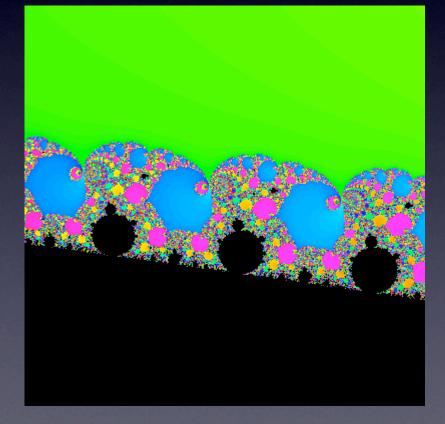
Parabolic implosion

from discontinuity to renormalization

Mitsuhiro Shishikura

Congrès à la mémoire d'Adrien Douady Institut Henri Poincaré, Paris, May 26-30, 2008

Discontinuity of Julia sets



"Periodicity' in parameter space

Plan

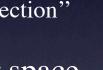
Bifurcation of *parabolic* periodic points -- parabolic implosion (saddle-node, intermittent chaos, periodic pts that bifurcate)

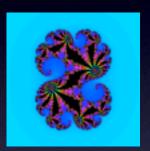
Local change of dynamics ("egg beater") => Global effects

Main example: $f_0(z) = z + z^2 \ (\sim z^2 + \frac{1}{4})$ and its perturbation

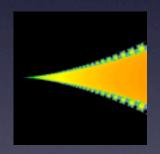
Discontinuity of Julia sets

Richness of bifurcated Julia sets when perturbed to "wild direction"





"Periodicity" in parameter space



Tools by Douady-Hubbard:

Fatou coordinates, Ecalle-Voronin cylinders, horn map, phase

Parabolic/Near-parabolic renormalization:

study of irrationally indifferent periodic points

Basic definitions

f polynomial (or just holomorphic mapping for local problems)

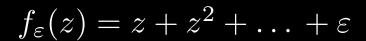
fixed point
$$f(z_0)=z_0$$
 multiplier $\lambda=f'(z_0)$ attracting $|\lambda|<1$ indifferent $|\lambda|=1$ parabolic $\alpha\in\mathbb{Q}$ $\lambda=e^{2\pi i\alpha}$ irrationally indifferent $\alpha\in\mathbb{R}\setminus\mathbb{Q}$ repelling $|\lambda|>1$

filled-in Julia set
$$K_f = \{z \in \mathbb{C} : \{f^n(z)\}_{n=0}^{\infty} \text{ is bounded}\}$$

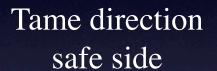
Julia set $J_f = \partial K_f = \text{closure of } \{\text{repelling periodic points}\}$
(chaotic part)

We consider the bifurcation of a parabolic fixed point and its global effect.

