イロト イポト イヨト イヨト ヨー のくぐ

Semiconjugacies and pinched Cantor bouquets

H. Mihaljević-Brandt

Department of Mathematical Sciences, University of Liverpool

Cantor bouquets in hedgehogs and transcendental iteration Toulouse, June 16, 2009

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Motivation & results
- Topological dynamics of $z \mapsto \pi \sinh z$
- Idea of proof

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Let $f : \mathbb{C} \to \mathbb{C}$ be a transcendental entire map.

• $\mathcal{J}(f)$: Julia set • $\mathcal{F}(f)$: Fatou set

It is possible that

 $\mathcal{J}(f) = \mathbb{C}.$

Question

Can we give a complete description of topological dynamics for a map with this property?

Yes, for a wide class of examples, including maps such as

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Let $f : \mathbb{C} \to \mathbb{C}$ be a transcendental entire map.

• $\mathcal{J}(f)$: Julia set • $\mathcal{F}(f)$: Fatou set

It is possible that

 $\mathcal{J}(f) = \mathbb{C}.$

Question

Can we give a complete description of topological dynamics for a map with this property?

Yes, for a wide class of examples, including maps such as

Let $f : \mathbb{C} \to \mathbb{C}$ be a transcendental entire map.

• $\mathcal{J}(f)$: Julia set • $\mathcal{F}(f)$: Fatou set

It is possible that

 $\mathcal{J}(f) = \mathbb{C}.$

Question

Can we give a complete description of topological dynamics for a map with this property?

Yes, for a wide class of examples, including maps such as

Let $f : \mathbb{C} \to \mathbb{C}$ be a transcendental entire map.

• $\mathcal{J}(f)$: Julia set • $\mathcal{F}(f)$: Fatou set

It is possible that

 $\mathcal{J}(f) = \mathbb{C}.$

Question

Can we give a complete description of topological dynamics for a map with this property?

Yes, for a wide class of examples, including maps such as

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The escaping set of f is defined as

$$I(f) := \{ z \in \mathbb{C} : f^n(z) \to \infty \}.$$

Question (Bergweiler)

Let $F_{a,b}(z) = ae^{z} + be^{-z}$ such that both critical values are preperodic. Is $I(F_{a,b})$ connected?

No, and this actually holds in a much more general setting.

The escaping set of f is defined as

$$I(f) := \{ z \in \mathbb{C} : f^n(z) \to \infty \}.$$

Question (Bergweiler)

Let $F_{a,b}(z) = a e^z + b e^{-z}$ such that both critical values are preperodic. Is $I(F_{a,b})$ connected?

No, and this actually holds in a much more general setting.

The escaping set of f is defined as

$$I(f) := \{ z \in \mathbb{C} : f^n(z) \to \infty \}.$$

Question (Bergweiler)

Let $F_{a,b}(z) = a e^z + b e^{-z}$ such that both critical values are preperodic. Is $I(F_{a,b})$ connected?

No, and this actually holds in a much more general setting.

Strong subhyperbolicity

- S(f): set of singular values
- $P(f) := \overline{\bigcup_{n \ge 0} f^n(S(f))}$: postsingular set

A transcendental entire map f is called subhyperbolic if

- $\mathcal{F}(f) \cap P(f)$ is compact,
- $\mathcal{J}(f) \cap P(f)$ is finite.

A subhyperbolic map f is called strongly subhyperbolic if

- $\mathcal{J}(f)$ contains no asymptotic values,
- the local degree of $f|_{\mathcal{J}(f)}$ is bounded by a finite constant.

Strong subhyperbolicity

- S(f): set of singular values
- $P(f) := \overline{\bigcup_{n>0} f^n(S(f))}$: postsingular set

A transcendental entire map f is called subhyperbolic if

- $\mathcal{F}(f) \cap P(f)$ is compact,
- $\mathcal{J}(f) \cap P(f)$ is finite.

A subhyperbolic map f is called strongly subhyperbolic if

- $\mathcal{J}(f)$ contains no asymptotic values,
- the local degree of $f|_{\mathcal{J}(f)}$ is bounded by a finite constant.

Strong subhyperbolicity

- S(f): set of singular values
- $P(f) := \overline{\bigcup_{n>0} f^n(S(f))}$: postsingular set

A transcendental entire map f is called subhyperbolic if

- $\mathcal{F}(f) \cap P(f)$ is compact,
- $\mathcal{J}(f) \cap P(f)$ is finite.

A subhyperbolic map f is called strongly subhyperbolic if

- $\mathcal{J}(f)$ contains no asymptotic values,
- the local degree of $f|_{\mathcal{J}(f)}$ is bounded by a finite constant.

Strong subhyperbolicity

- S(f): set of singular values
- $P(f) := \overline{\bigcup_{n>0} f^n(S(f))}$: postsingular set

A transcendental entire map f is called subhyperbolic if

- $\mathcal{F}(f) \cap P(f)$ is compact,
- $\mathcal{J}(f) \cap P(f)$ is finite.

A subhyperbolic map f is called strongly subhyperbolic if

- $\mathcal{J}(f)$ contains no asymptotic values,
- the local degree of $f|_{\mathcal{J}(f)}$ is bounded by a finite constant.

Let f be strongly subhyperbolic, and let $\lambda \in \mathbb{C}$ be such that $g(z) := f(\lambda z)$ is hyperbolic with connected Fatou set (disjoint type). Then there is a continuous surjection $\phi : \mathcal{J}(g) \to \mathcal{J}(f)$ such that

 $f(\phi(z)) = \phi(g(z))$

- The hypothesis will be automatically satisfied whenever λ is sufficiently small.
- Any two maps *g* and *g'* as in the theorem are qc-conjugate on their Julia sets, so it is sufficient to prove the theorem for any such map.

