Groupe de travail en Dynamique Holomorphe
à l'Institut de Mathématiques de Toulouse
Archive.
Le 09/10/2008, A. Chéritat : Uniformisation des formes de Beltrami constantes par morceaux, surfaces affines et formule de Schwarz Christoffel
Le 13/11/2008, X. Buff : Transversalité, d'après Adam Epstein
Le 27/11/2008, Xavier Buff : Transversalité selon Adam Epstein, II
la suite...
Le 11/12/2008, A. Chéritat : Dérivée Schwarzienne et disques de Siegel
Je présenterai des théorèmes de Graczyk, Jones et Swiatek.
Le 08/01/2009, X. Buff : (Annulé) Transversalité en dynamique holomorphe, suite
(annulé pour cause de verglas) Je vais montrer comment des différentielles quadratiques bien choisies sont réliées à la dérivée des multiplicateurs des cycles.
Le 22/01/2009, X. Buff : Transversalité, III
Le 05/02/2009, K. Banerjee : (reporté au 05/03/2009) Widths of the Arnold Tongues
Le 19/02/2009, Eva Uhre : (annulé) A model for some slices of the parameter space of quadratic rational maps
Le 05/03/2009, K. Banerjee : Widths of the Arnold Tongues (report de l'exposé du 05/02/2009)
Consider a family of circle maps fa,t: x → x+t+aφ(x) where φ is a smooth function of period 1 and x ∈ ℝ/ℤ. fa,t is a homeomorphism for 0 ≤ t ≤ 1 and -1/{maxx ∈ [0,1] φ'(x)} < a < -1/{minx ∈ [0,1] φ'(x)}, this subset in (a,t)-plane is our parameter space. Assume Aθ be the set of parameters (a,t) such that f{a,t} has rotation number θ, which we call the Arnold Tongue of rotation number θ. For a fixed a say a=a0, let Ip/q(a0) be the set of t∈[0,1] such that fa0,t has rotation number p/q. Ip/q(a0) is a closed interval and let lp/q be its length, which is the width of the Arnold Tongue Ap/q at level a=a0. Suppose fa0,t0 has a Herman Ring with rotation number θ0 ∈ [0,1] \ ℚ for t0 ∈ [0,1]. Then lpn/qn decreases exponentially with n when pn/qn is the nth continued fraction approximant of θ0.
Le 19/03/2009, Thomas Gautier : Fractions rationnelles Misiurewicz
Le 14/05/2009, Eva Uhre : A model for some slices of the parameter space of quadratic rational maps
Le 07/01/2010, A. Chéritat : Titre non communiqué
Le 27/05/2010, Yasemin Kara : The Prime Number Theorem with the Error Bound
In this talk, we will give a proof of the Prime Number Theorem with the Error Bound. Let π(x) be the function which gives the number of primes less than or equal to x and Li(x) = ∫2..x dt/ln t be the logarithmic integral function. Let 1/2 ≤ σ < 1, where σ is fixed. Then π(x) − Li(x) = O(x^{σ+ε}) as x → ∞ for all ε > 0 if and only if the Riemann zeta function ζ(s) has no zeroes in the strip σ < Re(s) < 1. The case σ = 1/2 corresponds to the Riemann hypothesis.
Le 09/09/2010, Lorena López : Groupe de Travail sur l'article de Malgrange, première séance
Le 23/09/2010, Lorena López : GdT Malgrange
Le 07/10/2010, A. Chéritat : GdT Malgrange
Le 18/11/2010, Lorena López : GdT Malgrange
Le 06/12/2010, Yasemin Kara : Hecke operators
Le 09/12/2010, X. Buff : GdT Malgrange
Le 13/01/2011, A. Chéritat : Premodels, part I
Le 20/01/2011, L. Lomonaco : On parabolic-like maps
The notion of polynomial-like mappings was introduced by
Douady and Hubbard in the ground-breaking paper 'On the dynamics of
Polynomial.like mappings' (1985). It has been proven to be
instrumental in understanding and solving a host of problems in
holomorphic dynamics. A polynomial-like mapping of degree d is
naturally characterized by two disjoint sub-dynamical systems called
the internal class and the external class. The external class is a
degree d orientation preserving, strongly expanding (hence hyperbolic)
covering of the unit circle by itself.
We consider a new class of maps similar to polynomial-like mappings
but with the external map only weakly expanding, i.e., with parabolic
periodic points, and we will call them parabolic-like maps. Since the
parabolic periodic points for the external map attract points from the
complement of the unit circle, the filled Julia set is not an outward
repeller and the domain of such a map can not be relatively compact in
the range.
Le 27/01/2011, A. Chéritat : Premodels, part II
Le 24/03/2011, Matthieu Arfeux : Autour du Shift Locus des polynômes de degré 3
Nous étudierons les travaux de Laura Demarco (avec C.Mc Mullen puis K.Pilgrim). Ces derniers consistent à classifier la dynamique des polynômes cubiques dans les composantes stables. Nous verrons comment en partant des tableaux de Yoccoz, en passant par les arbres dynamiques puis des arbres de modèles locaux nous arrivons à coder la dynamique de façon "presque satisfaisante".