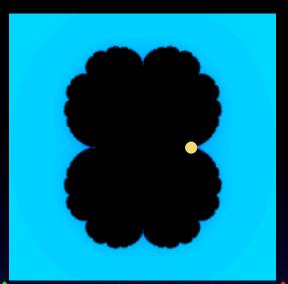
Tame and Wild directions

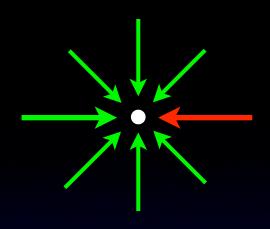


0 is parabolic for f_0 with $\lambda_0 = 1$



Continuous change when restricted to tame direction





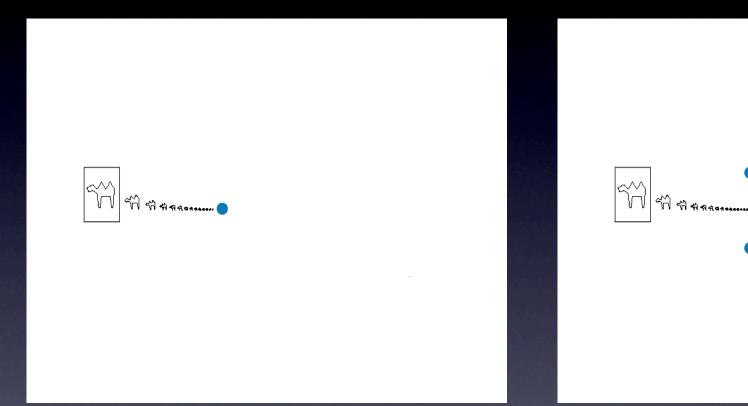
Wild direction rich side

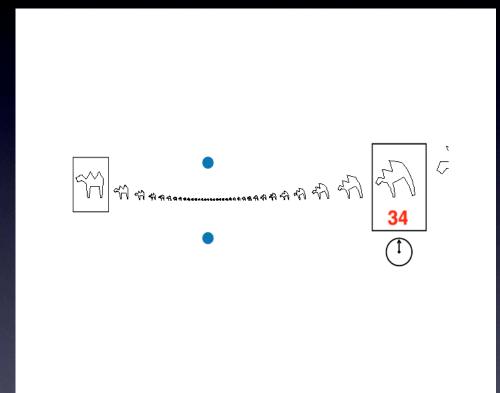
narrow chance to be rich

for example,
$$f(z) = e^{2\pi i \alpha} z + \dots$$

 $\alpha \in \mathbb{R}$

Egg beater or Douady-Hubbard's get-rich-quick scheme before f_0 after perturbed into wild direction





Orbits from the left tend to the fixed point

Imagine that a point in the box on the right is: escaping point

(inverse image of) repelling periodic point inverse image of critical point

Theorem (discontinity of Julia sets)

Let $f_{\varepsilon}(z) = z + z^2 + \varepsilon$. Then

 $int K(f_0) = \{z: f^n \to 0 \text{ uniformly in a neighborhood of } z\}$ (parabolic basin).

Let $\{\varepsilon_n\}$ be a sequence such that $\varepsilon_n \to 0$ and $\{\frac{\pi}{\sqrt{\varepsilon_n}}\}$ converges modulo \mathbb{Z} , i.e. for some integers $k_n \in \mathbb{Z}$,

$$\lim_{n \to \infty} \left(\frac{\pi}{\sqrt{\varepsilon_n}} - k_n \right) = -\beta$$

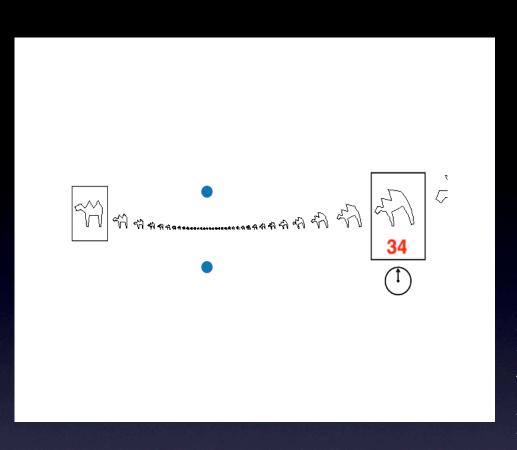
(for example, $\varepsilon_n = \frac{\pi^2}{(n-\beta)^2}$).

Then

$$J(f_0) \subsetneq J(\langle f_0, g_\beta \rangle) \subset \liminf_{n \to \infty} J(f_{\varepsilon_n})$$

$$\subset \limsup_{n \to \infty} K(f_{\varepsilon_n}) \subset K(\langle f_0, g_\beta \rangle) \subsetneq K(f_0)$$

where $g_{\beta} = \lim_{n \to \infty} f_{\varepsilon_n}^{k_n}$ in $int K(f_0)$, and $\langle f_0, g_{\beta} \rangle =$ "two generator dynamics" generated by f_0 and g_{β} .



Pick a point w in the box on the right which is escaping.

If a point z in the box on the left arrives at this point, i.e. $f_{\varepsilon_n}^{k_n}(z) = w$, then $z \in int K(f_0) \setminus K(f_{\varepsilon_n})$.

Hence $int K(f_0) \setminus \limsup_{n \to \infty} K(f_{\varepsilon_n}) \neq \emptyset$.

Pick a point w in the box on the right which is an inverse image of a repelling periodic point.

If a point z in the box on the left arrives at this point, i.e. $f_{\varepsilon_n}^{k_n}(z) = w$, then $z \in J(f_{\varepsilon_n}) \setminus J(f_0)$.

Hence $\liminf_{n\to\infty} \overline{J(f_{\varepsilon_n})} \setminus \overline{J(f_0)} \neq \emptyset$.

The behavior of the critical point changes periodically. ("phase parameter") \implies the "periodicity" in the parameter space $(\frac{\pi}{\sqrt{\varepsilon}} \ modulo \ \mathbb{Z} \ matters)$.