Let f be strongly subhyperbolic, and let $\lambda \in \mathbb{C}$ be such that $g(z) := f(\lambda z)$ is hyperbolic with connected Fatou set (disjoint type). Then there is a continuous surjection $\phi : \mathcal{J}(g) \to \mathcal{J}(f)$ such that

 $f(\phi(z)) = \phi(g(z))$

- The hypothesis will be automatically satisfied whenever λ is sufficiently small.
- Any two maps g and g' as in the theorem are qc-conjugate on their Julia sets, so it is sufficient to prove the theorem for any such map.

Let f be strongly subhyperbolic, and let $\lambda \in \mathbb{C}$ be such that $g(z) := f(\lambda z)$ is hyperbolic with connected Fatou set (disjoint type). Then there is a continuous surjection $\phi : \mathcal{J}(g) \to \mathcal{J}(f)$ such that

 $f(\phi(\boldsymbol{z})) = \phi(\boldsymbol{g}(\boldsymbol{z}))$

- The hypothesis will be automatically satisfied whenever λ is sufficiently small.
- Any two maps g and g' as in the theorem are qc-conjugate on their Julia sets, so it is sufficient to prove the theorem for any such map.

Let f be strongly subhyperbolic, and let $\lambda \in \mathbb{C}$ be such that $g(z) := f(\lambda z)$ is hyperbolic with connected Fatou set (disjoint type). Then there is a continuous surjection $\phi : \mathcal{J}(g) \to \mathcal{J}(f)$ such that

 $f(\phi(\boldsymbol{z})) = \phi(\boldsymbol{g}(\boldsymbol{z}))$

- The hypothesis will be automatically satisfied whenever λ is sufficiently small.
- Any two maps g and g' as in the theorem are qc-conjugate on their Julia sets, so it is sufficient to prove the theorem for any such map.

Theorem (Semiconjugacy)

Let f be strongly subhyperbolic, and let $\lambda \in \mathbb{C}$ be such that $g(z) := f(\lambda z)$ is hyperbolic with connected Fatou set (disjoint type). Then there is a continuous surjection $\phi : \mathcal{J}(g) \to \mathcal{J}(f)$ such that

 $f(\phi(\boldsymbol{z})) = \phi(\boldsymbol{g}(\boldsymbol{z}))$

- The hypothesis will be automatically satisfied whenever λ is sufficiently small.
- Any two maps g and g' as in the theorem are qc-conjugate on their Julia sets, so it is sufficient to prove the theorem for any such map.

Let f be strongly subhyperbolic, and let $\lambda \in \mathbb{C}$ be such that $g(z) := f(\lambda z)$ is hyperbolic with connected Fatou set (disjoint type). Then there is a continuous surjection $\phi : \mathcal{J}(g) \to \mathcal{J}(f)$ such that

 $f(\phi(\boldsymbol{z})) = \phi(\boldsymbol{g}(\boldsymbol{z}))$

- The hypothesis will be automatically satisfied whenever λ is sufficiently small.
- Any two maps g and g' as in the theorem are qc-conjugate on their Julia sets, so it is sufficient to prove the theorem for any such map.

 \star The escaping set of a disjoint type map is disconnected.

Corollary 1

The escaping set of a strongly subhyperbolic transcendental entire function is disconnected.

★ Suppose that *g* is of disjoint type and has finite order, i.e. $\log \log |g(z)| = O(\log |z|)$ as $z \to \infty$.

Then it is known that $\mathcal{J}(g)$ is a Cantor bouquet; i.e. homeomorphic to a straight brush in the sense of Aarts & Oversteegen.

Corollary 2

 \star The escaping set of a disjoint type map is disconnected.

Corollary 1

The escaping set of a strongly subhyperbolic transcendental entire function is disconnected.

★ Suppose that *g* is of disjoint type and has finite order, i.e. $\log \log |g(z)| = O(\log |z|)$ as $z \to \infty$.

Then it is known that $\mathcal{J}(g)$ is a Cantor bouquet; i.e. homeomorphic to a straight brush in the sense of Aarts & Oversteegen.

Corollary 2

 \star The escaping set of a disjoint type map is disconnected.

Corollary 1

The escaping set of a strongly subhyperbolic transcendental entire function is disconnected.

★ Suppose that *g* is of disjoint type and has finite order, i.e. $\log \log |g(z)| = O(\log |z|)$ as $z \to \infty$.

Then it is known that $\mathcal{J}(g)$ is a Cantor bouquet; i.e. homeomorphic to a straight brush in the sense of Aarts & Oversteegen.

Corollary 2

 \star The escaping set of a disjoint type map is disconnected.

Corollary 1

The escaping set of a strongly subhyperbolic transcendental entire function is disconnected.

★ Suppose that *g* is of disjoint type and has finite order, i.e. $\log \log |g(z)| = O(\log |z|)$ as $z \to \infty$.

Then it is known that $\mathcal{J}(g)$ is a Cantor bouquet; i.e. homeomorphic to a straight brush in the sense of Aarts & Oversteegen.

Corollary 2

 \star The escaping set of a disjoint type map is disconnected.

Corollary 1

The escaping set of a strongly subhyperbolic transcendental entire function is disconnected.

★ Suppose that *g* is of disjoint type and has finite order, i.e. $\log \log |g(z)| = O(\log |z|)$ as $z \to \infty$.

Then it is known that $\mathcal{J}(g)$ is a Cantor bouquet; i.e. homeomorphic to a straight brush in the sense of Aarts & Oversteegen.

Corollary 2

 \star The escaping set of a disjoint type map is disconnected.

Corollary 1

The escaping set of a strongly subhyperbolic transcendental entire function is disconnected.

★ Suppose that *g* is of disjoint type and has finite order, i.e. $\log \log |g(z)| = O(\log |z|)$ as $z \to \infty$.

