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Basic definition

Let f : C — C be a transcendental meromorphic function. Assume
f is non-entire i.e.

f1(o0) # 0.
Let P ={a e C: f(a) = o} be the set of poles.
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Let f : C — C be a transcendental meromorphic function. Assume
f is non-entire i.e.

f1(o0) # 0.
Let P ={a € C: f(a) = oo} be the set of poles.

@ the point z € f~"(o0) is called a prepole of order n € N. In
particular the poles are prepoles of order 1.
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Let f : C — C be a transcendental meromorphic function. Assume
f is non-entire i.e.

f1(o0) # 0.
Let P ={a € C: f(a) = oo} be the set of poles.

@ the point z € f~"(o0) is called a prepole of order n € N. In
particular the poles are prepoles of order 1.

@ Thus f":C\ ngn P, — C is holomorphic,
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Basic definition

Let f : C — C be a transcendental meromorphic function. Assume
f is non-entire i.e.

f1(o0) # 0.
Let P ={a € C: f(a) = oo} be the set of poles.

@ the point z € f~"(o0) is called a prepole of order n € N. In
particular the poles are prepoles of order 1.

o Thus f": C\ U<, Px — C is holomorphic,
o " has poles at P,
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Basic definition

Let f : C — C be a transcendental meromorphic function. Assume
f is non-entire i.e.

f1(o0) # 0.
Let P ={a € C: f(a) = oo} be the set of poles.

@ the point z € f~"(o0) is called a prepole of order n € N. In
particular the poles are prepoles of order 1.

o Thus f": C\ U<, Px — C is holomorphic,
o " has poles at P,
o f"is not defined at (J,_, P«-
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Conclusion

Let f : C — C be a transcendental meromorphic function with
poles. Then the family {f"},cn is well defined on

e\ | P =€\ 0-(c0),
k=0

where
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Conclusion

Let f : C — C be a transcendental meromorphic function with
poles. Then the family {f"},cn is well defined on

e\ Pi=€\ 07 ()
k=0

where 07 (o0) := U5 f~"(00) and J(f) = O~ (o0)
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Conclusion

Let f : C — C be a transcendental meromorphic function with
poles. Then the family {f"},cn is well defined on

e\ Pi=€\ 07 ()
k=0

where 07 (o0) := U5 f~"(00) and J(f) = O~ (o0)

Fatou did not consider these function, since as he wrote 'there
occurs a serious difficulty when one tries to generelize Julia’s
approach to the meromorphic case’
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Conclusion

Let f : C — C be a transcendental meromorphic function with
poles. Then the family {f"},cn is well defined on

e\ Pi=€\ 07 ()
k=0

where 07 (o0) := U5 f~"(00) and J(f) = O~ (o0)

Fatou did not consider these function, since as he wrote 'there
occurs a serious difficulty when one tries to generelize Julia’s
approach to the meromorphic case’

4

see p. 358 at P. Fatou, Sur l'itération des fonctions transcendantes
entéries, Acta Mat. 47 (1926), 337-360
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Basic properties

Fatou-Julia theory for meromorphic functions

The basic properties of Fatou and Julia sets of non-entire
transcendental meromorphic functios are the same as for entire

functions.
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Basic properties

Fatou-Julia theory for meromorphic functions

The basic properties of Fatou and Julia sets of non-entire
transcendental meromorphic functios are the same as for entire
functions.

It was proved in a series of joint papers written by |.N. Baker(*),
Y. Li(*) and K.
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Basic properties

Fatou-Julia theory for meromorphic functions

The basic properties of Fatou and Julia sets of non-entire
transcendental meromorphic functios are the same as for entire
functions.

It was proved in a series of joint papers written by |.N. Baker(*),
Y. Li(*) and K.

