#### POLYNOMIAL VECTOR FIELDS of ONE COMPLEX VARIABLE

Bodil Branner Technical University of Denmark

 The talk is based on Adrien's joint work with Pierrette Sentenac, work of Xavier Buff and Tan Lei, and my own joint work with Kealey Dias.

IN THE MEMORY of ADRIEN DOUADY

### CONTENT

Introduction Basic properties Combinatorial invariants Analytic invariants qc-equivalence The structure theorem

# NOTATION

Consider the set  $P_d$  of monic centered polynomials of degree  $d \ge 2$ 

*P*(*z*) = *z*<sup>*d*</sup> + *a*<sub>*d*−2</sub>*z*<sup>*d*−2</sup> + · · · + *a*<sub>0</sub> parametrized by **a** = (*a*<sub>0</sub>, . . . , *a*<sub>*d*−2</sub>) ∈  $\mathbb{C}^{d-1}$ 

The associated vector field in  $\mathbb C$  is

$$
\xi_P(z) = P(z) \frac{\mathrm{d}}{\mathrm{d}z}
$$



We study the maximal trajectories  $t \mapsto \gamma(t, z_0)$  of  $\xi_P$  with  $t \in \mathbb{R}$  i.e. maximal solutions to

$$
\gamma'(t, z_0) = P(\gamma(t, z_0))
$$
 and  $\gamma(0, z_0) = z_0$ 

The space of polynomial vector fields of fixed degree *d* is

$$
\Xi_d = \{\xi_P\}_{P \in \mathcal{P}_d} \simeq \mathbb{C}^{d-1}
$$

# EQUILIBRIUM POINTS of  $\xi_P$  – ROOTS of *P*

**PROPOSITION** If  $\zeta$  is a simple root of P with mulitiplier  $\lambda = P'(\zeta)$  then  $\xi_P$  is holomorphically conjugate in a neighborhood of  $\zeta$  to the linear vector field  $\lambda z$ d  $\frac{d}{dz}$ .

THREE CASES:



PROPOSITION If  $\zeta$  is a multiple root of *P* of multiplicity  $m > 1$  then  $\xi_P$  has  $m-1$  attracting directions and  $m-1$  repelling directions.

the control of the control of

## THREE QUADRATIC EXAMPLES

 $P(z) = z^2 - 1$  *P*(*z*) =  $z^2 + 1$  *P*(*z*) =  $z^2$ 







Two simple equilibrium points Two simple equilibrium points One double equilibrium point

 $\zeta = -1$   $\zeta = 1$   $\zeta = \pm i$   $\zeta = 0$ 

a sink a source centers

# THREE QUADRATIC EXAMPLES

typical:

sink and source with non-real multipliers



 $P(z) = z^2 + 1$  *P*(*z*) =  $z^2$ 





Two simple equilibrium points Two simple equilibrium points One double equilibrium point

 $\zeta = \pm i$   $\zeta = 0$ 

a sink a source centers

### THE SPACE of QUADRATIC VECTOR FIELDS  $\Xi_2 \simeq \mathbb{C}$

decomposed into disjoint classes:  $P(z) = z^2 + a$ 

complex submanifold

 $a \in \mathbb{C} \setminus [0, +\infty[$ 





real-analytic one-dim submanifold

 $a > 0$ 

## GOAL

The goal is to decompose  $\Xi_d$  into disjoint classes C such that  $\Xi_d$  into disjoint classes C

- each  $C$  is connected • each C
- all  $\xi_P \in C$  have the same qualitative dynamics
- is maximal *C •*

A class is either structurally stable or part of the bifurcation locus

A class  $C$  is characterized by a combinatorial invariant  $\mathcal{I}(C)$ .