Then it is known that $\mathcal{J}(g)$ is a Cantor bouquet; i.e. homeomorphic to a straight brush in the sense of Aarts & Oversteegen.

Corollary 2

 \star The escaping set of a disjoint type map is disconnected.

Corollary 1

The escaping set of a strongly subhyperbolic transcendental entire function is disconnected.

★ Suppose that *g* is of disjoint type and has finite order, i.e. $\log \log |g(z)| = O(\log |z|)$ as $z \to \infty$.

Then it is known that $\mathcal{J}(g)$ is a Cantor bouquet; i.e. homeomorphic to a straight brush in the sense of Aarts & Oversteegen.

Corollary 2

 \star The escaping set of a disjoint type map is disconnected.

Corollary 1

The escaping set of a strongly subhyperbolic transcendental entire function is disconnected.

★ Suppose that *g* is of disjoint type and has finite order, i.e. $\log \log |g(z)| = O(\log |z|)$ as $z \to \infty$.

Then it is known that $\mathcal{J}(g)$ is a Cantor bouquet; i.e. homeomorphic to a straight brush in the sense of Aarts & Oversteegen.

Corollary 2

Remarks

Previous results:

- When both critical values of a cosine map z → ae^z + be^{-z} are preperiodic, part of our result is due to Schleicher.
- For hyperbolic maps, our theorem is due to Rempe.

- Asymptotic values: $E_1(z) := \frac{1}{e^2}e^z$ (disjoint type) and $E_2(z) := 2\pi i e^z$ (subhyperbolic) are not topologically conjugate on their escaping sets.
- **Unbounded degree:** No indication of what to expect for maps whose Julia sets contain no asymptotic values but sequences of points with unbounded local degree.

Remarks

Previous results:

- When both critical values of a cosine map z → ae^z + be^{-z} are preperiodic, part of our result is due to Schleicher.
- For hyperbolic maps, our theorem is due to Rempe.

- Asymptotic values: $E_1(z) := \frac{1}{e^2}e^z$ (disjoint type) and $E_2(z) := 2\pi i e^z$ (subhyperbolic) are not topologically conjugate on their escaping sets.
- **Unbounded degree:** No indication of what to expect for maps whose Julia sets contain no asymptotic values but sequences of points with unbounded local degree.

Remarks

Previous results:

- When both critical values of a cosine map z → a e^z + b e^{-z} are preperiodic, part of our result is due to Schleicher.
- For hyperbolic maps, our theorem is due to Rempe.

- Asymptotic values: $E_1(z) := \frac{1}{e^2}e^z$ (disjoint type) and $E_2(z) := 2\pi i e^z$ (subhyperbolic) are not topologically conjugate on their escaping sets.
- **Unbounded degree:** No indication of what to expect for maps whose Julia sets contain no asymptotic values but sequences of points with unbounded local degree.

Remarks

Previous results:

- When both critical values of a cosine map z → a e^z + b e^{-z} are preperiodic, part of our result is due to Schleicher.
- For hyperbolic maps, our theorem is due to Rempe.

- Asymptotic values: $E_1(z) := \frac{1}{e^2}e^z$ (disjoint type) and $E_2(z) := 2\pi i e^z$ (subhyperbolic) are not topologically conjugate on their escaping sets.
- Unbounded degree: No indication of what to expect for maps whose Julia sets contain no asymptotic values but sequences of points with unbounded local degree.

 $z \mapsto \pi \sinh z$

We want to define a model consisting of a

- topological space \overline{X} ,
- $\mathcal{M}:\overline{X}\to\overline{X}$

such that if $g_{\lambda} : z \mapsto \lambda \sinh(z)$ is any disjoint type map then

- $\mathcal{J}(g_{\lambda})$ is homeomorphic to \overline{X} ,
- $\mathcal{M}|_{\overline{X}}$ is conjugate to $g|_{\mathcal{J}(g_{\lambda})}$.

Our theorem tells us that $\mathcal{J}(f)$ is homeomorphic to \overline{X}/\sim_p , where \sim_p is an equivalence relation defined on (the endpoints of) \overline{X} .

The combinatorial description of the dynamics of f on $\mathcal{J}(f)$ (Schleicher) tells us how \sim_{p} is defined.

$z \mapsto \pi \sinh z$

We want to define a model consisting of a

- topological space \overline{X} ,
- $\mathcal{M}:\overline{X}\to\overline{X}$

such that if $g_{\lambda} : z \mapsto \lambda \sinh(z)$ is any disjoint type map then

- $\mathcal{J}(g_{\lambda})$ is homeomorphic to \overline{X} ,
- $\mathcal{M}|_{\overline{X}}$ is conjugate to $g|_{\mathcal{J}(g_{\lambda})}$.

Our theorem tells us that $\mathcal{J}(f)$ is homeomorphic to \overline{X}/\sim_p , where \sim_p is an equivalence relation defined on (the endpoints of) \overline{X} .

The combinatorial description of the dynamics of f on $\mathcal{J}(f)$ (Schleicher) tells us how \sim_{p} is defined.

 $z \mapsto \pi \sinh z$

We want to define a model consisting of a

- topological space \overline{X} ,
- $\mathcal{M}:\overline{X}\to\overline{X}$

such that if $g_{\lambda} : z \mapsto \lambda \sinh(z)$ is any disjoint type map then

- $\mathcal{J}(g_{\lambda})$ is homeomorphic to \overline{X} ,
- $\mathcal{M}|_{\overline{X}}$ is conjugate to $g|_{\mathcal{J}(g_{\lambda})}$.

Our theorem tells us that $\mathcal{J}(f)$ is homeomorphic to \overline{X}/\sim_p , where \sim_p is an equivalence relation defined on (the endpoints of) \overline{X} .

The combinatorial description of the dynamics of f on $\mathcal{J}(f)$ (Schleicher) tells us how \sim_{ρ} is defined.

