MRMT it is enough to have any dense sub-family of µ
for which we know a solution f .

• To reprove Ahlfors-Bers it is enough to have any dense family of
holomorphic maps τ ∈ D 7→ µ[τ] for which we know a solution f [τ]
that depends holomorphically on τ.
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Consider the following propositions:

A : µ[τ] depends holomorphically on the parameter

B : µn[τ] depends holomorphically on the parameter

C : fn[τ] depends holomorphically on the parameter

D : f [τ] depends holomorphically on the parameter

Then it is easy to prove A =⇒ B and C =⇒ D.

But B =⇒ C is not immediate, even in the particular case of Beltrami
forms constant on a �xed �nite polygonal subdivision of C

The idea is to use the fact that the Schwarz-Christo�el formula depends
holomorphically on the a�x and residues of the poles and recompose the
values of µn on each little square using the formula and use an inversion
principle.
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A first generalization
Holomorphic dependence of the straightening of Beltrami forms

constant on a fixed finite polygonal subdivision of C

µn,1

µn,2

µn,3

z +µn,j z̄ glue
S

abstract
sim. surf.

unif.

Ĉ

Note that the a�x of the vertices of the polygons in the second frame
vary holomorphically with µ.
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Holo. dep. on the polygons
of the Christoffel symbol on C given by of a finite polygonal

gluing

z1

z3
z2

On the Riemann sphere in the last frame there is also
a meromorphic Christo�el symbol, of expression ζ =
∑ resk

z−zk
in the canonical chart C, such that the simi-

larity charts are locally the holomorphic solutions φ of
φ′′/φ′ = ζ.

It is very easy to see that resk depends holomorphically on the polygons:
exp(2πi resk) is the monodromy factor of the stick �gure around the
singularity zk .

Lemma
The zk depend holomorphically on the polygons.
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Lemma
The zk depend holomorphically on the polygons.

The lemma is easy to prove with the Ahlfors-Bers theorem but we are
proving the Ahlfors-Bers theorem, so we cannot use it.

Once the lemma is proved, the implication B =⇒ C follows easily,
which will complete our proof of the Ahlfors-Bers theorem. But the
lemma itself is not that easy to prove.
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Generalization of the lemma

We allow ourselves any �nite collection of bounded or unbounded
polygons with �nitely many sides in C, that we glue a�nely along a
chosen pairing of bounded sides and of unbounded sides. We �x this
combinatorics.

We add two assumptions:

• Gluing gives a surface homeomorphic to a sphere.

• If there are unbounded polygons, their angle at in�nity is not 0.

Up to re�ning we may assume that all polygons are strictly convex, and
that unbounded polygons have at least one bounded vertex.

Problem: the a�ne map gluing unbounded sides is not unique. To
recover uniqueness we add marked points on the unbounded sides and
require the gluing to match them.
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Generalization of the lemma

Let zk be the image in Ĉ of the vertices and marked points. We
normalize by z1 =∞, z2 = 0, z3 = 1.

Lemma (Generalized)
The zk depend holomorphically on the polygons vertices.

Again, the point is to prove the lemma without Ahlfors-Bers.
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Notations

There are p polygons Pj , each has sj sides.

Let S-Conf be the set of collections of p strictly convex polygons Pj with
sj sides each considered up to the action of the C-a�ne group AffC.
Let m be the total number of vertices and marked points in the
similarity surface S (after gluing).

To a polygon con�guration P ∈ S-Conf the construction associates a
similarity surface S and a Christo�el symbol ζ on Ĉ, normalized so that
z1 =∞, z2 = 0, z3 = 1. The data of ζ is equivalent to the data of the
zk and resk .

If we decide for a basepoint in P0 ∈ S-Conf, the construction allows to
also de�ne a point in the Teichmüller space of Ĉ with m marked points.

Arnaud Chéritat (CNRS, IMT) Similarity surfaces May 2023 33 / 35



Let Conf =
∏p

j=1(C
sj/AffC).

Let Conf∗ =
∏p

j=1((C
sj −∆)/AffC) where ∆=

�

(z , . . . , z)
�

� z ∈ C
	

.

S-Conf ⊂ Conf∗ ⊂ Conf

Conf∗ is a complex manifold by Conf∗ is not.

Let TR =
�

([φ], (resk))
	

⊂ Teich×Cm so that the resk are 0 if zk
corresponds to a marked points, of real part > 1 if zk corresponds to a
bounded vertex, of real part < 1 if zk corresponds to an unbounded
vertex, and so that

∑

resk = 2.

A map Glu :P0 ∈ S-Conf → TR is thus de�ned, we want to prove it is
holomorphic but it is not even obvious that it is continuous.

A map Per : TR→ Conf can be de�ned by integration along homotopy
classes on the edges of the cell-complex. It is not hard to prove that it is
analytic on the preimage of Conf∗.
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Glu : S-Conf → TR, Per : TR→ Conf

We have Per ◦Glu |S-Conf = IdS-Conf (almost tautological).

Let Eff = Glu(S-Conf) ⊂ TR (the e�ective Teichmüller-residue pairs).
A key step is to prove that every point in Eff has a neighbourhood
W ⊂ Per−1(S-Conf) on which Glu◦Per |W = IdW . This is obtained by
following continuously the saddle connections and completing carefully
the picture.

Analyticity of Glu then follows from a classical theorem in several
variable complex analysis.
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Thanks
for listening

and

�Joyeux anniversaire, Mitsu !�
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