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Let f : C→ C be a transcendental entire map.

• J (f ): Julia set • F(f ): Fatou set

It is possible that

J (f ) = C.

Question
Can we give a complete description of topological dynamics for
a map with this property?

Yes, for a wide class of examples, including maps such as

z 7→ π sinh z.
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The escaping set of f is defined as

I(f ) := {z ∈ C : f n(z)→∞}.

Question (Bergweiler)

Let Fa,b(z) = a ez +b e−z such that both critical values are
preperodic. Is I(Fa,b) connected?

No, and this actually holds in a much more general setting.
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Strong subhyperbolicity

• S(f ): set of singular values

• P(f ) :=
⋃

n≥0 f n(S(f )): postsingular set

A transcendental entire map f is called subhyperbolic if

• F(f ) ∩ P(f ) is compact,

• J (f ) ∩ P(f ) is finite.

A subhyperbolic map f is called strongly subhyperbolic if

• J (f ) contains no asymptotic values,

• the local degree of f |J (f ) is bounded by a finite constant.

Note that every hyperbolic map, i.e. a map f for which P(f ) is a
compact subset of F(f ), is strongly subhyperbolic.
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Theorem (Semiconjugacy)

Let f be strongly subhyperbolic, and let λ ∈ C be such that
g(z) := f (λz) is hyperbolic with connected Fatou set (disjoint
type). Then there is a continuous surjection φ : J (g)→ J (f )
such that

f (φ(z)) = φ(g(z))

for all z ∈ J (g). Moreover, φ restricts to a homeomorphism
between the escaping sets I(g) and I(f ).

• The hypothesis will be automatically satisfied whenever λ
is sufficiently small.

• Any two maps g and g′ as in the theorem are qc-conjugate
on their Julia sets, so it is sufficient to prove the theorem
for any such map.
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⋆ This answers a question by Rempe on rigidity of Misiurewicz
parameters in the cosine family.

⋆ The escaping set of a disjoint type map is disconnected.

Corollary 1
The escaping set of a strongly subhyperbolic transcendental
entire function is disconnected.

⋆ Suppose that g is of disjoint type and has finite order, i.e.
log log |g(z)| = O(log |z|) as z →∞.

Then it is known that J (g) is a Cantor bouquet; i.e. homeomor-
phic to a straight brush in the sense of Aarts & Oversteegen.

Corollary 2
Let f be a finite-order strongly subhyperbolic map. Then J (f ) is
a pinched Cantor bouquet; i.e. the quotient of a Cantor Bouquet
by a closed equivalence relation defined on its endpoints.
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Remarks

Previous results:

• When both critical values of a cosine map z 7→ a ez +b e−z

are preperiodic, part of our result is due to Schleicher.

• For hyperbolic maps, our theorem is due to Rempe.

Restrictive assumptions:

• Asymptotic values: E1(z) := 1
e2 ez (disjoint type) and

E2(z) := 2πiez (subhyperbolic) are not topologically
conjugate on their escaping sets.

• Unbounded degree: No indication of what to expect for
maps whose Julia sets contain no asymptotic values but
sequences of points with unbounded local degree.
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z 7→ π sinh z

We want to define a model consisting of a

• topological space X ,

• M : X → X

such that if gλ : z 7→ λ sinh(z) is any disjoint type map then

• J (gλ) is homeomorphic to X ,

• M|X is conjugate to g|J (gλ).

Our theorem tells us that J (f ) is homeomorphic to X/∼p,
where ∼p is an equivalence relation defined on (the endpoints
of) X .

The combinatorial description of the dynamics of f on J (f )
(Schleicher) tells us how ∼p is defined.
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Let gλ(z) := λ sinh(z) with λ > 0.

• Critical values: {−λi , λi}, no asymptotic values.

• gλ : R→ R is a homeomorphism with gλ(0) = 0.

• R \ {0} ⊂ I(gλ), while gλ(iR) ⊂ [−λi , λi].

For f (z) = π sinh z (i.e. f = gπ), 0 is a repelling fixed point with

f (πi) = 0 = f (−πi)

hence

• P(f ) = {−πi , 0, πi}.