\

The set of singularities of the inverse function f~1 of f

Sing(f ') = {a € C: ais a critical or an asymptotic value}
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Tangent family

Tangent function

_ __ sinz __ sin 2x : sinh 2y
° f(Z) - tan(z) T cosz  cos2x-+cosh2y + Icos 2x4cosh 2y *
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Tangent family

Tangent function

_ __ sinz __ sin 2x : sinh 2y
° f(Z) - tan(z) T cosz  cos2x-+cosh2y + Icos 2x4cosh 2y *

o f is a simply-periodic function V,ccf(z + 7) = f(2)
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Tangent family

Tangent function

_ __ sinz __ sin 2x : sinh 2y
° f(Z) - tan(z) T cosz  cos2x-+cosh2y + Icos 2x4cosh 2y *

o f is a simply-periodic function V,ccf(z + 7) = f(2)

@ The fundamental domains are the strips
Ly={zeC:(k—3)m<Rez< (k+3)n}, keZ
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Tangent family

Tangent function

_ __ sinz __ sin 2x : sinh 2y
° f(z) - tan(z) T cosz  cos2x-+cosh2y + Icos 2x4cosh 2y *

(]

f is a simply-periodic function V,ccf(z 4+ 7) = f(2)

@ The fundamental domains are the strips
Ly={zeC:(k—3)m<Rez< (k+3)n}, keZ

o The inverse map arctan : C\ {#i} — C is defined as

) 1I 1+ iw
arctan w = — 10 .
2i 81w
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Tangent function

o f(z) # +i, so i and —i are the asymptotic values

H*™ = {z € C;Imz > yp > 0} is an asymptotic tract
corresponding to i.

H™ ={z € C;Imz < —yp < 0} is an asymptotic tract
corresponding to —1i.

'Cantor bouquets’ for non-entire meromorphic functions



Introduction Basic definition

Tangent family

Tangent function

o f(z) # +i, so i and —i are the asymptotic values

H*™ = {z € C;Imz > yp > 0} is an asymptotic tract
corresponding to i.

~={z€C;Imz < —yp < 0} is an asymptotic tract
corresponding to —1i.

o f(z) = # 0= Crit(f) = 0 = Sing(f 1) = {i, —i}

cos2
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Tangent function

o f has infinitely many poles i.e.

i 1
f(z):S;ZiZZ):oo@z:sk:: <k+2)7r, k € Z.
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Tangent function

o f has infinitely many poles i.e.

i 1
f(z):S;ZiZZ):oo@z:sk:: <k+2)7r, k € Z.

@ 00 is not an asymptotic value
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Tangent family

Tangent function

o f has infinitely many poles i.e.
f(z) =

1
=00 <= z=S5 = (k+—)7r, k € Z.
cos z

@ 00 is not an asymptotic value

Tangent family

Let fi(z) = Atan(z) = A=

elz4e— iz

A e C.
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Tangent family

Tangent function

o f has infinitely many poles i.e.

=00 <= z=S5 = (k-i—l)w, k € Z.

@ 00 is not an asymptotic value

Tangent family

Let fi(z) = Atan(z) = A=

elz4e— iz

A e C.

Singularities

Sing(f~1) = {—\i, +\i} - asymptotic values of fy.
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Tangent family

Tangent function

o f has infinitely many poles i.e.

=00 <= z=S5 = (k-i—l)w, k € Z.

@ 00 is not an asymptotic value

Tangent family
Let A\(z) = Atan(z) = o

= aecC

elz4e— iz

Singularities

Sing(f~1) = {—\i, +\i} - asymptotic values of fy.

fo has infinitely many poles s := (k + %) m, keZ.
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Tangent family

Structure of repelling periodic points in J(f)

Rational functions
Let f be a rational map. Then the set

Perp(f) = {z € C: zis a repelling periodic point of period n }

is finite. So it has no accumulation points.
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Tangent family

Structure of repelling periodic points in J(f)

Rational functions
Let f be a rational map. Then the set

Perp(f) = {z € C: zis a repelling periodic point of period n }

is finite. So it has no accumulation points.

Transcendental entire (Baker, Bergweiler)

An entire transcendental function f has infinitely many repelling
periodic points of period n for all n > 2 and oo is the unique
accumulation point of Per,(f)
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Tangent family

Structure of repelling periodic points in J(f)

Transcendental non-entire functions (Baker-Li-K.)

