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Letf : C — C be a transcendental entire map.

e J(f): Julia set e F(f): Fatou set

It is possible that

Question

Can we give a complete description of topological dynamics for
a map with this property?

Yes, for a wide class of examples, including maps such as

Z — wsSinhz.
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The escaping set of f is defined as

I(f) :={z e C:f"(z) — oo}.

Question (Bergweiler)

Let Fap(z) = ae” +be™* such that both critical values are
preperodic. Is I(F4p) connected?

No, and this actually holds in a much more general setting.
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Strong subhyperbolicity

e S(f): set of singular values
o P(f) :=U,-o f"(S(f)): postsingular set

A transcendental entire map f is called subhyperboalic if
e F(f)NP(f)is compact,
o J(f)NP(f) is finite.

A subhyperbolic map f is called strongly subhyperbolic if

e J(f) contains no asymptotic values,
« the local degree of f| 7(r) is bounded by a finite constant.

Note that every hyperbolic map, i.e. a map f for which P(f) is a
compact subset of F(f), is strongly subhyperbolic.
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Theorem (Semiconjugacy)

Let f be strongly subhyperbolic, and let A € C be such that
g(z) := f(Az) is hyperbolic with connected Fatou set (disjoint
type). Then there is a continuous surjection ¢ : 7(g) — J(f)
such that

forall z € 7(g). Moreover, ¢ restricts to a homeomorphism
between the escaping sets 1(g) and I(f).

¢ The hypothesis will be automatically satisfied whenever \
is sufficiently small.

e Any two maps g and g’ as in the theorem are gc-conjugate
on their Julia sets, so it is sufficient to prove the theorem
for any such map.
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% This answers a question by Rempe on rigidity of Misiurewicz
parameters in the cosine family.

% The escaping set of a disjoint type map is disconnected.

Corollary 1

The escaping set of a strongly subhyperbolic transcendental
entire function is disconnected.

% Suppose that g is of disjoint type and has finite order, i.e.
loglog|g(z)| = O(log|z|) as z — oc.

Then it is known that [7(g) is a Cantor bouquet; i.e. homeomor-
phic to a straight brush in the sense of Aarts & Oversteegen.

Corollary 2

Let f be a finite-order strongly subhyperbolic map. Then 7 (f) is
a pinched Cantor bouquet; i.e. the quotient of a Cantor Bouquet
by a closed equivalence relation defined on its endpoints.
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Remarks

Previous results:

e When both critical values of a cosine map z — ae* +be™?
are preperiodic, part of our result is due to Schleicher.

e For hyperbolic maps, our theorem is due to Rempe.

Restrictive assumptions:

e Asymptotic values: E;(z) := e%ez (disjoint type) and
E,(z) := 2wie” (subhyperbolic) are not topologically
conjugate on their escaping sets.

e Unbounded degree: No indication of what to expect for

maps whose Julia sets contain no asymptotic values but
sequences of points with unbounded local degree.



Z+— mwSinhz

We want to define a model consisting of a
« topological space X,
e M: X — X
such that if gy : z — Asinh(z) is any disjoint type map then
e J(gy) is homeomorphic to X,
e My is conjugate to g|s(g,)-

Our theorem tells us that 7 (f) is homeomorphic to X / ~yp,

where ~ is an equivalence relation defined on (the endpoints
of) X.

The combinatorial description of the dynamics of f on 7 (f)
(Schleicher) tells us how ~, is defined.
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Z+— mwSinhz

We want to define a model consisting of a

« topological space X,

e M: X — X
such that if gy : z — Asinh(z) is any disjoint type map then

e J(gy) is homeomorphic to X,

e My is conjugate to g|z(g,)-
Our theorem tells us that 7 (f) is homeomorphic to X / ~y,
where ~p is an equivalence relation defined on (the endpoints
of) X.

The combinatorial description of the dynamics of f on J(f)
(Schleicher) tells us how ~, is defined.
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Let gx(z) := Asinh(z) with A > 0.
e Critical values: {—\i, Ai}, no asymptotic values.
e 0, : R — Ris a homeomorphism with g,(0) = 0.
e R\ {0} C I(gy), while gx(iR) C [—Ai, Ai].

Forf(z) = wsinhz (i.e. f = g;), 0 is a repelling fixed point with

f(mi) =0 ="f(—mi)

hence
o P(f) ={—i,0,i}.
o J(f)=C.

e f is strongly subhyperbolic.
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When X\ > 0 is sufficiently small, g, is of disjoint type.
From now on, we will fix such a disjoint type map g.

For every n € Z,
g(ln:={z:Imz = (n+1/2)r}) =iR\ (—XNoi, Aoi)
hence 7(g) is contained in the horizontal half-strips

Sn, = {z:Rez<0,Imze((n—1/2)7,(n+1/2)7m)},
Sy = {z:Rez>0,Imze((n—1/2)7,(n+1/2)7)}.