• J (f ) = C.

• f is strongly subhyperbolic.
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When λ > 0 is sufficiently small,
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When λ > 0 is sufficiently small, gλ is of disjoint type.
From now on, we will fix such a disjoint type map g.

For every n ∈ Z,

g(Ln := {z : Im z = (n + 1/2)π}) = iR \ (−λ0i , λ0i)

hence J (g) is contained in the horizontal half-strips

SnL := {z : Re z < 0, Im z ∈ ((n − 1/2)π, (n + 1/2)π)},

SnR := {z : Re z > 0, Im z ∈ ((n − 1/2)π, (n + 1/2)π)}.

The restrictions g|SnR
and g|SnL

are conformal isomorphisms
onto the left or right half-plane, respectively.
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Let ZL := {nL : n ∈ Z}, ZR := {nR : n ∈ Z} and S := (ZL ∪ZR)N.

we can assign to every point z ∈ J (g) a unique external
address s = s0s1 · · · ∈ S such that gn(z) ∈ Ssn .

J (g) consists of dynamic rays and their endpoints, hence X
should be a subset of S × [0,∞).

• Z (s, t) = t + 2πis0

• T (s, t) := t

M : S × [0,∞)→ S × [0,∞), (s, t) 7→ (σ(s), F (t)− π|s1|),

where σ denotes the one-sided shift map and F (t) := et −1.

X := {(s, t) ∈ S × [0,∞) : T (Mn(s, t)) ≥ 0 for all n ≥ 0},

X := {(s, t) ∈ X : T (Mn(s, t))→∞ as n→∞}.
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X is homeomorphic to J (g) andM and g are conjugate.
=⇒M projects to a function M̃ on X̃ := X/ ∼p, where ∼p is an
equivalence relation on E(X ), such that

M̃ : X̃ → X̃ is conjugate to f : J (f )→ J (f ).
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Pinching

X is homeomorphic to J (g) andM and g are conjugate.
=⇒M projects to a function M̃ on X̃ := X/ ∼p, where ∼p is an
equivalence relation on E(X ), such that

M̃ : X̃ → X̃ is conjugate to f : J (f )→ J (f ).

Theorem (Schleicher)
If z is not on a dynamic ray then it is the landing point of one,
two or four dynamic rays.
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Iterate forward under g and backward under f on sets whose
limit is J (g). =⇒ sequence of conformal isomorphisms Φn:

f ◦ Φn+1 = Φn ◦ g

The limit Φ of the sequence Φn exists because f uniformly ex-
pands the hyperbolic metric on a domain U ⊃ J (f ), i.e.

‖Df (z)‖U := |f
′

(z)| ·
ρU(f (z))

ρU(z)
≥ E > 1.
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g disjoint type←→ f hyperbolic

Iterate forward under g and backward under f on sets whose
limit is J (g). =⇒ sequence of conformal isomorphisms Φn:

f ◦ Φn+1 = Φn ◦ g

The limit Φ of the sequence Φn exists because f uniformly ex-
pands the hyperbolic metric on a domain U ⊃ J (f ), i.e.

‖Df (z)‖U := |f
′

(z)| ·
ρU(f (z))

ρU(z)
≥ E > 1.

U is obtained by removing a full setF(f ) ⊃ K ⊃ S(f ) with f (K ) ⊂
K in the range:

• V := f−1(U) ⊂ U := C \ K =⇒ ρV (z) > ρU(z)

• f : V → U is a local isometry =⇒ ρV (z) = ρU(f (z)) · |f ′(z)|



Motivation & results Topological dynamics of z 7→ π sinh z Idea of proof

f strongly subhyperbolic

As for hyperbolic f , we can find a domain U ⊃ J (f ) such that

V := f−1(U) ⊂ U.

But

• U is not necessarily hyperbolic (U = C is possible).

• f : V → U is not a covering.

Since there are no asymptotic values in J (f ), f : V → U is a
branched covering.

We can introduce an orbifold metric on U, as for subhyperbolic
rational maps.
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Thank you for listening!
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