 $z \mapsto \pi \sinh z$

We want to define a model consisting of a

- topological space \overline{X} ,
- $\mathcal{M}:\overline{X}\to\overline{X}$

such that if $g_{\lambda} : z \mapsto \lambda \sinh(z)$ is any disjoint type map then

- $\mathcal{J}(g_{\lambda})$ is homeomorphic to \overline{X} ,
- *M*|_{*X̄*} is conjugate to *g*|_{*J*(*g*_λ)}.

Our theorem tells us that $\mathcal{J}(f)$ is homeomorphic to \overline{X}/\sim_p , where \sim_p is an equivalence relation defined on (the endpoints of) \overline{X} .

The combinatorial description of the dynamics of f on $\mathcal{J}(f)$ (Schleicher) tells us how \sim_{ρ} is defined.

Idea of proof

 $z \mapsto \pi \sinh z$

We want to define a model consisting of a

- topological space \overline{X} ,
- $\mathcal{M}:\overline{X}\to\overline{X}$

such that if $g_{\lambda} : z \mapsto \lambda \sinh(z)$ is any disjoint type map then

- $\mathcal{J}(g_{\lambda})$ is homeomorphic to \overline{X} ,
- $\mathcal{M}|_{\overline{X}}$ is conjugate to $g|_{\mathcal{J}(g_{\lambda})}$.

Our theorem tells us that $\mathcal{J}(f)$ is homeomorphic to \overline{X}/\sim_{p} , where \sim_{p} is an equivalence relation defined on (the endpoints of) \overline{X} .

The combinatorial description of the dynamics of f on $\mathcal{J}(f)$ (Schleicher) tells us how \sim_{p} is defined.
Idea of proof

 $z \mapsto \pi \sinh z$

We want to define a model consisting of a

- topological space \overline{X} ,
- $\mathcal{M}:\overline{X}\to\overline{X}$

such that if $g_{\lambda} : z \mapsto \lambda \sinh(z)$ is any disjoint type map then

- $\mathcal{J}(g_{\lambda})$ is homeomorphic to \overline{X} ,
- $\mathcal{M}|_{\overline{X}}$ is conjugate to $g|_{\mathcal{J}(g_{\lambda})}$.

Our theorem tells us that $\mathcal{J}(f)$ is homeomorphic to \overline{X}/\sim_{p} , where \sim_{p} is an equivalence relation defined on (the endpoints of) \overline{X} .

The combinatorial description of the dynamics of *f* on $\mathcal{J}(f)$ (Schleicher) tells us how \sim_p is defined.

イロト イポト イヨト イヨト ヨー のくぐ

Let $g_{\lambda}(z) := \lambda \sinh(z)$ with $\lambda > 0$.

- Critical values: $\{-\lambda i, \lambda i\}$, no asymptotic values.
- $g_{\lambda} : \mathbb{R} \to \mathbb{R}$ is a homeomorphism with $g_{\lambda}(0) = 0$.
- $\mathbb{R} \setminus \{0\} \subset I(g_{\lambda})$, while $g_{\lambda}(i\mathbb{R}) \subset [-\lambda i, \lambda i]$.

For $f(z) = \pi \sinh z$ (i.e. $f = g_{\pi}$), 0 is a repelling fixed point with

$$f(\pi i) = 0 = f(-\pi i)$$

- $P(f) = \{-\pi i, 0, \pi i\}.$
- $\mathcal{J}(f) = \mathbb{C}$.
- f is strongly subhyperbolic.

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Let $g_{\lambda}(z) := \lambda \sinh(z)$ with $\lambda > 0$.

• Critical values: $\{-\lambda i, \lambda i\}$, no asymptotic values.

• $g_{\lambda} : \mathbb{R} \to \mathbb{R}$ is a homeomorphism with $g_{\lambda}(0) = 0$.

• $\mathbb{R} \setminus \{0\} \subset I(g_{\lambda})$, while $g_{\lambda}(i\mathbb{R}) \subset [-\lambda i, \lambda i]$.

For $f(z) = \pi \sinh z$ (i.e. $f = g_{\pi}$), 0 is a repelling fixed point with

 $f(\pi i) = 0 = f(-\pi i)$

- $P(f) = \{-\pi i, 0, \pi i\}.$
- $\mathcal{J}(f) = \mathbb{C}$.
- f is strongly subhyperbolic.

Let $g_{\lambda}(z) := \lambda \sinh(z)$ with $\lambda > 0$.

- Critical values: $\{-\lambda i, \lambda i\}$, no asymptotic values.
- $g_{\lambda} : \mathbb{R} \to \mathbb{R}$ is a homeomorphism with $g_{\lambda}(0) = 0$.
- $\mathbb{R} \setminus \{0\} \subset I(g_{\lambda})$, while $g_{\lambda}(i\mathbb{R}) \subset [-\lambda i, \lambda i]$.

For $f(z) = \pi \sinh z$ (i.e. $f = g_{\pi}$), 0 is a repelling fixed point with

 $f(\pi i) = 0 = f(-\pi i)$

- $P(f) = \{-\pi i, 0, \pi i\}.$
- $\mathcal{J}(f) = \mathbb{C}$.
- *f* is strongly subhyperbolic.

Let $g_{\lambda}(z) := \lambda \sinh(z)$ with $\lambda > 0$.

- Critical values: $\{-\lambda i, \lambda i\}$, no asymptotic values.
- $g_{\lambda}:\mathbb{R}\to\mathbb{R}$ is a homeomorphism with $g_{\lambda}(0)=0$.
- $\mathbb{R} \setminus \{0\} \subset I(g_{\lambda})$, while $g_{\lambda}(i\mathbb{R}) \subset [-\lambda i, \lambda i]$.

