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Prolog

Prolog 1. We all remember Adrien walking around, talking and singing.
I remember one such instance particularly well. We were all installed in
offices at some mathematical venue. All but Adrien had we gone to our
respective offices. I met him in the corridor and asked: “Don’t you want
to use your office?” He answered philosophically with a reference to
quantum physics: ”The wave function of my spirit can not be localized to
such a small place! “
Adriens way of thinking and doing mathematics and life influenced
everyone on his way and in this sense his spirit penetrated us all. Thus
we become carriers of this same spirit, and can continue the project of
spreading it around.
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Introduction I

The work I will be talking about today is mainly due to
others. There is a large part due to Adam Epstein and
to my ph.d student Eva Uhre.
There will however also be results of John Milnor,
Xavier Buff, Anja Kabelka, Jan Kiwi, Laura de Marco,
Mary Rees and presumeably many more to whom I
apologize if they are not mentioned.

When exploring mathematics as so many other aspects
of life, we often try to understand things by
coordinatizing them or by other means matching them
against a well known background or model(space),
which we believe to know well.
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Introduction II

One way to do so is to find some properties, which
persists in some neighbourhood. One of Adriens many
gifts was his ability to find the persisting quantites,
which provides links between objects.

An obvious example is external rays.

Another important such entity is encoded via the horn
maps or equivalently via the Lavours maps of a
parabolic point.

A third one, which was (re)discovered by Milnor and
explored by Adam Epstein is the holomorphic fixed
point index.

In this talk we shall make use of variants of all three.
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Basic definitions

Denote by Rat2 the space of quadratic rational maps
f(z) = p(z)

q(z) , where p and q are polynomials without

common roots and deg(f) = max{deg(p), deg(q)} = 2.

Denote by M2 = Rat2/Rat1 the moduli space of
quadratic rational maps modulo Möbius conjugacy.

I will in this talk mainly be focusing on maps with an
indifferent fixed point as seen from the set of maps with
an attracting fixed point.

Ultimately we look for new dynamics involving the
interplay between two critical points. A simillar study
can be done on the space of cubic polynomials and
also I presume more generally on spaces of bicritical
rational maps and bicritical polynomials.
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Coordinatizing I

Any quadratic rational map f has, counting multiplicity 3
fixed points, whose multipliers we usually denote by λ, µ
and γ.

Milnor showed that the set of fixed point eigenvalues
{λ, µ, γ} uniquely determines [f ] ∈ M2.

The holomorphic fixed point theorem gives us (provided
1 /∈ {λ, µ, γ}) :

1

1 − λ
+

1

1 − µ
+

1

1 − γ
= 1.

from which it easily follows that for any f

λ + µ + γ = 2 + λµγ.
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Coordinatizing II

In terms of the elementary symmetric functions of the roots:

σ1 = λ + µ + γ,

σ2 = λµ + µγ + γλ,

σ3 = λµγ.

the index formula yields σ3 = σ1 − 2. Hence

[f ] 7→ (σ1(f), σ2(f)) : M2 → C
2

defines an injective holomorphic mapping. Milnor defined
this map and showed that it is also surjective and hence
biholomorphic.
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The lines Per1(λ).

Following Milnor we shall fix the eigenvalue λ of one of
the fixed points of f generically denoted by a.

Per1(λ) = {[f ]|f has a fixed point a of multiplier λ}.

It turns out that each set Per1(λ) is a complex line in the
Milnor-coordinates.

Moreover writing σ = µγ for the product of the remaining
two fixed point eigenvalues, the mapping

[f ] 7→ σ(f) : Per1(λ) → C

is an isomorphism and thus gives a natural coordinate.
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The Fatou relatedness loci.

Any quadratic rational map f has two distinct critical
points c1, c2.
Following Uhre we say that :
c1 and c2 are Fatou related if they belong to the same
grand-orbit of Fatou components.

For each λ we define the Fatou relatedness locus

Rλ = {[f ] ∈ Per1(λ)|c1, c2 are Fatou related}

The Fatou relatedness locus is a conglomerate of different
Rees types of hyperbolic components. However it is the
natural entity for the problem.
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The line Per1(0).