To each class  $C$  is associated two integers *C*

 $s = s(C) \ge 0$  and  $h = h(C) \ge 0$  satisfying  $s + \frac{1}{2}h \le d - 1$ 

Within *C* a vector field  $\xi_P$  is uniquely determined by an analytic invariant

$$
\mathcal{A}_P = (A_P^1, \dots, A_P^s, T_P^1, \dots, T_P^h) \in \mathbb{H}^s \times \mathbb{R}_+^h.
$$

## THE STRUCTURE THEOREM

Given  $d \ge 2$ , a combinatorial data set  $\mathcal I$  with associated integers  $s = s(\mathcal I)$  and  $h = h(\mathcal{I})$  , and a tuple

 $\mathcal{A} = (A^1, \ldots, A^s, T^1, \ldots, T^h) \in \mathbb{H}^s \times \mathbb{R}_+^h$ .

Then there exists a unique  $P \in \mathcal{P}_d$  such that the vector field  $\zeta_P$  has combinatorial invariant  $\mathcal{I}(\mathcal{C}) = \mathcal{I}$  and analytic invariant  $\mathcal{A}_P = \mathcal{A}$ .

#### MOREOVER

mapping trajectories of

Each C is a real-analytic submanifold of  $\mathbb{C}^{d-1}$  isomorphic to  $\mathbb{H}^s \times \mathbb{R}^h_+$ ,

hence of real-dimension  $2s + h$ .

Any pair of vector fields  $\xi_1, \xi_2$  in C are dynamically equivalent: *C*

there exists a quasi-conformal mapping  $\Psi : \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$  mapping trajectories of  $\xi_1$  onto trajectories of  $\xi_2$ , preserving orientation but not necessarily the parametrization by time.

#### DUAL DESCRIPTION

Meromorphic vector fields  $\longleftrightarrow$  Meromorphic abelian differentials  $\xi_f(z) = f(z) \frac{d}{dz}$ d*z*  $\omega_f =$ 1 *f*(*z*) d*z*

obey similar transformation laws:

If  $\varphi: U \to V$  is a holomorphic coordinate change and  $w = \varphi(z)$  then

$$
\varphi_*(\xi_f) = \xi_g \qquad \text{and} \qquad \varphi^*(\omega_g) = \omega_f \qquad \text{where}
$$
  

$$
\xi_g(w) = g(w) \frac{d}{dw} \qquad \qquad g(\varphi(z)) = \varphi'(z) f(z) \qquad \qquad \omega_g = \frac{1}{g(w)} dw
$$

The singularities of  $\xi_f$  and  $\omega_f$  are the zeros and the poles of f.

The two descriptions complement each other. The advantage of the differentials are that they can be integrated.

#### RECTIFYING COORDINATES

In any simply connected domain avoiding zeros of  $f$  the differential  $\omega_f$  has an antiderivative, unique up to addition by a constant,  $\phi(z) = \int \frac{1}{z}$ *f*(*z*) d*z*

Note that  $\phi_*(\xi_f) = \xi_g$  where  $g(\phi(z)) = \phi'(z)f(z) = \frac{1}{f(z)}$ *f*(*z*)  $f(z)=1$ .

The coordinates  $w = \phi(z)$  are called *rectifying coordinates* of  $\xi_f$ .

# RECTIFYING COORDINATES for THE QUADRATIC EXAMPLES











a horizontal strip a vertical strip

a plane

#### THE SINGULARITY at  $\infty$

$$
(\mathbb{C}^*, \xi_P)
$$
 is holomorphically conjugate to  $(\mathbb{C}^*, f(z) \frac{d}{dz})$  by  $z \mapsto \frac{1}{z}$ 

where

$$
f(z) = -\frac{1}{z^{d-2}} \left( 1 + a_{d-2} z^2 + \dots + a_0 z^d \right).
$$

Hence,  $\xi_P$  has a pole of order  $d-2$  at  $\infty$ .

#### IN PARTICULAR

$$
\xi_0(z) = z^d \frac{d}{dz} \quad \text{is holomorphically conjugate to} \quad f_0(z) \frac{d}{dz} = -\frac{1}{z^{d-2}} \frac{d}{dz}
$$
\n
$$
\phi_0 : \widehat{\mathbb{C}} \setminus \{0\} \to \mathbb{C}, \quad \phi_0(z) = -\frac{1}{d-1} \frac{1}{z^{d-1}} \text{ is a branched covering, mapping } \infty \text{ to } 0 \,.
$$

RECTIFYING COORDINATES for  $\xi_0(z) = z^d \frac{d}{dz}$ 

**EXAMPLE**  $d=3$ 



## THE SPECIAL ROLE of  $\infty$  – SEPARATRICES

PROPOSITION Every  $\xi_P$  is holomorphically conjugate to  $\xi_0$  in neighborhoods of infinity, by a conjugating map tangent to the identity at  $\infty$ .