For $f(z) = \pi \sinh z$ (i.e. $f = g_{\pi}$), 0 is a repelling fixed point with

 $f(\pi i) = \mathbf{0} = f(-\pi i)$

- $P(f) = \{-\pi i, 0, \pi i\}.$
- $\mathcal{J}(f) = \mathbb{C}$.
- f is strongly subhyperbolic.

Let $g_{\lambda}(z) := \lambda \sinh(z)$ with $\lambda > 0$.

- Critical values: $\{-\lambda i, \lambda i\}$, no asymptotic values.
- $g_{\lambda} : \mathbb{R} \to \mathbb{R}$ is a homeomorphism with $g_{\lambda}(0) = 0$.
- $\mathbb{R} \setminus \{0\} \subset I(g_{\lambda})$, while $g_{\lambda}(i\mathbb{R}) \subset [-\lambda i, \lambda i]$.

For $f(z) = \pi \sinh z$ (i.e. $f = g_{\pi}$), 0 is a repelling fixed point with

$$f(\pi i) = 0 = f(-\pi i)$$

- $P(f) = \{-\pi i, 0, \pi i\}.$
- $\mathcal{J}(f) = \mathbb{C}$.
- f is strongly subhyperbolic.

Let $g_{\lambda}(z) := \lambda \sinh(z)$ with $\lambda > 0$.

- Critical values: $\{-\lambda i, \lambda i\}$, no asymptotic values.
- $g_{\lambda} : \mathbb{R} \to \mathbb{R}$ is a homeomorphism with $g_{\lambda}(0) = 0$.
- $\mathbb{R} \setminus \{0\} \subset I(g_{\lambda})$, while $g_{\lambda}(i\mathbb{R}) \subset [-\lambda i, \lambda i]$.

For $f(z) = \pi \sinh z$ (i.e. $f = g_{\pi}$), 0 is a repelling fixed point with

$$f(\pi i) = 0 = f(-\pi i)$$

- $P(f) = \{-\pi i, 0, \pi i\}.$
- $\mathcal{J}(f) = \mathbb{C}$.
- *f* is strongly subhyperbolic.

Let $g_{\lambda}(z) := \lambda \sinh(z)$ with $\lambda > 0$.

- Critical values: $\{-\lambda i, \lambda i\}$, no asymptotic values.
- $g_{\lambda} : \mathbb{R} \to \mathbb{R}$ is a homeomorphism with $g_{\lambda}(0) = 0$.
- $\mathbb{R} \setminus \{0\} \subset I(g_{\lambda})$, while $g_{\lambda}(i\mathbb{R}) \subset [-\lambda i, \lambda i]$.

For $f(z) = \pi \sinh z$ (i.e. $f = g_{\pi}$), 0 is a repelling fixed point with

$$f(\pi i) = 0 = f(-\pi i)$$

- $P(f) = \{-\pi i, 0, \pi i\}.$
- $\mathcal{J}(f) = \mathbb{C}$.
- f is strongly subhyperbolic.

When $\lambda > 0$ is sufficiently small,

・ロト・西ト・モート ヨー うへの

When $\lambda > 0$ is sufficiently small,

When $\lambda > 0$ is sufficiently small,

・ロト・日本・日本・日本・日本・日本

When $\lambda > 0$ is sufficiently small,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

When $\lambda > 0$ is sufficiently small, g_{λ} is of disjoint type. From now on, we will fix such a disjoint type map *g*.

When $\lambda > 0$ is sufficiently small, g_{λ} is of disjoint type. From now on, we will fix such a disjoint type map g.

For every $n \in \mathbb{Z}$,

 $g(L_n := \{z : \operatorname{Im} z = (n+1/2)\pi\}) = i\mathbb{R} \setminus (-\lambda_0 i, \lambda_0 i)$

hence $\mathcal{J}(g)$ is contained in the horizontal half-strips

 $\begin{array}{lll} S_{n_L} &:= & \{z : \operatorname{Re} z < 0, \operatorname{Im} z \in ((n-1/2)\pi, (n+1/2)\pi)\}, \\ S_{n_R} &:= & \{z : \operatorname{Re} z > 0, \operatorname{Im} z \in ((n-1/2)\pi, (n+1/2)\pi)\}. \end{array}$

When $\lambda > 0$ is sufficiently small, g_{λ} is of disjoint type. From now on, we will fix such a disjoint type map g.

For every $n \in \mathbb{Z}$,

 $g(L_n := \{z : \operatorname{Im} z = (n+1/2)\pi\}) = i\mathbb{R} \setminus (-\lambda_0 i, \lambda_0 i)$

hence $\mathcal{J}(g)$ is contained in the horizontal half-strips

When $\lambda > 0$ is sufficiently small, g_{λ} is of disjoint type. From now on, we will fix such a disjoint type map g.

For every $n \in \mathbb{Z}$,

 $g(L_n := \{z : \operatorname{Im} z = (n+1/2)\pi\}) = i\mathbb{R} \setminus (-\lambda_0 i, \lambda_0 i)$

hence $\mathcal{J}(g)$ is contained in the horizontal half-strips

 $\begin{array}{lll} S_{n_L} &:= & \{z: \operatorname{Re} z < 0, \operatorname{Im} z \in ((n-1/2)\pi, (n+1/2)\pi)\}, \\ S_{n_R} &:= & \{z: \operatorname{Re} z > 0, \operatorname{Im} z \in ((n-1/2)\pi, (n+1/2)\pi)\}. \end{array}$

The restrictions $g|_{S_{n_R}}$ and $g|_{S_{n_L}}$ are conformal isomorphisms onto the left or right half-plane, respectively.

Let $\mathbb{Z}_L := \{n_L : n \in \mathbb{Z}\}, \mathbb{Z}_R := \{n_R : n \in \mathbb{Z}\} \text{ and } S := (\mathbb{Z}_L \cup \mathbb{Z}_R)^{\mathbb{N}}.$

we can assign to every point $z \in \mathcal{J}(g)$ a unique external address $\underline{s} = s_0 s_1 \dots \in S$ such that $g^n(z) \in S_{s_n}$.