Per1(0) = {[Qc(z) = z2 + c]|c ∈ C}, that is
Per1(0) is parametrized by the normal form Qc, where
σ = 4c.

The Mandelbrot set

M = M0 = {[Qc]|JQc
is connected}

= {[Qc]|the critical point 0 does not escape}

= Per1(0) \ R
0.

For p/q, (p, q) 6= 1 and αc the least repelling fixed point of
Qc, the p/q-limb of M (M0) is

Lp/q = {[Qc]|αc has combinatorial rotation number p/q}
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The motion Mλ of M .

For λ ∈ D any map f with [f ] ∈ Per1(λ) has a quadratic
like restriction f| : U ′ → U where U ′, U are topological
disks with Jf ⊂ U ′ ⊂⊂ U .

Mλ = {[f ] ∈ Per1(λ)|Jf is connected}

= Per1(λ) \ Rλ.

The inverse of the Douady-Hubbard straightening map
Ψλ : Mλ → M0 defines a holomorphic motion

Φ : D × M0 → C

of M0 over D with base point 0.
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Holomorphic motions

Definition 1. A holomorphic motion of a set K ∈ C over a Complex
analytic manifold Λ with base point λ0 ∈ Λ is a mapping

Φ : Λ × K → C, such that:

i) ∀z ∈ K : λ 7→ Φ(λ, z) is holomorphic

ii) ∀λ ∈ Λ: z 7→ Φλ(z) := Φ(λ, z) is injective.

iii) Φ0 = id

The amazing λ-lemma states that
Theorem 2 (Mañe-Sad-Sullivan). Any holomorphic motion has a

unique continuous extension to Λ × K and each time λ map Φλ is
quasi-conformal.
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Impressions of M I

However in general no extension properties what so
ever to the motion boundary ∂Λ can be infered. This
motivates:

The main question I will investigate in this talk:

Question 1. What is the impression of the motion Mλ on the lines
Per1(ω) when |ω| = 1?

Using the computer properly it is not difficult to make
conjectures.

I shall focus on the case ω = ωp/q = ei2πp/q, (p, q) = 1,
where we actually have proofs of some of these
conjectures.

FILMS F1, F2, F3 AND F4
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Impressions of M II.

To this end I need to be precise on which kind of limits
we take

There are essentially two types of limits, the
unrestricted limit from D and the subtangential limit
written respectively as

λ → ω, λ →
subtan.

ω.

Where the latter means that

<(
1

1 − λ/ω
) → ∞.

We consider two cases:
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Case 1: ω = 1 I

For ω = 1 we still have the connectedness dichotomy:

M1 = {[f ] ∈ Per1(1)|Jf is connected}

= Per1(1) \ R
1

M1 is a compact subset of Per1(1).
Theorem 3 (Roesch, P). As λ →

subtan.
1

Mλ → M1, Hausdorff

Φλ → Φ1 at least pointwise

where Φ1 is a bijection, holomorphic on the interior and preserving
dynamics.
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Case 2: ω = ωp/q, (p, q) = 1.

Theorem 4 (P).

Lλ
−p/q = Φλ(L0

−p/q) −→
λ →

subtan.
ωp/q

∞, Hausdorff.

For the following discussion we use the terminology:
A (relatively) hyperbolic component H ⊂ Per1(ω) is a
maximal domain on which [f ] ∈ H has an attracting periodic
orbit.
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Mω1/3 from C
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Mω1/3 from ∞.
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Subtan. convgce og hyp. comp.

Theorem 5 (Epstein and Uhre). For any p/q, (p, q) = 1, for any

hyperbolic component H0 ⊂ M0 \ L0
−p/q let

σλ
H = Φλ ◦ σ0

H : D → Hλ = Φλ(H)

denote the Douady-Hubbard multiplier parameters. Then

σλ
H ⇒

λ →
subtan.

