

DictionaryTeichmüller space TgSpace of Blaschke products Bd $\Delta/\Gamma = X$ compact $f:\Delta \rightarrow \Delta$ $\widehat{L} (\Gamma = X)$ $\widehat{L} (\Gamma = X)$ closed geodesics Ycycles C $L(\gamma, X)$ L(C, f)Simple loop? Measured lamination? $PML_g = \partial T_g$? Ratios of lengths? Metric?

A cycle C for z^d is simple if $z^d|C$ extends to a degree one map on S^1

Simple geodesic on Riemann surfaces:

- Any loop with $L(\gamma, X) < \log (3 + 2\sqrt{2})$ is simple.
- There exists a simple loop with $L(\gamma, X) = O(\log g)$.
- The closure of the simple loops has Hausdorff dimension = 1.
- If (γ_i) are binding, then $\{X : \Sigma \ L(\gamma_i, X) \le M\}$ is compact.
- The number of simple loops with $L(\gamma,f) < M$ is $O(M^{6g-6})$. (polynomial growth)

Simple cycles for Blaschke products:

- Any cycle with $L(C,f) < \log 2$ is simple.
- There exists a simple cycle with L(C,f) = O(d).
- The closure of the simple cycles in S¹ has Hausdorff dimension = 0.
- If (C_i) are binding, then {f : $\Sigma L(C_i, f) \le M$ } is compact.
- The number of simple cycles with L(C,f) < M is O(M^d). (polynomial growth)

Compactification by measures

- $v : B_d \rightarrow M_d(S^1)$ is an embedding.
- boundary of $v(B_d)$ is a sphere.
- (simple cycles+weights) dense in (S¹)^(d-1) = Shilov boundary of ν(B_d)
- measure boundary ⇔ algebraic boundary

strata

• $Hdim(v(F,S)) = \log e/\log d, e = deg(F)$

Compare (loops+weights) $\subset PML_g = \partial T_g$

Compactification by marked lengths

- $\{f_n\}$ diverges in $B_d \Rightarrow (f_n : \Delta \rightarrow \Delta)$ converges geometrically to an isometric branched covering $f:T \rightarrow T$ of a *ribbon R-tree*.
- $L(C,f_n) \sim L(C,f)$ = translation of periodic end of T
- T is simplicial, and T/f is a finite tree.
- L(C,f) span a finite-dimensional vector space / Q

Morgan-Shalen, Bestvina, Paulin... M. Wolff

Quadratic Trees

- $f_n \rightarrow \{(p/q) \text{ root}\} \text{ radially} \Rightarrow \text{ limit is the full}$ Hubbard tree of $z^2 + c_{p/q}$.
- $L(C,f_n) \sim |C \cap K(p/q)|$
- The space of all quadratic trees is S^I = R/Z with the rational points blown up to intervals.

different from the measure boundary!

(while same in T_g – because of i(a,b))

Thermodynamic formalism

$$B_{d} \rightarrow \frac{C^{1+\epsilon}(S^{1})}{\{coboundaries\}} \rightarrow M_{d}(S^{1})$$

$$f \rightarrow Lf = \phi_{*}(\log f') \rightarrow v(f)$$

$$length \ function$$

$$L(C,f) = \Sigma \ \{Lf(z) : z \in C \}$$
Pressure P(Lf) = 0 convex

Metric on B_d $\|\dot{f}_{0}\|^{2} = h(f_{0}, m) \cdot D^{2}P\left(\frac{d}{dt}Lf_{t}\Big|_{t=0}\right) \text{ pressure}$ $= \frac{d^{2}}{dt^{2}}L(f_{t}, \text{random cycle } C \text{ for } f_{0})\Big|_{t=0}$ $= 4\frac{d^{2}}{dt^{2}} \text{ H. dim } J(f_{t} \cup f_{0})\Big|_{t=0} \text{ mating}$ $= \frac{16}{3}\int_{\widehat{X}}\rho^{-4}|v'''|^{2}d\xi \qquad \text{Schwarzian, quadratic differential}$ Weil-Petersson metric

Dimension Formula

Theorem For t near zero, the family of polynomials

$$F_t(z) = z^d + t \left(b_2 z^{d-2} + b_3 z^{d-3} + \dots + b_d \right)$$

satisfies

H. dim
$$J(F_t) = 1 + \frac{|t|^2}{4d^2 \log d} \sum k^2 |b_k|^2 + O(|t|^3).$$

Abenda-Moussa-Osbaldestin 1999