#### **CONSEQUENCES**

There are  $d-1$  incoming trajectories to  $\infty$  and  $d-1$  outgoing trajectories from  $\infty$ . Their asymptotes are the half lines in directions  $\delta_{\ell} = \exp\left(2\pi i \frac{\ell}{2(d-1)}\right)$  where  $\ell \in L = \{ 0, 1, \ldots, 2d - 3 \}$  or  $\ell \in \mathbb{Z}/2(d - 1)$ .

∞ is a *saddle point* for ξ*<sup>P</sup>* .

Note, that for any point  $z_0$  on such a trajectory it takes a finite amount of time to get to ∞ if incoming and to come from ∞ if outgoing.

#### SEPARTRICES

The separatrices are the maximal trajectories of  $\xi_P$  incoming to and outgoing from  $\infty$ . A separatrix is *homoclinic* if both outgoing from and incoming to  $\infty$ .

# LIMITING BEHAVIOUR of trajectories  $\gamma(t, z_0)$ ,  $t \in ]t_-, t_+[$



PROPOSITION Each sink or source is the landing point of at least one separatrix. Each multiple equilibrium point is the landing point of at least one separatrix tangent to any of the attracting or repelling directions.

#### LABELING the SEPARATRICES and THE SEPARATRIX GRAPH

A separatrix  $S_{\ell}$  is labeled according to its asymptote,  $\ell \in \{0.1, \ldots, 2d - 3\}$ .

 $\ell$  even corresponds to a separatrix incoming to  $\infty$ .

 $\ell$  odd corresponds to a separatrix outgoing from  $\infty$ . The contract of the contrac

THE SEPARATRIX GRAPH  $\Gamma_P$  is the closure in  $\hat{\mathbb{C}}$  of the separatrices. Hence  $\Gamma_P = \bigcup$ !=1*,...,*2*d*−3  $S_{\ell}$  ∪  $\bigcup$ sink, source, mult. ζ ∪ *{*∞*}*

SYMBOLICALLY Mark  $\delta_{\ell} \in \mathbb{S}^1$ .



## THE COMBINATORIAL INVARIANT of  $\xi_P \in \Xi_d$

#### DEFINITION of the COMBINATORIAL INVARIANT  $\mathcal{I}_P$  of  $\xi_P$ :

 $\mathcal{I}_P$  is an equivalence relation  $\sim_P$  on  $L = \{0, 1, \ldots, 2d - 3\}$  with a specified subset  $H_P \subset L$  satisfying:

- $H_P$  consists of the labels  $\ell$  for which  $S_\ell$  is a homoclinic separatrix. For  $\ell_1, \ell_2 \in H_P$  :  $\ell_1 \sim_P \ell_2 \quad \Longleftrightarrow \quad S_{\ell_1} = S_{\ell_2}$ .
- *H<sub>P</sub>* is saturated by ∼*P*.
- $L \setminus H_P$  consists of the labels  $\ell$  for which  $S_{\ell}$  lands at  $\zeta$ , a sink, a source, or a multiple equilibrium point. For  $\ell_1, \ell_2 \in L \setminus H_P$ :

 $\ell_1 \sim_P \ell_2 \iff S_{\ell_1}$  and  $S_{\ell_2}$  lands in  $\mathbb C$  at the same  $\zeta$ .

NOTE that there are three possible kinds of equivalence classes in  $L \setminus H_P$ :



For mixed  $[\ell]$  the multiplicity of  $\zeta$  is m iff the ordered cyclic sequence of labels in  $[\ell]$ changes parity  $2(m - 1)$  times.