ω
σ

ωp/q

H : D → Hωp/q ⊂ Per1(ωp/q),

where Hωp/q is some hyperbolic component of Per1(ωp/q). Moreover

for any hyperbolic component Hωp/q of Per1(ωp/q) there is a unique

hyperbolic component H0 ⊂ M0 \ L0
−p/q such that the above holds. In

particular Hωp/q is relatively compact.
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Preliminaries I

To understand non tangential limits we need to re-introduce
the parabolic index of a parabolic fixed point. For a map

f(z) = ωp/qz + O(z2)

we define the parabolic index as the holomorphic index of
f q:

I(f) =
1

2πi

∮
dz

z − f q(z)

The parabolic index I : Per1(ωp/q) −→ C is a rational
function. For q = 1 it equals 1/σ and for q > 1 it has a pole at
∞.
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Preliminaries II

Recall that the root of any hyperbolic component H of
M is the landing point of two periodic (root) rays (except
H = ♥).

If H is a satelite then the root rays belongs to the same
cycle.

If H is a primitive component, then they belong to two
different cycles.

Definition 6. A virtual hyperbolic component of Per1(ωp/q) is a

connected component of

I−1({x + iy|x > (q + 1)/2}).

.Any virtual hyperbolic component is rooted at a pole of I.
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Unrestricted convgnce of hyp. Comp.

Let θ1, θ2 denote the arguments of the root rays of L0
−p/q.

Theorem 7 (Epstein and Uhre). For any hyperbolic component

H0 ⊂ M0 \ L0
−p/q we have two cases:

either the argument of one of the rootrays of H0 belongs to the cycle of
θ1, θ2 or it does not. If not then

Hλ = Φλ(H0) →
λ→ω

Hωp/q , Hausdorff.

where Hωp/q is the subtangential limit.

If yes, then the root r of Hωp/q is a pole of I and the unrestricted
impression also includes the closure(s) of the virtual hyperbolic
component(s) attached at r.
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Mω1/3 with virtual hyp. Comp.
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Mω1/3 without virtual hyp. Comp.
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A model of R̂ω

Construction on blackboard. Make your own illustration..

In this version it is replaced by the following slides:
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A model of R̂ω I

Consider the quadratic polynomial P = Pω(z) = ωz + z2.
It has a parabolic fixed point at 0 with a q-cycle of immediate
basins Λ0, . . . ,Λq−1 numbered counter-clockwise and with
the critical point c = −ω/2 ∈ Λ0 and the critical value
v = −λ2/4 ∈ Λp.
Denote by φj : Λj −→ C the Fatou coordinates for Pω

normalized by

φp(v) = 0,

P ◦ φj = 1/q + φj+p mod q.

For each j let ∆j ⊂ Λj denote the petal mapped univalently
to the half plane {z = x + iy|x > 0}
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A model of R̂ω II

Define a new Riemann surface Yω isomorphic to C

obtained as (C \ D)/ ∼ω. Where ∼ω is given as follows: Let

χ : C \ D → C \

q−1⋃

j=0

∆j

denote the continuously extended uniformizing parameter
with χ(∞) = ∞, χ(1) = v.
Then z1 ∼ω z2 iff

χ(z1) ∈ ∂∆j , χ(z2) ∈ ∂∆k, j + k ≡ 2p mod q, and

φj(χ(z1)) + φk(χ(z2)) = 0.

This relation is extended continuously to the q points χ−1(0).
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A model of R̂ω III

Let Πω : C \ D −→ Yω denote the natural projection.
Define ∞̂ = Πω(v), δ̂ = Πω(S1) and define Ω̃ω to be the
critical value ear of KP .

Define

X ω = Πω

(
KP \ Ω̃ω

⋃ ∞⋃

n=0

P−1(0)

)
.

We shall endow X ω with a tree T̂ ω by which we can
parametrize its combinatorial structure. This leads to
the notion of bubble rays, an idea which first appears in
Josi Lou’s thesis.
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Bubble rays in X ω I

We shall extend the Fatou-coordinates φj to a Fatou
coordinate φω defined on the entire basin for 0 under P
by iteration.