 $\mathcal{J}(g)$ consists of dynamic rays and their endpoints, hence \overline{X} should be a subset of $\mathcal{S} \times [0, \infty)$.

- $Z(\underline{s},t) = t + 2\pi i s_0$
- $T(\underline{s},t) := t$

 $\mathcal{M}: \mathcal{S} \times [0, \infty) \to \mathcal{S} \times [0, \infty), \ (\underline{s}, t) \mapsto (\sigma(\underline{s}), \mathcal{F}(t) - \pi |s_1|),$

where σ denotes the one-sided shift map and $F(t) := e^t - 1$.

 $\begin{aligned} \overline{X} &:= & \{(\underline{s}, t) \in \mathcal{S} \times [0, \infty) : \mathcal{T}(\mathcal{M}^n(\underline{s}, t)) \ge 0 \text{ for all } n \ge 0\}, \\ X &:= & \{(\underline{s}, t) \in \overline{X} : \mathcal{T}(\mathcal{M}^n(\underline{s}, t)) \to \infty \text{ as } n \to \infty\}. \end{aligned}$

・ロト・西ト・ヨト・ヨー ひへで

Let $\mathbb{Z}_L := \{n_L : n \in \mathbb{Z}\}, \mathbb{Z}_R := \{n_R : n \in \mathbb{Z}\} \text{ and } S := (\mathbb{Z}_L \cup \mathbb{Z}_R)^{\mathbb{N}}.$ we can assign to every point $z \in \mathcal{J}(g)$ a unique external address $\underline{s} = s_0 s_1 \cdots \in S$ such that $g^n(z) \in S_{s_n}.$

 $\mathcal{J}(g)$ consists of dynamic rays and their endpoints, hence \overline{X} should be a subset of $\mathcal{S} \times [0, \infty)$.

- $Z(\underline{s},t) = t + 2\pi i s_0$
- $T(\underline{s},t) := t$

 $\mathcal{M}: \mathcal{S} \times [0, \infty) \to \mathcal{S} \times [0, \infty), \ (\underline{s}, t) \mapsto (\sigma(\underline{s}), \mathcal{F}(t) - \pi |s_1|),$

where σ denotes the one-sided shift map and $F(t) := e^t - 1$.

 $\begin{aligned} \overline{X} &:= & \{(\underline{s}, t) \in \mathcal{S} \times [0, \infty) : T(\mathcal{M}^n(\underline{s}, t)) \ge 0 \text{ for all } n \ge 0\}, \\ X &:= & \{(\underline{s}, t) \in \overline{X} : T(\mathcal{M}^n(\underline{s}, t)) \to \infty \text{ as } n \to \infty\}. \end{aligned}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let $\mathbb{Z}_L := \{n_L : n \in \mathbb{Z}\}, \mathbb{Z}_R := \{n_R : n \in \mathbb{Z}\} \text{ and } S := (\mathbb{Z}_L \cup \mathbb{Z}_R)^{\mathbb{N}}.$ we can assign to every point $z \in \mathcal{J}(g)$ a unique external

address $\underline{s} = s_0 s_1 \cdots \in S$ such that $g^n(z) \in S_{s_n}$.

 $\mathcal{J}(g)$ consists of dynamic rays and their endpoints, hence \overline{X} should be a subset of $\mathcal{S} \times [0, \infty)$.

- $Z(\underline{s},t) = t + 2\pi i s_0$
- $T(\underline{s},t) := t$

 $\mathcal{M}: \mathcal{S} \times [0,\infty) \to \mathcal{S} \times [0,\infty), \ (\underline{s},t) \mapsto (\sigma(\underline{s}), \mathcal{F}(t) - \pi |s_1|),$

where σ denotes the one-sided shift map and $F(t) := e^t - 1$.

 $\begin{aligned} \overline{X} &:= & \{(\underline{s}, t) \in \mathcal{S} \times [0, \infty) : T(\mathcal{M}^n(\underline{s}, t)) \ge 0 \text{ for all } n \ge 0\}, \\ X &:= & \{(\underline{s}, t) \in \overline{X} : T(\mathcal{M}^n(\underline{s}, t)) \to \infty \text{ as } n \to \infty\}. \end{aligned}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let $\mathbb{Z}_L := \{n_L : n \in \mathbb{Z}\}, \mathbb{Z}_R := \{n_R : n \in \mathbb{Z}\} \text{ and } S := (\mathbb{Z}_L \cup \mathbb{Z}_R)^{\mathbb{N}}.$ we can assign to every point $z \in \mathcal{J}(g)$ a unique external address $\underline{s} = s_0 s_1 \cdots \in S$ such that $g^n(z) \in S_{s_n}$.

 $\mathcal{J}(g)$ consists of dynamic rays and their endpoints, hence \overline{X} should be a subset of $\mathcal{S} \times [0, \infty)$.

- $Z(\underline{s}, t) = t + 2\pi i s_0$
- $T(\underline{s},t) := t$

 $\mathcal{M}: \mathcal{S} \times [0, \infty) \to \mathcal{S} \times [0, \infty), \ (\underline{s}, t) \mapsto (\sigma(\underline{s}), \mathcal{F}(t) - \pi |s_1|),$

where σ denotes the one-sided shift map and $F(t) := e^t - 1$.