Suppose that f is a transcendental non-entire function. Then
J(f) = O—(00). Let

21,23,...,25 € 07 (00) \ {00}
are distinct. Define n; by f"%(z;) = co. Then there exists
JjeA{l,...,5}

such that z; is a limit point of repelling periodic points of minimal
period n; + 1. Their multipliers tends to oo.
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Tangent family

Structure of repelling periodic points in J(f)

Tangent family

If v £ +£\iis a prepole of oreder n, then there exists a sequence of
points z,, k =1,2,..., such that
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Tangent family

If v £ +£\iis a prepole of oreder n, then there exists a sequence of
points z,, k =1,2,..., such that
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Tangent family

Structure of repelling periodic points in J(f)

Tangent family

If v £ +£\iis a prepole of oreder n, then there exists a sequence of
points z,, k =1,2,..., such that

Q " (z) =z
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Tangent family

Structure of repelling periodic points in J(f)

Tangent family

If v £ +£\iis a prepole of oreder n, then there exists a sequence of
points z,, k =1,2,..., such that

Q " (z) =z

Q z, > vask — o
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Structure of repelling periodic points in J(f)

Tangent family

If v £ +£\iis a prepole of oreder n, then there exists a sequence of
points z,, k =1,2,..., such that

Q " (z) =z

Q z, > vask — o

Q if my is a multiplier of the periodic cycle containing z, then
|mg| — oo as k — oo
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Tangent family

Structure of repelling periodic points in J(f)

Tangent family

If v £ +£\iis a prepole of oreder n, then there exists a sequence of
points z,, k =1,2,..., such that

Q " (z) =z
Q z, > vask — o

Q if my is a multiplier of the periodic cycle containing z, then
|mg| — oo as k — oo

Unlike to entire functions the set Per,(f) has plenty of
accumulation points. They are prepoles of order n — 1.
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Tangent family

Let A = (/2 +¢€)i, € > 0 (small), then £, has two attracting cycles
of period 2.
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Tangent family

Tangent family

Let A = (/2 +¢€)i, € > 0 (small), then £, has two attracting cycles
of period 2.

Let A = (/2 —€)i, e > 0 small, then £, has one attracting cycles
of period 4.
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Tangent family

Tangent family

Let A = (/2 +¢€)i, € > 0 (small), then £, has two attracting cycles
of period 2.

Example 2

Let A = (/2 —€)i, e > 0 small, then £, has one attracting cycles
of period 4.

| A\

Example 3

Let A = (/2)i then J(f) = C and attracting periodic cycles
disappear.
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Tangent family

Hyperbolic components

Hp ={A € C" : f has an attracting cycle of period p}.
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Tangent family

Tangent family

Hyperbolic components
Hp ={A € C" : f has an attracting cycle of period p}.

The components of H, we denote by 2, and call them hyperbolic
components.

Virtual centers
Let Cop = {00}, Cp={A: f/\p(i)\i) =o0},p>0, C= Ugo Cp-
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Tangent family

Tangent family

Hyperbolic components

Hp ={A € C" : f has an attracting cycle of period p}.

The components of H, we denote by 2, and call them hyperbolic
components.

Virtual centers

Let Co = {00}, Cp={A:fP(xAi)=00},p>0, C=g5 Cp
Points in Cp are called virtual centers of order p.
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Tangent family

Theorem (Keen-K.)

o The virtual centers A\, € Cp—1 are in one to one
correspondence with pairs of hyperbolic components (£2,,},).
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Theorem (Keen-K.)

o The virtual centers A\, € Cp—1 are in one to one
correspondence with pairs of hyperbolic components (£2,,},).

o In €, each function has a pair of periodic cycles of period p
and each attracts the orbit of an asymptotic value whereas in
§2}, each function has a single attracting cycle of period 2p
which attracts both asymptotic values.
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Tangent family

Theorem (Keen-K.)

o The virtual centers A\, € Cp—1 are in one to one
correspondence with pairs of hyperbolic components (£2,,},).

o In €, each function has a pair of periodic cycles of period p
and each attracts the orbit of an asymptotic value whereas in
§2}, each function has a single attracting cycle of period 2p
which attracts both asymptotic values.

o The virtual center A\, € Cp—1 is a common boundary point of
(Qp,2).
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Tangent family

Theorem (Keen-K.)

o The virtual centers A\, € Cp—1 are in one to one
correspondence with pairs of hyperbolic components (£2,,},).

o In €, each function has a pair of periodic cycles of period p
and each attracts the orbit of an asymptotic value whereas in
§2}, each function has a single attracting cycle of period 2p
which attracts both asymptotic values.

o The virtual center A\, € Cp—1 is a common boundary point of
(Qp,2).