# COMBINATORIAL INVARIANTS for the QUADRATIC EXAMPLES





EQUIVALENCE CLASSES of  $\sim_P$ 







A CUBIC EXAMPLE with  $H_P = \emptyset$  and its COMBINATORIAL INVARIANT

 $P(z) = (z+1)^2(z-2)$ 

 $\zeta = -1$  a double equilibrium point

 $\zeta = 2$ a source

 $\mathbb{C} \setminus \{ \overline{S_0} \cup \overline{S_2} \}$ 

Repelling petal of  $\zeta = -1$  := Half plane left of  $\overline{S_1} \cup \overline{S_3}$ 

Two sepals  $:=$  the intersection of the attracting and the repelling petal.

EQUIVALENCE CLASSES of ∼*<sup>P</sup>*

[0] odd

[1*,* 2*,* 3] mixed





#### CUBIC EXAMPLES with  $H_P \neq \emptyset$  and their COMBINATORIAL INVARIANT



one sink, one source



[0] odd

[3] even







one center, one center,<br>one source three centers one center,<br>one sink, one source one sink, one source



#### SUBDIVISION of LABELS if  $H_P \neq \emptyset$ :





# TYPES of ZONES

is isomorphic to a horizontal strip.

A zone Z is a connected component of  $\hat{\mathbb{C}} \setminus \Gamma_P$ . There are three types, classified by the type of the holomorphic conjugacy

 $\phi: (Z, \xi_P) \to$ ! *• ,* d d*z* "

- An αω-zone is isomorphic to a HORIZONTAL STRIP. ∃ two distinct equilibrium points:  $\zeta_{\alpha}$  a source or a multiple equilibrium,
	- a sink or a multiple equilibrium, such that  $\zeta_{\omega}$  a sink or a multiple equilibrium, such that  $\forall z_0 \in Z$

 $\gamma(t,z_0)$  $\alpha$ -limit the  $\frac{\alpha-\min\alpha}{\omega-\min}$  of  $\gamma(t,z_0)$  is  $\zeta_\omega$  $\zeta_\alpha$ 

∂Z consists of one or two incoming separatrices and one or two outgoing separatrices, and possibly some homoclinics.

• A sepal-zone is isomorphic to an UPPER or LOWER HALF PLANE.  $\exists$  a multiple equilibrium  $\zeta$  such that  $\forall z_0 \in Z$  the  $\alpha$ -limit and the  $\omega$ -limit is  $\zeta$ .

∂Z consists of one incoming separatrices and one outgoing separatrices, and possibly some homoclinics.

• A center-zone contains one center  $\zeta$  and  $Z\zeta$  is isomorphic to a HALF UPPER or  $\forall z_0 \in Z \setminus \zeta$   $\gamma(t, z_0)$  is periodic of period  $T =$  $2\pi$ *|P*! (ζ)*|* LOWER CYLINDER.  $\forall z_0 \in Z \setminus \zeta$   $\gamma(t, z_0)$  is periodic of period  $T = \frac{2\pi}{|Q(t)|}$ .

∂*Z* consists of one or several homoclinics.

## COMBINATORIAL CLASSES

A combinatorial class *C* consists of all  $\xi_P$  with  $\mathcal{I}_P = \mathcal{I}(\mathcal{C})$ . The integers

$$
s = s(C) \qquad \text{and} \qquad h = h(C)
$$

are the numbers of  $\alpha\omega$ -zones (numbers of strips) and the number of homoclinics (half the number of labels in  $H_P$ ) respectively.

# A COMBINATORIAL DATA SET

#### DEFINITION

Given  $d \ge 2$ , an equivalence relation  $\sim$  on  $L = \{0, 1, \ldots, 2d - 3\}$ , and a specified subset *H* ⊂ *L* consisting of  $2h \ge 0$  labels, *h* odd and *h* even.

 $(\sim, H)$  is *a combinatorial data set* if it satisfies:

- is non-crossing. ∼ *•*
- *H* is saturated by  $\sim$ , and each equivalence class in *H* consists of an odd and an even label. *•*
- Zones in the disc model are of the three types:  $\alpha \omega$ , sepal, center.