 $\begin{aligned} \overline{X} &:= & \{(\underline{s}, t) \in \mathcal{S} \times [0, \infty) : \mathcal{T}(\mathcal{M}^n(\underline{s}, t)) \ge 0 \text{ for all } n \ge 0\}, \\ X &:= & \{(\underline{s}, t) \in \overline{X} : \mathcal{T}(\mathcal{M}^n(\underline{s}, t)) \to \infty \text{ as } n \to \infty\}. \end{aligned}$

・ロト・国ト・ヨト・ヨー つへで

Let $\mathbb{Z}_L := \{n_L : n \in \mathbb{Z}\}, \mathbb{Z}_R := \{n_R : n \in \mathbb{Z}\} \text{ and } S := (\mathbb{Z}_L \cup \mathbb{Z}_R)^{\mathbb{N}}.$ we can assign to every point $z \in \mathcal{J}(g)$ a unique external address $s = s_0 s_1 \cdots \in S$ such that $g^n(z) \in S_{s_n}$.

 $\mathcal{J}(g)$ consists of dynamic rays and their endpoints, hence \overline{X} should be a subset of $\mathcal{S} \times [0, \infty)$.

- $Z(\underline{s},t) = t + 2\pi i s_0$
- $T(\underline{s}, t) := t$

 $\mathcal{M}: \mathcal{S} \times [0,\infty) \to \mathcal{S} \times [0,\infty), \ (\underline{s},t) \mapsto (\sigma(\underline{s}), \mathcal{F}(t) - \pi |s_1|),$

where σ denotes the one-sided shift map and $F(t) := e^t - 1$.

 $\begin{aligned} \overline{X} &:= & \{(\underline{s}, t) \in \mathcal{S} \times [0, \infty) : \mathcal{T}(\mathcal{M}^n(\underline{s}, t)) \ge 0 \text{ for all } n \ge 0\}, \\ X &:= & \{(\underline{s}, t) \in \overline{X} : \mathcal{T}(\mathcal{M}^n(\underline{s}, t)) \to \infty \text{ as } n \to \infty\}. \end{aligned}$

Let $\mathbb{Z}_L := \{n_L : n \in \mathbb{Z}\}, \mathbb{Z}_R := \{n_R : n \in \mathbb{Z}\} \text{ and } S := (\mathbb{Z}_L \cup \mathbb{Z}_R)^{\mathbb{N}}.$ we can assign to every point $z \in \mathcal{J}(g)$ a unique external address $\underline{s} = s_0 s_1 \cdots \in S$ such that $g^n(z) \in S_{s_n}$.

 $\mathcal{J}(g)$ consists of dynamic rays and their endpoints, hence \overline{X} should be a subset of $\mathcal{S} \times [0, \infty)$.

- $Z(\underline{s},t) = t + 2\pi i s_0$
- $T(\underline{s},t) := t$

 $\mathcal{M}: \mathcal{S} \times [0,\infty) \to \mathcal{S} \times [0,\infty), \ (\underline{s},t) \mapsto (\sigma(\underline{s}), \mathcal{F}(t) - \pi |s_1|),$

where σ denotes the one-sided shift map and $F(t) := e^t - 1$.

 $\overline{X} := \{ (\underline{s}, t) \in \mathcal{S} \times [0, \infty) : T(\mathcal{M}^n(\underline{s}, t)) \ge 0 \text{ for all } n \ge 0 \}, \\ X := \{ (\underline{s}, t) \in \overline{X} : T(\mathcal{M}^n(\underline{s}, t)) \to \infty \text{ as } n \to \infty \}.$

Idea of proof

\overline{X} is a straight brush.

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● ● ● ● ●

\overline{X} is a straight brush.

For every external address \underline{s} there exists a unique $t_{\underline{s}} \in [0, \infty]$ such that $\{t \ge 0 : (\underline{s}, t) \in \overline{X}\} = [t_{\underline{s}}, \infty)$.

(ロ) (目) (日) (日) (日) (日) (日)

\overline{X} is a straight brush.

For every external address \underline{s} there exists a unique $t_{\underline{s}} \in [0, \infty]$ such that $\{t \ge 0 : (\underline{s}, t) \in \overline{X}\} = [t_{\underline{s}}, \infty)$. We denote by $E(\overline{X}) := \{(\underline{s}, t_{\underline{s}})\}$ the set of endpoints of \overline{X} .

(ロ) (目) (日) (日) (日) (日) (日)

\overline{X} is a straight brush.

For every external address \underline{s} there exists a unique $t_{\underline{s}} \in [0, \infty]$ such that $\{t \ge 0 : (\underline{s}, t) \in \overline{X}\} = [t_{\underline{s}}, \infty)$. We denote by $E(\overline{X}) := \{(\underline{s}, t_{\underline{s}})\}$ the set of endpoints of \overline{X} .

\overline{X} is homeomorphic to $\mathcal{J}(g)$ and \mathcal{M} and g are conjugate.

イロト イポト イヨト イヨト ヨー のくぐ

Pinching

 \overline{X} is homeomorphic to $\mathcal{J}(g)$ and \mathcal{M} and g are conjugate. $\implies \mathcal{M}$ projects to a function $\widetilde{\mathcal{M}}$ on $\widetilde{X} := \overline{X} / \sim_{\rho}$, where \sim_{ρ} is an equivalence relation on $E(\overline{X})$, such that

 $\widetilde{M}:\widetilde{X}\to\widetilde{X}$ is conjugate to $f:\mathcal{J}(f)\to\mathcal{J}(f).$

イロト イポト イヨト イヨト ヨー のくぐ

Pinching

 \overline{X} is homeomorphic to $\mathcal{J}(g)$ and \mathcal{M} and g are conjugate. $\Longrightarrow \mathcal{M}$ projects to a function $\widetilde{\mathcal{M}}$ on $\widetilde{X} := \overline{X} / \sim_{\rho}$, where \sim_{ρ} is an equivalence relation on $E(\overline{X})$, such that

 $\widetilde{M}:\widetilde{X}\to\widetilde{X}$ is conjugate to $f:\mathcal{J}(f)\to\mathcal{J}(f).$

Theorem (Schleicher)