In our example \; = ”7’ is a virtual center of two hyperbolic

components €2, and 5.
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Tangent family

Tangent family

The escaping set of £
o I(f)={z:limp_s f"(z) — o0}
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Tangent family

Tangent family

The escaping set of f
o I(f)={z:limpoo f"(z) — o0}
@ For R > 0 we also consider the set
Ir(f) ={z € C:liminf,o |f"(2)| > R}.
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Tangent family

Tangent family

The escaping set of f
o I(f)={z:limpoo f"(z) — o0}
@ For R > 0 we also consider the set
Ir(f) ={z € C:liminf,o |f"(2)| > R}.
o Note that /(f) = (gso IrR(f).
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o I(f)={z:limpoo f"(z) — o0}
@ For R > 0 we also consider the set

Ir(f) ={z € C:liminf,o |f"(2)| > R}.
o Note that /(f) = gsq IrR(f)-

For tangent maps /g(fy) is a union of Cantor sets contained in
J(h).

y
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Basic definition
Tangent family

Tangent family

The escaping set of f

o I(f)={z:limpoo f"(z) — o0}
o For R > 0 we also consider the set

Ir(f) ={z € C:liminf,o |f"(2)| > R}.
o Note that /(f) = gsq IrR(f)-

For tangent maps /g(fy) is a union of Cantor sets contained in
J(H).
o Take R > 0 such that Sing(f~1) = {£\i} € D(0, R) and
define B(R) = {z € C: |z| > R}

y
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Tangent family

o I(f)={z:limpoo f"(z) — o0}
@ For R > 0 we also consider the set

Ir(f) ={z € C:liminf,o |f"(2)| > R}.
o Note that /(f) = gsq IrR(f)-

For tangent maps /g(fy) is a union of Cantor sets contained in
J(H).
o Take R > 0 such that Sing(f~1) = {£\i} € D(0, R) and
define B(R) = {z € C: |z| > R}
o then all components Uy of f~1(B(R)) are simply-connected,
bounded and contain exactly one pole s, of fy.

y
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Tangent family

For tangent maps /g(fy) is a union of Cantor sets contained in

J(H).

We consider the families

4
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Tangent family

For tangent maps /g(fy) is a union of Cantor sets contained in

J(H).

We consider the families
o £ :={Vef!(B(R)) st fK(V)c B(R), for 0 < k </-1}.

4
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Tangent family

For tangent maps /g(fy) is a union of Cantor sets contained in

J(H).

We consider the families
o £ :={Vef!(B(R)) st fK(V)c B(R), for 0 < k </-1}.
o £ = m(l)ilfl C /R(f)

4
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Tangent family

For tangent maps /g(fy) is a union of Cantor sets contained in

J(H2)-
We consider the families

o £ :={Vef!(B(R)) st fK(V)c B(R), for 0 < k </-1}.
o E = m(l)ilfl C /R(f)
Let B(R))={z€ C: |z| > R} U{o0}.

4
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Tangent family

For tangent maps /g(fy) is a union of Cantor sets contained in

J(H2)-
We consider the families

o £ :={Vef!(B(R)) st fK(V)c B(R), for 0 < k </-1}.
o £ = m(l)ilfl C /R(f)

Let B(R)={z€C: |z| > R} U{oo}.
@ We choose a non-decreasing sequence R} — oo

4
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Tangent family

For tangent maps /g(fy) is a union of Cantor sets contained in

J(H2)-
We consider the families

o £ :={Vef!(B(R)) st fK(V)c B(R), for 0 < k </-1}.
o £ = m(l)ilfl C /R(f)

Let B(R)={z€C: |z| > R} U{oo}.
@ We choose a non-decreasing sequence R} — oo

o E; be the set of all components of f~/(B(R))) for which
FK(V) Cc B(Ri_x) for0 < k <[ —1.

4
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Tangent family

For tangent maps /g(fy) is a union of Cantor sets contained in

J(H2)-
We consider the families

o £ :={Vef!(B(R)) st fK(V)c B(R), for 0 < k </-1}.
o £ = m(l)ilfl C /R(f)

Let B(R)={z€C: |z| > R} U{oo}.
@ We choose a non-decreasing sequence R} — oo

o E; be the set of all components of f~/(B(R))) for which
FK(V) Cc B(Ri_x) for0 < k <[ —1.

o E:=(2,E CI(f).