The restrictions g\SnR and g|5nL are conformal isomorphisms
onto the left or right half-plane, respectively.



Topological dynamics of z — 7 sinhz

LetZ, :={n_:n€Z},Zr :={ngr :n € Z}and S := (Z UZR)".



Topological dynamics of z — 7 sinhz

LetZ, :={n_:n€Z},Zr :={ngr :n € Z}and S := (Z UZR)".
we can assign to every point z € 7(g) a unique external
address s = sps; --- € S such that g"(z) € Ss,.



Topological dynamics of z — 7 sinhz

LetZ, :={n_:n€Z},Zr :={ngr :n € Z}and S := (Z UZR)".
we can assign to every point z € 7(g) a unique external
address s = sps; --- € S such that g"(z) € Ss,.

J(9) consists of dynamic rays and their endpoints, hence X
should be a subset of S x [0, ).



Topological dynamics of z — 7 sinhz

LetZ, :={n_:n€Z},Zr :={ngr :n € Z}and S := (Z UZR)".
we can assign to every point z € 7(g) a unique external
address s = sps; --- € S such that g"(z) € Ss,.
J(9) consists of dynamic rays and their endpoints, hence X
should be a subset of S x [0, ).

o Z(s,t) =t + 2misg

° T(§,t) =1



Topological dynamics of z — 7 sinhz

LetZ, :={n_:n€Z},Zr :={ngr :n € Z}and S := (Z UZR)".
we can assign to every point z € 7(g) a unique external
address s = sps; --- € S such that g"(z) € Ss,.
J(9) consists of dynamic rays and their endpoints, hence X
should be a subset of S x [0, ).

o Z(s,t) =t + 2misg

° T(§,t) =1

M : 8 x[0,00) = S x[0,00), (S,t) +— (c(8),F(t) — 7|S1]),

where o denotes the one-sided shift map and F(t) := e —1.



Topological dynamics of z — 7 sinhz

LetZ, :={n_:n€Z},Zr :={ngr :n € Z}and S := (Z UZR)".
we can assign to every point z € 7(g) a unique external
address s = sps; --- € S such that g"(z) € Ss,.
J(9) consists of dynamic rays and their endpoints, hence X
should be a subset of S x [0, ).

o Z(s,t) =t + 2misg

° T(§,t) =1

M: 8 x[0,00) = & x [0,00), (8,1) = (o(8), F(t) — ms1),
where o denotes the one-sided shift map and F(t) := e —1.

X = {(s,t) €S x[0,00): T(M"(s,t)) >0 foralln >0},
X = {(s,t) eX: T(M"(s,1)) = ccasn — oo}.
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For every external address s there exists a unique ts € [0, oc]
such that {t > 0: (s,t) € X} = [ts, 00). B
We denote by E(X) := {(s,ts)} the set of endpoints of X.
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Pinching

X is homeomorphic to 7(g) and M and g are conjugate.
— M projects to a function M on X := X/ ~p, where ~j is an

equivalence relation on E(X), such that

M : X — X is conjugate to f : J7(f) — J(f).

Theorem (Schleicher)

If z is not on a dynamic ray then it is the landing point of one,
two or four dynamic rays.
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g disjoint type «—— f hyperbolic
Iterate forward under g and backward under f on sets whose
limitis 7(g). = sequence of conformal isomorphisms ®,:

fodn g =®no0g

The limit ¢ of the sequence ¢, exists because f uniformly ex-
pands the hyperbolic metric on a domain U > J(f), i.e.

pu(f(z))

pu(2)
U is obtained by removing a full set 7(f) > K D S(f) with f(K) C
K in the range:

eV =f1(U)cU:=C\K = py(2) > pu(2)

o f:V — Uisalocal isometry = py (z) = pu(f(2)) - [f'(2)]

IDf(2)lly = If (2)] >E > 1



f strongly subhyperbolic

As for hyperbolic f, we can find a domain U > 7(f) such that

vV =f1U)cu.
But

¢ U is not necessarily hyperbolic (U = C is possible).
e f:V — U is not a covering.

Since there are no asymptotic values in J(f),f : V — Uisa
branched covering.

We can introduce an orbifold metric on U, as for subhyperbolic
rational maps.
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As for hyperbolic f, we can find a domain U > 7(f) such that
vV .=f1U)cu.

But

¢ U is not necessarily hyperbolic (U = C is possible).

e f :V — U is not a covering.
Since there are no asymptotic values in J(f),f : V — Uisa
branched covering.

We can introduce an orbifold metric on U, as for subhyperbolic
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Thank you for listening!
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