If z is not on a dynamic ray then it is the landing point of one, two or four dynamic rays.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□ > ◆□ > ◆ □ > ● □ >

・ロト・日本・日本・日本・日本・日本

g disjoint type $\longleftrightarrow f$ hyperbolic

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

g disjoint type $\longleftrightarrow f$ hyperbolic

Iterate forward under g and backward under f on sets whose limit is $\mathcal{J}(g)$.
Iterate forward under *g* and backward under *f* on sets whose limit is $\mathcal{J}(g) \Longrightarrow$ sequence of conformal isomorphisms Φ_n :

イロト イポト イヨト イヨト ヨー のくぐ

g disjoint type $\longleftrightarrow f$ hyperbolic

Iterate forward under *g* and backward under *f* on sets whose limit is $\mathcal{J}(g) \Longrightarrow$ sequence of conformal isomorphisms Φ_n :

Iterate forward under *g* and backward under *f* on sets whose limit is $\mathcal{J}(g) \Longrightarrow$ sequence of conformal isomorphisms Φ_n :

Iterate forward under *g* and backward under *f* on sets whose limit is $\mathcal{J}(g) \Longrightarrow$ sequence of conformal isomorphisms Φ_n :

g disjoint type $\longleftrightarrow f$ hyperbolic

Iterate forward under *g* and backward under *f* on sets whose limit is $\mathcal{J}(g) \Longrightarrow$ sequence of conformal isomorphisms Φ_n :

 $f \circ \Phi_{n+1} = \Phi_n \circ g$

The limit Φ of the sequence Φ_n exists because *f* uniformly expands the hyperbolic metric on a domain $U \supset \mathcal{J}(f)$, i.e.

$$\|Df(z)\|_U := |f'(z)| \cdot \frac{\rho_U(f(z))}{\rho_U(z)} \ge E > 1.$$

g disjoint type $\longleftrightarrow f$ hyperbolic

Iterate forward under *g* and backward under *f* on sets whose limit is $\mathcal{J}(g) \Longrightarrow$ sequence of conformal isomorphisms Φ_n :

 $f \circ \Phi_{n+1} = \Phi_n \circ g$

The limit Φ of the sequence Φ_n exists because *f* uniformly expands the hyperbolic metric on a domain $U \supset \mathcal{J}(f)$, i.e.

$$\|Df(z)\|_U := |f^{'}(z)| \cdot rac{
ho_U(f(z))}{
ho_U(z)} \geq E > 1.$$

U is obtained by removing a full set $\mathcal{F}(f) \supset K \supset S(f)$ with $f(K) \subset K$ in the range:

Iterate forward under *g* and backward under *f* on sets whose limit is $\mathcal{J}(g) \Longrightarrow$ sequence of conformal isomorphisms Φ_n :

 $f \circ \Phi_{n+1} = \Phi_n \circ g$

The limit Φ of the sequence Φ_n exists because *f* uniformly expands the hyperbolic metric on a domain $U \supset \mathcal{J}(f)$, i.e.

$$\|Df(z)\|_U := |f^{'}(z)| \cdot rac{
ho_U(f(z))}{
ho_U(z)} \geq E > 1.$$

U is obtained by removing a full set $\mathcal{F}(f) \supset K \supset S(f)$ with $f(K) \subset K$ in the range:

•
$$V := f^{-1}(U) \subset U := \mathbb{C} \setminus K \Longrightarrow \rho_V(z) > \rho_U(z)$$

• $f: V \to U$ is a local isometry $\Longrightarrow \rho_V(z) = \rho_U(f(z)) \cdot |f'(z)|$

・ロト・国ト・ヨト・ヨー つくで

f strongly subhyperbolic

As for hyperbolic *f*, we can find a domain $U \supset \mathcal{J}(f)$ such that

 $V:=f^{-1}(U)\subset U.$

But

- *U* is not necessarily hyperbolic ($U = \mathbb{C}$ is possible).
- $f: V \rightarrow U$ is not a covering.

Since there are no asymptotic values in $\mathcal{J}(f)$, $f : V \to U$ is a branched covering.

f strongly subhyperbolic

As for hyperbolic *f*, we can find a domain $U \supset \mathcal{J}(f)$ such that

 $V:=f^{-1}(U)\subset U.$

But

- *U* is not necessarily hyperbolic ($U = \mathbb{C}$ is possible).
- $f: V \rightarrow U$ is not a covering.

Since there are no asymptotic values in $\mathcal{J}(f)$, $f : V \to U$ is a branched covering.

f strongly subhyperbolic

As for hyperbolic *f*, we can find a domain $U \supset \mathcal{J}(f)$ such that

 $V:=f^{-1}(U)\subset U.$

But

- *U* is not necessarily hyperbolic ($U = \mathbb{C}$ is possible).
- $f: V \rightarrow U$ is not a covering.

Since there are no asymptotic values in $\mathcal{J}(f)$, $f: V \to U$ is a branched covering.

f strongly subhyperbolic

As for hyperbolic *f*, we can find a domain $U \supset \mathcal{J}(f)$ such that

 $V:=f^{-1}(U)\subset U.$

But

- *U* is not necessarily hyperbolic ($U = \mathbb{C}$ is possible).
- $f: V \rightarrow U$ is not a covering.

Since there are no asymptotic values in $\mathcal{J}(f)$, $f: V \to U$ is a branched covering.

f strongly subhyperbolic

As for hyperbolic *f*, we can find a domain $U \supset \mathcal{J}(f)$ such that

 $V:=f^{-1}(U)\subset U.$

But

- *U* is not necessarily hyperbolic ($U = \mathbb{C}$ is possible).
- $f: V \rightarrow U$ is not a covering.

Since there are no asymptotic values in $\mathcal{J}(f)$, $f : V \to U$ is a branched covering.

Thank you for listening!