Tools to analyze Egg beater dynamics

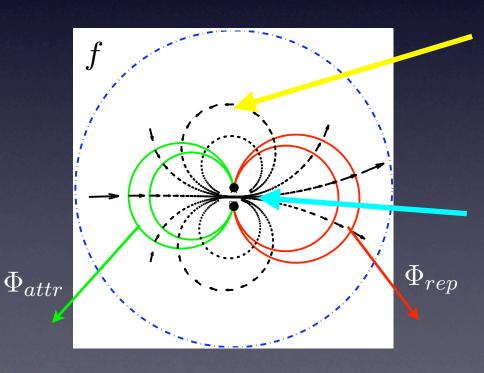
Difficulty: effects of perturbation on unboundedly high iterates of the map

Work in Fatou coordinates, which conjugate f to $T: z \mapsto z+1$

Take a croissant-shaped fundamental strip, which is bounded by a curve ℓ and its image $f(\ell)$.

Glue ℓ and $f(\ell)$ by f to obtain a Riemann surface which is isomorphic to \mathbb{C}/\mathbb{Z} .

Lift of the map to \mathbb{C}/\mathbb{Z} is a Fatou coordinate.



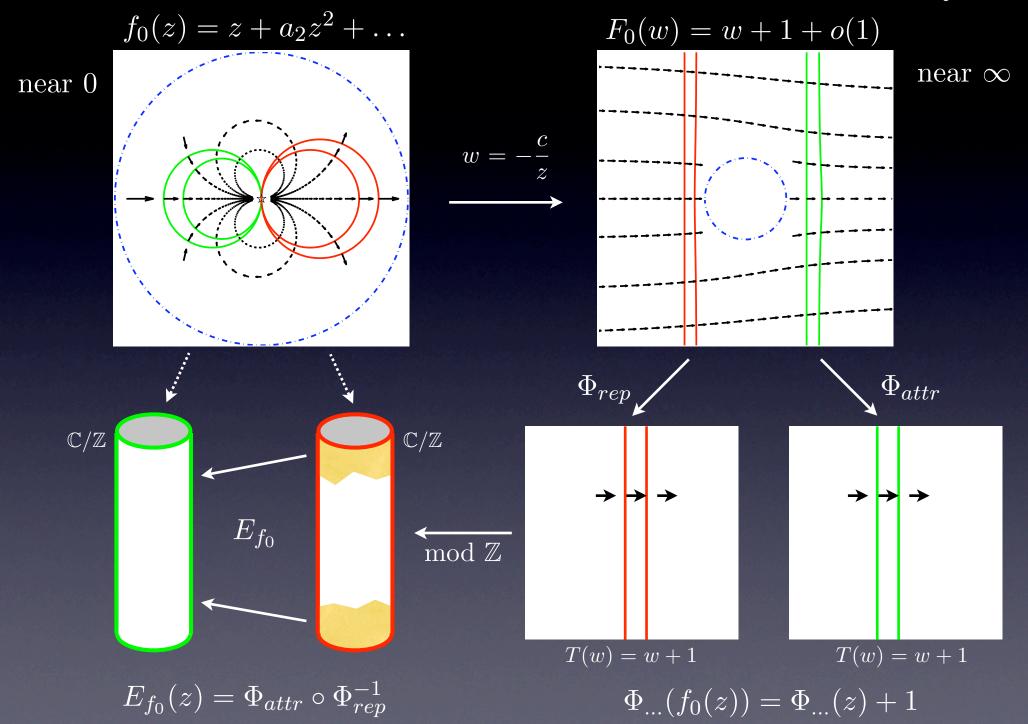
This part of dynamics is represented by a horn map E_f which is

- partially defined, non-linear
- continuous under perturbation.

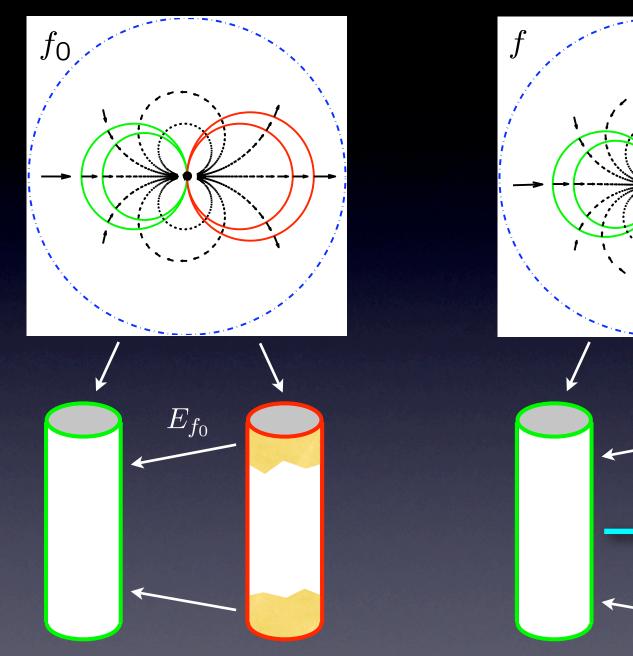
This part of dynamics is represented by an identification between attracting and repelling Fatou coordinates which is