4
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Tangent family

/p(fk)
For
A€ Cp1={A: FPTHEN) =00}, p > 1,

we also consider the set

b(f)={z € J(h) : lim |AP(2)| = 0o}  J(H) =T
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Tangent family

Tangent family

/p(f)\)
For
A€ Cp1={A: FPTHEN) =00}, p > 1,

we also consider the set

b(f)={z € J(h) : lim |AP(2)| = 0o}  J(H) =T

Ip(fr) contains Cantor bouquets C; # C, such that:

o Cp is invariant for invariant for fP,

o Cy is invariant for invariant for 2P,
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Tangent family

The radial Julia set

We define the radial Julia set or conical set J,(f) as the set of
points z in J(f) for which there exists a family of neighborhoods
B(z,rj), rj — 0, which can be mapped by f with bounded
distortion until the diameter of the image reaches a fixed size.
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Tangent family

Tangent family

The radial Julia set

We define the radial Julia set or conical set J,(f) as the set of
points z in J(f) for which there exists a family of neighborhoods
B(z,rj), rj — 0, which can be mapped by f with bounded
distortion until the diameter of the image reaches a fixed size.

Estimates (K.-Urbarnski)
If A€ Qp (resp. Q,,p > 1) then

1 < HD(J(£)) = HD(J,(£)) < 2

and
0 < HD(/(A)) <

N|

4
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Tangent family

Estimates (Skorulski)

If Ao is a virtual center of a pair (,,%},),p > 1, then
P(f) 1= {EXoi, frg(EXof), . .., £ (£Aoi) = oo} and
J(fy,) = C. In this case

4
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Tangent family

Estimates (Skorulski)
If Ao is a virtual center of a pair (,,%},),p > 1, then
P(f) 1= {EXoi, frg(EXof), . .., £ (£Aoi) = oo} and
J(fy,) = C. In this case

@ 1< HD(J,(f,)) <2

4
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Tangent family

Estimates (Skorulski)
If Ao is a virtual center of a pair (,,%},),p > 1, then
P(f) 1= {EXoi, frg(EXof), . .., £ (£Aoi) = oo} and
J(fy,) = C. In this case

@ 1< HD(J,(f,)) <2

@ 0<HD(I(f,)) < &,

4
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Tangent family

Estimates (Skorulski)
If Ao is a virtual center of a pair (,,%},),p > 1, then
P(f) 1= {EXoi, frg(EXof), . .., £ (£Aoi) = oo} and
J(fy,) = C. In this case

@ 1< HD(J,(f,)) <2

@ 0<HD(I(f,)) < &,

© HD(/p—1(f,)) = 2 where
l—1(f\) ={z € J(A) : limy_ ]f/\k(p_l)(z)| = 00}.
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Introducti . S
ntroduction Basic definition

Tangent family

Tangent family

Estimates (Skorulski)

If Ao is a virtual center of a pair (,,%},),p > 1, then
P(f) 1= {EXoi, frg(EXof), . .., £ (£Aoi) = oo} and
J(fy,) = C. In this case

@ 1< HD(U(fy)) < 2

@ 0<HD(I(f,)) < &,

© HD(/p—1(f,)) = 2 where
l—1(f\) ={z € J(A) : limy_ ]f/\k(p_l)(z)| = 00}.

Q meas(lp—1(f\,)) > 0 and w(z) = P(f,) for a.e.
z c J(f)\o) =C
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Introduction Basic definition

Tangent family

We know that meas(/,—1(f,)) > 0 and w(z) = P(f,) for a.e.
z e J(f,) =C.
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Introduction Basic definition

Tangent family

We know that meas(/,—1(f,)) > 0 and w(z) = P(f,) for a.e.
z e J(f,) =C.

Theorem (Bock)

If £ is a transcendental meromorphic function then at least one of
the following statement holds:

'Cantor bouquets’ for non-entire meromorphic functions



Introduction Basic definition

Tangent family

We know that meas(/,—1(f,)) > 0 and w(z) = P(f,) for a.e.
z e J(f,) =C.

Theorem (Bock)

If £ is a transcendental meromorphic function then at least one of
the following statement holds:

Q limy_.o dist, (f"(z), P(f)) = 0 for almost all z € J(f);
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Introduction Basic definition

Tangent family

We know that meas(/,—1(f,)) > 0 and w(z) = P(f,) for a.e.
z e J(f,) =C.

Theorem (Bock)

If £ is a transcendental meromorphic function then at least one of
the following statement holds:

Q limy_.o dist, (f"(z), P(f)) = 0 for almost all z € J(f);

© J(f) = C and for all A C C of positive measure the set
{neN: f"(z) € A} is finite for almost all z € C.
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Introduction Basic definition

Tangent family

Comments

We know that meas(/,—1(f,)) > 0 and w(z) = P(f,) for a.e.
z e J(f,) =C.