Define the parabolic ray-tree T̃ = T̃ ω as

T̂ ω = (φω)−1(R)
⋃ ⋃

n≥1

(P−n(0))

A subset M̃ ⊂ T̂ ω is defined to be compact iff it is
closed and there exists n such that

Pn(M) ⊂

q−1⋃

j=0

∆j .
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Bubble rays in X ω II

We project T̃ ω to a parabolic model ray-tree T̂ = T̂ ω :

T̂ ω = Πω(T̃ ω) ∪ (δ̂ ∩ X ω).

A subset M̂ ⊂ T̂ ω is defined to be compact iff there are
compact subsets M̃ ⊂ T̂ ω and δ′ ⊂ δ̂ such that

M̂ = δ′ ∪ ΠΩ(M̃).
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Bubble rays in X ω III

Definition 8. A bubble ray is any infinite path in T̂ ω starting at ∞̂. Any
Bubble ray is naturally dynamically marked, e.g. preperiodic, periodic, ...

Because the Julia set of P is locally connected we have.

Lemma 9. Any Bubble ray converges to a unique point on ∂X ω . And
the set of Bubble rays parametrizes (non injectively) the boundary of
X ω . More precisely the projection of any strict iterated preimage of 0
has both a finte address and is the landing point of 2q rays. Any other
point is the landing point of precisely one Bubble ray.
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Parametrizing Rλ.

Theorem 10 (Uhre, work in progress). There is a natural dynamically
defined injection

ηω : X ω → Rω,

holomorphic in the interior and continuous on any compact subset of T̂ ω .

Definition 11. Define the Parameter Bubble tree

T ω = ηω(T̂ ω)

and simillarly Parameter Bubble rays.

Theorem 12 (Uhre, work in progress). Any preperiodic ray in R̂ω

lands at a relatively parabolic or Misieurewich parameter σ ∈ Mω.
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ActualR̂ω1/3 inverted
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ActualR̂ω1/7
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A model of R̂λ
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ActualR̂λ inverted
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ActualR̂ω1/3 inverted
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ActualR̂λ inverted

Proof by movie.
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The dynamical compactification

Laura de Marco has defined a dynamical
compactification of M2

The algebraic compactification of M2 is CP 2. In the de
Marco compactification each ideal point

(ωp/q, ω−p/q,∞) ∈ CP 2

is replaced by a copy of the Riemann’s sphere, where
each point on the sphere represents a measure on the
sphere obtained as the weak limit of the measures of
maximal entropi of degenerating maps.
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Refined dynamic Compactification I

In a joint but unfinished work joint with Adam Epstein
we have studied the divergence of the limb Lλ

−p/q as λ

converges subtangentially to ωp/q. The principal idea is
to prove that appropriately normalized representatives
of the q-th iterate of maps in Lλ

−p/q following the

holomorphic motion by λ converges locally uniformly on
C
∗ to a map in M1 with the same combinatorics.

Parallel studies have been and are undertaken by Anja
Kabelka in her Thesis, and by Jan Kiwi.
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Refined dynamic Compactification II

The Conjectural refinement of the de Marco
compactification is that each Riemann sphere in the
dynamical compactification is naturally isomorphic to
Per1(1). Moreover at the dyadic tips of M 1 in these
spheres are attached additionally a countable number
of Riemann spheres, which are naturally isomorphic to
Per1(0), and which are enumerated by the different
once renormalizeable primitive copies in the
corresponding dyadic decoration of the −p/q limb.
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Refined dynamic compactification III

Anja Kabelka has proved the real line version of the first
part of the Conjectural refinement. Working on the real
line she can apply kneeding sequences to control
combinatorics.

Jan Kiwi is to use non-Archimedean dynamics in his
approach.

Our approach is to use generalized Yoccoz puzzles.
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Convergence of Per1(λ) to Per1(ωp/q)

The limb Lλ
−p/q diverges to ∞ under subtangential

approach to ωp/q.

But what about the other limbs Lλ
p′/q′

, p′/q′ 6= −p/q, do
they remain bounded as λ converges subtangentially to
ωp/q?

Theorem 13 (Uhre, work in progress). Yes, the other limbs
remain bounded as λ converges subtangentially to ωp/q.
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THE END

THANK YOU TO THE ORGANIZERS
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