- an isomorphism
- sensitive wrt perturbation.

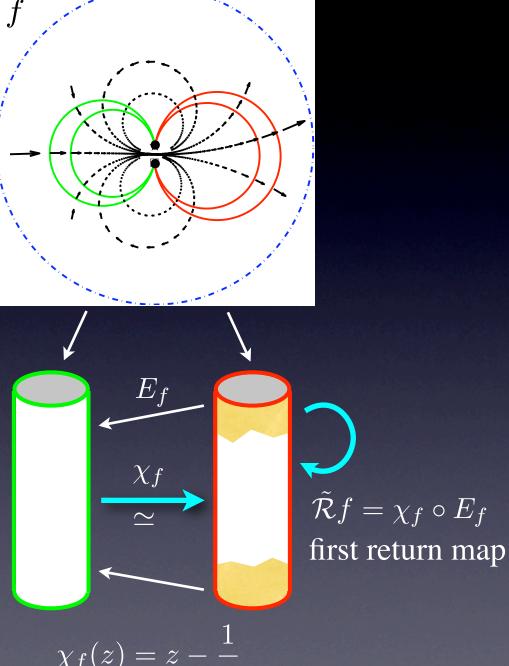
Fatou coordinates Φ_{attr} , Φ_{rep} and Horn map E_{f_0}



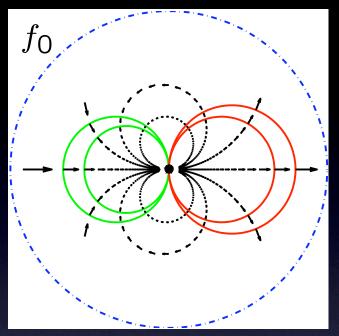
Perturbation $f'(0) = e^{2\pi i\alpha}$, α small $|\arg \alpha| < \frac{\pi}{4}$ (wild direction)



 E_f depends continuously on f (after a suitable normalization)



Lavaurs map



Lavaurs map

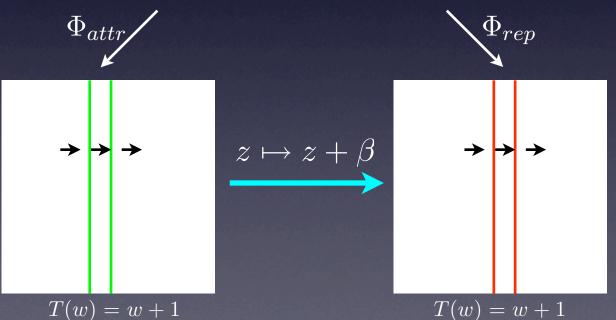
$$g_{\beta}(z) = \Phi_{rep}^{-1}(\Phi_{attr}(z) + \beta)$$

describes how the orbits entering attracting fundamental strip go out from repelling fundamental strip.

$$g_{\beta} = \lim_{n \to \infty} f_n^{k_n} \text{ in } int K(f_0)$$

if
$$f_n(z) = e^{2\pi i \alpha_n} z + \dots$$
,
$$\lim_{n \to \infty} \left(\frac{1}{\alpha_n} - k_n \right) = -\beta,$$

or
if
$$f_n(z) = z + z^2 + \varepsilon_n$$
,
$$\lim_{n \to \infty} \left(\frac{\pi}{\sqrt{\varepsilon_n}} - k_n \right) = -\beta.$$



Limit dynamics

$$f_0 \circ g_\beta = g_\beta \circ f_0 = g_{\beta+1} \quad \text{in} \quad K_{f_0}$$

$$\langle f_0, g_\beta \rangle = \{ f_0^n \circ g_\beta^m : (m = 0 \text{ and } n \ge 0) \text{ or } (m > 0 \text{ and } n \in \mathbb{Z}) \}$$