Theorem (Bock)

If £ is a transcendental meromorphic function then at least one of
the following statement holds:
Q limy_.o dist, (f"(z), P(f)) = 0 for almost all z € J(f);

© J(f) = C and for all A C C of positive measure the set
{neN: f"(z) € A} is finite for almost all z € C.

If meas(l,—1(f,)) > 0 then Bock’s th. (part (1)) implies that
w(z) C P(fy,) for a.e. z € J(f,) = C. So it remains to prove the
equality only.

o’
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The class R Continuity of the HD(J,(f)) in the tangent family

The class R

Definition

Let R be the family of maps of the form
f(z) = Roexp(z),

where R is a non-constant rational function. Then f has two
asymptotic values

We assume that
§1:= R(0) # 00, & = R(00) # o0,

so f is non-entire.

y
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The class R Continuity of the HD(J,(f)) in the tangent family

The class R

Subfamilies of

We define two subfamilies:
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The class R Continuity of the HD(J,(f)) in the tangent family

The class R

Subfamilies of R

We define two subfamilies:

@ R - only one asymptotic value e.g. &; is mapped

onto a pole i.e. there is g1 > 1 such that f9(&;) = oo
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The class R Continuity of the HD(J,(f)) in the tangent family

The class R

Subfamilies of R

We define two subfamilies:

@ R - only one asymptotic value e.g. &; is mapped
onto a pole i.e. there is g1 > 1 such that f9(&;) = oo

@ Ry - both asymptotic values &1, & are mapped

onto poles i.e. there are g1 > 1, g> > 1 such that

f9(€1) = oo, £P2(&2) = o0,
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The class R Continuity of the HD(J,(f)) in the tangent family

The class R

Theorem (Skorulski)

Let f € Ry (only one asymptotic value &; is mapped onto a pole

fa(&) = 00). Let Ig,(f) :={z e J(f): lim_s fkai(z) = oo}.
Then
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The class R Continuity of the HD(J,(f)) in the tangent family

The class R

Theorem (Skorulski)

Let f € Ry (only one asymptotic value &; is mapped onto a pole

fa(&) = 00). Let Ig,(f) :={z e J(f): lim_s fkai(z) = oo}.
Then

Q HD(lg,(f)) =2
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The class R Continuity of the HD(J,(f)) in the tangent family

The class R

Theorem (Skorulski)

Let f € Ry (only one asymptotic value &; is mapped onto a pole

fa(&) = 00). Let Ig,(f) :={z e J(f): lim_s fkai(z) = oo}.
Then

Q HD(lg,(f)) =2

O |If additionally Sing(f=1)\ {&1} C F(f) then meas(J(f)) = 0.

o’
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The class R Continuity of the HD(J,(f)) in the tangent family

The class R

Theorem (Skorulski)

Let f € Ry (only one asymptotic value &; is mapped onto a pole
f1(&1) = 00). Let lg, (f) :={z € J(f) : limy_oo F*1(2) = 00}.
Then

Q HD(lg,(f)) =2

O |If additionally Sing(f=1)\ {&1} C F(f) then meas(J(f)) = 0.

| \

Remark (Mc Mullen)
Compare with f\(z) = Xe” for A € (0,1/e)

4
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The class R

Theorem (Skorulski)

Let f € Ry (only one asymptotic value &; is mapped onto a pole
f1(&1) = 00). Let lg, (f) :={z € J(f) : limy_oo F*1(2) = 00}.
Then

Q HD(lg,(f)) =2

O |If additionally Sing(f=1)\ {&1} C F(f) then meas(J(f)) = 0.

| \

Remark (Mc Mullen)
Compare with f\(z) = Xe” for A € (0,1/e)
@ HD(I(f)) =2
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The class R Continuity of the HD(J,(f)) in the tangent family

The class R

Theorem (Skorulski)

Let f € Ry (only one asymptotic value &; is mapped onto a pole
f1(&1) = 00). Let lg, (f) :={z € J(f) : limy_oo F*1(2) = 00}.
Then

Q HD(lg,(f)) =2

O |If additionally Sing(f=1)\ {&1} C F(f) then meas(J(f)) = 0.

| \

Remark (Mc Mullen)
Compare with f\(z) = Xe” for A € (0,1/e)
@ HD(I(f)) =2

Q@ meas(J(f)) = 0.