## ANALYTIC INVARIANTS for a given ξ*<sup>P</sup>*

Each homoclinic separatrix for  $\xi_P$  is assigned the positive real time  $T_P$  it takes to travel along the oriented trajectory from  $\infty$  to  $\infty$ .

Each  $\alpha\omega$ -zone of  $\xi_P$  is assigned the complex "time"  $A_P$  it takes to travel along the *transversal* in the zone closest to the  $\alpha$ -limit point  $\zeta_{\alpha}$  from  $\infty$  to  $\infty$ .

We choose  $A_P \in \mathbb{H}$ .

In each case the invariant can be expressed as

$$
\left(\begin{array}{c}\n\bullet \\
\bullet \\
\bullet \\
\bullet\n\end{array}\right)
$$

$$
\int_{\text{loop}} \frac{1}{P} = 2\pi i \sum_{\zeta \text{ left of loop}} \text{Res}\,\left(\frac{1}{P}, \zeta\right) = -2\pi i \sum_{\zeta \text{ right of loop}} \text{Res}\,\left(\frac{1}{P}, \zeta\right)
$$

where the loop is either the homoclinic or the transversal and the summation is over all equilibrium points  $\zeta$  left of the loop (or all right of the loop).



### QC DYNAMICAL EQUIVALENCE

Suppose  $\xi_{P_1}, \xi_{P_2}$  belong to the same combinatorial class. Then they have the same qualitative dynamics. In rectifying coordinates the equivalence is given through piecewise affine mappings.

AMONG  $\alpha\omega$ -zones, represented in rectifying coordinates:

affine map, mapping the base  $\{1, A_1\}$  to the base  $\{1, A_2\}$ .



piecewise affine map; on the triangle, mapping the base  $\{T_1, A_1\}$  to the base  $\{T_2, A_2\}$ .



#### QC DYNAMICAL EQUIVALENCE

Suppose  $\xi_{P_1}, \xi_{P_2}$  belong to the same combinatorial class.

AMONG center-zones: affine or piecewise affine mappings,

mapping the base  $\{T_1, i\}$  to the base  $\{T_2, i\}$ , or the base  $\{T_1^j, -i\}$  to the base  $\{T_2^j, -i\}$ .



AMONG sepal-zones with homoclinics : piecewise affine mappings.



## THE STRUCTURE THEOREM

Given  $d \geq 2$ , a combinatorial data set  $(\sim, H)$  and

 $\mathcal{A} = (A^1, \ldots, A^s, T^1, \ldots, T^h) \in \mathbb{H}^s \times \mathbb{R}_+^h$ 

where *s* is the number of  $\alpha\omega$ -zones for  $(\sim, H)$  and *h* is the number of equivalence classes in *H*. There exists a unique  $\xi_P \in \Xi_d$  realizing the above, i.e.  $(\sim_P, H_P) = (\sim, H)$  and  $\mathcal{A}_P = \mathcal{A}$  .

PROOF by surgery. From the rectified building blocks we construct a Riemann surface M with a vector field  $\xi_M$  and prove that M is isomorphic to  $\hat{C}$  and that there exists a unique  $P \in \mathcal{P}_d$  such that  $(\mathcal{M}, \xi_{\mathcal{M}})$  is holomorphically conjugate to  $(\widehat{\mathbb{C}}, \xi_P)$ .

#### STRUCTURALLY STABLE

to a class, which is isomorphic to  $\mathbb{H}^{d-1}$ . Hence  $\xi_P$  is structurally stable. then the number of  $\alpha\omega$ -zones takes its maximal value  $s = d - 1$ . It follows that  $\xi_P$  belongs If  $\xi_P$  has only sinks and sources, no homoclinic separatrices and no multiple equilibrium points,

#### BIFURCATION SET

 $2s + h < 2(d - 1)$ . Hence  $\xi_P$  is in the bifurcation set. If  $\xi_P$  has a homoclinic separatrix or a multiple equilibrium point then  $s < d - 1$  and

### ILLUSTRATING the SURGERY in a FAMILIAR case  $d=3$





## ILLUSTRATING the SURGERY in a FAMILIAR case  $d=3$











### ILLUSTRATING the SURGERY in a FAMILIAR case  $d=3$