(when $m > 0$, each element is defined in an open subset of \mathbb{C})

$$K(\langle f_0, g_\beta \rangle) = \mathbb{C} \setminus \{z : \exists h = f_0^n \circ g_\beta^m \in \langle f_0, g_\beta \rangle, h(z) \in \mathbb{C} \setminus K_{f_0}\}$$

 $J(\langle f_0, g_\beta \rangle) = \text{closure of } \{ \text{repelling fixed points of } h = f_0^n \circ g_\beta^m \in \langle f_0, g_\beta \rangle \}$

$$J(f_0) \subsetneq J(\langle f_0, g_\beta \rangle) \subset \liminf_{n \to \infty} J(f_n)$$
$$\subset \limsup_{n \to \infty} K(f_n) \subset K(\langle f_0, g_\beta \rangle) \subsetneq K(f_0)$$

$$K(\langle f_0, g_\beta \rangle) = J(\langle f_0, g_\beta \rangle) \implies \lim_{n \to \infty} K(f_n) = \lim_{n \to \infty} J(f_n) = J(\langle f_0, g_\beta \rangle)$$

$$\exists h = f_0^n \circ g_\beta^m (\in \langle f_0, g_\beta \rangle) \text{ has an attracting fixed point}$$

$$\Longrightarrow \lim_{n\to\infty} K(f_n) = K(\langle f_0, g_\beta \rangle) \text{ and } \lim_{n\to\infty} J(f_n) = J(\langle f_0, g_\beta \rangle)$$

Further results

Discontinuity of straightening of polynomial-like mappings (Douady-Hubbard, first published account on parabolic implosion)

Limit parameter space for $z^2 + c$ around $c_0 = 1/4$ (wrt $\frac{1}{\sqrt{c-1/4}}$) versus parameter space of $\langle f_0, g_\beta \rangle$ (Lavaurs)

Non-local connectivity of connectedness locus for real/complex cubic polynomials (Lavaurs)

• • • • •

Parabolic/near-parabolic renormalization

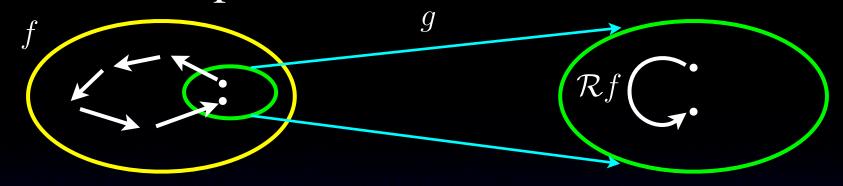
Renormalization for germs holomorphic functions with parabolic or near-parabolic fixed points (in wild direction)

S. with H. Inou: an invariant class of maps for the renormalization.

=> control on irrationally indifferent fixed points when the continued fraction of the rotation number has large coefficients.

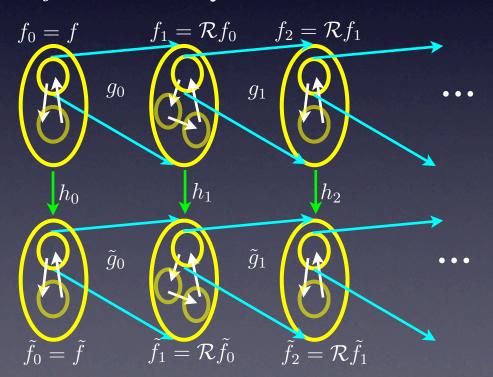
=> Buff-Cheritat's result on quadratic Julia sets with positive area.

Return map and Renormalization



Renormalization $f \rightsquigarrow \mathcal{R}f = \text{first return map } f \text{ (after rescaling)}$

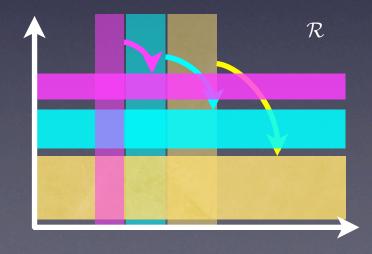
If f is infinitely renormalizable, ...



rigidity: weak conj. upgraded to nicer one

$$f \rightsquigarrow \mathcal{R}f$$

as a "meta dynamical system" on a space of dynamical systems Often one expects a hyperbolic dynamics

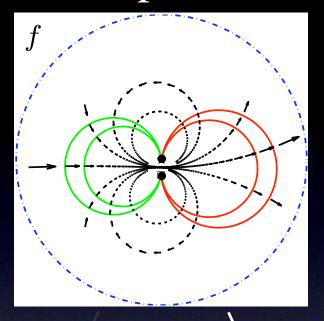


Near-parabolic Renormalization (cylinder renorm.)