4
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The class R Continuity of the HD(J,(f)) in the tangent family

The class R

Theorem (Skorulski)

Let f € Ry i.e. there are g1 > 1, g2 > 1 such that f91(&;) = oo,
f92(&2) = co. Then the set

PAsymp(f) = {617 ey fql(gl) = 00, 527 ey fqz(gl) = OO}

is a metric attractor i.e. the Lebesgue's measure of

{z € J(f) : w(2) C Pasymp(£)}

is positive.
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The class R Continuity of the HD(J,(f)) in the tangent family

The class R

Theorem (Skorulski)

Let f € Ry and dist, (P>(f), J(f)) > 0 where

Pa(f) := c{O7(Sing(f)) \ ©F ({&1, &2})}

then

v
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The class R Continuity of the HD(J,(f)) in the tangent family

The class R

Theorem (Skorulski)

Let f € Ry and dist, (P>(f), J(f)) > 0 where

Pa(f) := c{O7(Sing(f)) \ ©F ({&1, &2})}

then
o meas(J(f)) is positive, J(f) # C

v
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The class R Continuity of the HD(J,(f)) in the tangent family

The class R

Theorem (Skorulski)

Let f € Ry and dist, (P>(f), J(f)) > 0 where

Pa(f) := c{O7(Sing(f)) \ ©F ({&1, &2})}

then
o meas(J(f)) is positive, J(f) # C

o for a.e. z € J(f) we have w(z) = Pasymp(f) = where

PAsymp(f) = {51, 060 ) f'CI1(§1) = 00, 52, 560 ) fqz(fl) = OO}

v
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The class R Continuity of the HD(J,(f)) in the tangent family

The class R

Theorem (Skorulski)

Let f € Ry and dist, (P>(f), J(f)) > 0 where

Pa(f) := c{O7(Sing(f)) \ ©F ({&1, &2})}

then
o meas(J(f)) is positive, J(f) # C

o for a.e. z € J(f) we have w(z) = Pasymp(f) = where

PAsymp(f) = {51, 060 ) f'CI1(§1) = 00, 52, 560 ) fqz(fl) = OO}

e J(f) is 'a Cantor bouquet'.

v
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The class R Continuity of the HD(J,(f)) in the tangent family

Continuity of the Hausdorff dimension

If A€ Qp (resp. ,) then P(fy) C F(£\) and the Julia J(f\)

'Cantor bouquets’ for non-entire meromorphic functions



The class R Continuity of the HD(J,(f)) in the tangent family

Continuity of the Hausdorff dimension

If A€ Qp (resp. ,) then P(fy) C F(£\) and the Julia J(f\)
Q has empty interior
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The class R Continuity of the HD(J,(f)) in the tangent family

Continuity of the Hausdorff dimension

If A€ Qp (resp. ,) then P(fy) C F(£\) and the Julia J(f\)
Q has empty interior
Q the Lebesgue measure of the Julia set is zero

since dist(P(£), J(£)) > 0 where P(fy) = Uy~ £ (£A0).
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The class R Continuity of the HD(J,(f)) in the tangent family

Continuity of the Hausdorff dimension

If A€ Qp (resp. ,) then P(fy) C F(£\) and the Julia J(f\)
Q has empty interior
O the Lebesgue measure of the Julia set is zero
since dist(P(£), J(£)) > 0 where P(fy) = Uy~ £ (£A0).

(2) follows e.g. from Stallard’s results for meromorphic functions

v
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The class R Continuity of the HD(J,(f)) in the tangent family

Continuity of the Hausdorff dimension

If A€ Qp (resp. ,) then P(fy) C F(£\) and the Julia J(f\)
Q has empty interior
O the Lebesgue measure of the Julia set is zero
since dist(P(£), J(£)) > 0 where P(fy) = Uy~ £ (£A0).