 $\tilde{\mathcal{R}}f = \chi_f \circ E_f$

 $\operatorname{Exp}^{\sharp}$

first return map



$$\operatorname{Exp}^{\sharp}: \mathbb{C}/\mathbb{Z} \xrightarrow{\simeq} \mathbb{C}^*, \ z \mapsto e^{2\pi i z}$$

 $\mathcal{R}f$ is conjugate to the return map on red croissant via repelling Fatou coordinate and $\operatorname{Exp}^{\sharp}$

$$f = e^{2\pi i\alpha}h, \quad h = z + O(z^2)$$
 $f \leftrightarrow (\alpha, h)$

$$\mathcal{R}f = e^{-2\pi i \frac{1}{\alpha}} h_1, \quad h_1 = z + O(z^2)$$

$$\mathcal{R}f \leftrightarrow \left(-\frac{1}{\alpha}, h_1\right)$$

$$h_1 = \operatorname{Exp}^{\sharp} \circ E_{e^{2\pi i \alpha}h} \circ \left(\operatorname{Exp}^{\sharp}\right)^{-1}$$

$$= \mathcal{R}_{\alpha}h$$

cylinders and $\mathcal{R}f$ defined when $h''(0) \neq 0$ and α sufficiently small **Theorem.** (H. Inou and S.) There exists a class \mathcal{F}_1 of maps with a parabolic fixed point (non-degenerate) and a unique critical point and a large number N such that the near-parabolic renormalization \mathcal{R} is defined on

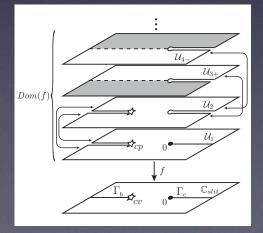
$$\{e^{2\pi i\alpha}h: \alpha \in \mathbb{R}, \ 0 < |\alpha| \le \frac{1}{N}, \ h \in \mathcal{F}_1\}$$

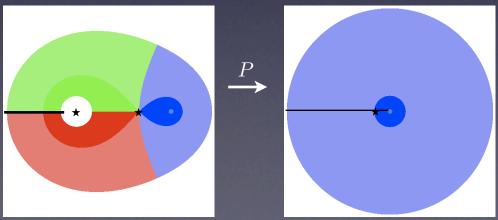
and hyperbolic. In fact, \mathcal{R} can be considered as

$$\mathcal{R}: (\alpha, h) \mapsto (-\frac{1}{\alpha} \mod \mathbb{Z}, \mathcal{R}_{\alpha} h),$$

and $\alpha \mapsto -\frac{1}{\alpha} \mod \mathbb{Z}$ is expanding. The "fiber direction" \mathcal{F}_1 is in one to one correspondence with the Teichmüller space of the punctured disk and the fiber map \mathcal{R}_{α} is holomorphic and uniform contracting with respect to the Teichmüller distance.

Invariant class \mathcal{F}_1 is characterized by (partial covering property.





Applications (work in progress)

Theorem. Let $f = e^{2\pi i\alpha}h$ and $\hat{f} = e^{2\pi i\alpha}\hat{h}$ where $h, \hat{h} \in \mathcal{F}_1$ (or $z + z^2$) and α is of high type (continued fraction coeffs $\geq N$). Then f and \hat{f} are quasiconformally conjugate on the closure of the critical orbit. Moreover the conjugacy is $C^{1+\gamma}$ -conformal on the critical orbit with some $\gamma > 0$.

Compare with McMullen's result on bounded type Siegel disks

Theorem. Let $f = e^{2\pi i\alpha}h$ where $h \in \mathcal{F}_1$ (or $z + z^2$) and α is of high type (continued fraction coefficientss $\geq N$). Then there exist open sets $U_n \ni 0$ and integers q_n (n = 0, 1, ...) such that f^{q_n} is defined on U_n and at most 3 to 1, $\bigcap_{n=0}^{\infty} U_n$ contains the critical orbit and consists of arcs ("hairs") which are disjoint from each other except at 0.

According to a discussion with Buff, Chéritat, Oversteegen, quadratic Julia sets with non-Bruno, high-type rotation number seem to be decomposable.

Merci!