(2) follows e.g. from Stallard’s results for meromorphic functions

v

Theorem (K.-Urbanski)

If A€ Qp (resp. ), p>1then P(f\) C F(fy) and

1 < HD(J(f)) = HD(J,(£)) < 2

R R RRRRRRBRBRRBRBRRRBRBBS>S=RRESESSB=E=BBBSSBS©=)>>S=S>BSBBEBB=ENNIBBEBEBESDDSSDIEL
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The class R Continuity of the HD(J,(f)) in the tangent family

Continuity of the Hausdorff dimension

If A€ Qp (resp. ,) then P(fy) C F(£\) and the Julia J(f\)
Q has empty interior
Q the Lebesgue measure of the Julia set is zero

since dist(P(£), J(£)) > 0 where P(fy) = Uy~ £ (£A0).
(2) follows e.g. from Stallard’s results for meromorphic functions

| A

Theorem (K.-Urbanski)
If A€ Qp (resp. ), p>1then P(f\) C F(fy) and

1 < HD(J(f)) = HD(J,(£)) < 2

The last estimate follows from our results concerning conformal
measure for expanding meromorphic functions (Math. Annalen,
2002) and from (2).

R R RRRBRRRBRRREBRSSSBEPBBSSSSSBSBSSRBj5BSSSBEBSSBSSSBSZRSRRRE
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The class R Continuity of the HD(J,(f)) in the tangent family

Continuity of the Hausdorff dimension

o If Mg is a virtual center of a pair (€2,,},) then for a.e.
z € J(f,) = C we have w(z) = P(f\,)},
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The class R Continuity of the HD(J,(f)) in the tangent family

Continuity of the Hausdorff dimension

o If Mg is a virtual center of a pair (€2,,},) then for a.e.
z € J(f,) = C we have w(z) = P(f\,)},
o = meas(J,(fy,)) = 0.
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The class R Continuity of the HD(J,(f)) in the tangent family

Continuity of the Hausdorff dimension

Theorem (S.)
o If Mg is a virtual center of a pair (€2,,},) then for a.e.
z € J(f,) = C we have w(z) = P(f,)},
o = meas(J,(fy,)) = 0.

o Let hy = HD(Jr(f/\))

'Cantor bouquets’ for non-entire meromorphic functions



The class R Continuity of the HD(J,(f)) in the tangent family

Continuity of the Hausdorff dimension

Theorem (S.)

o If Mg is a virtual center of a pair (€2,,},) then for a.e.
z € J(f,) = C we have w(z) = P(f\,)},
o = meas(J,(fy,)) = 0.

o Let hy := HD(J,(£))
o J(f,) = C then HD(J(f,)) = 2
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The class R Continuity of the HD(J,(f)) in the tangent family

Continuity of the Hausdorff dimension

Theorem (S.)

o If Mg is a virtual center of a pair (€2,,},) then for a.e.
z € J(f,) = C we have w(z) = P(f\,)},
= meas(J,(f,)) = 0.

(7]

(]

Let hy := HD(Jr(f/\))
J(fy,) = C then HD(J(f,)) =2
Question hy, = HD(Jy(f,)) =7

(]

©
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The class R Continuity of the HD(J,(f)) in the tangent family

Continuity of the Hausdorff dimension

Theorem (S.)

o If Mg is a virtual center of a pair (€2,,},) then for a.e.
z € J(f,) = C we have w(z) = P(f\,)},
= meas(J,(f,)) = 0.

(7]

(]

Let hy := HD(J,(?C/\))
J(fy,) = C then HD(J(f,)) =2
Question hy, = HD(J,(f,)) =?

(]

©

Let f € R such that at least one asymptotic value is mapped onto
a pole. Then 1 < hy, = HD(J,(f,)) < 2.
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The class R Continuity of the HD(J,(f)) in the tangent family

Continuity of the Hausdorff dimension

Does limy_x,hx = hy, <2 for A € Q,7
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The class R Continuity of the HD(J,(f)) in the tangent family

Continuity of the Hausdorff dimension

Does limy_x,hx = hy, <2 for A € Q,7 l

Theorem. (K.-Urbanski)

For p > 1 let (€p,},) be a pair of hyperbolic components with
virtual center at \g then

/I'm)\_,)\o h)\ = h)\o

for A € Q, U Q.
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The class R Continuity of the HD(J,(f)) in the tangent family

Continuity of the Hausdorff dimension

Does limy_x,hx = hy, <2 for A € Q,7 I

Theorem. (K.-Urbanski)

For p > 1 let (€p,},) be a pair of hyperbolic components with

virtual center at \g then

/I'm)\_,)\o h)\ = h)\o

for A € Q, U Q.

v

Continuity of hy for A € Q, follows from the previous result proved
for hyperbolic functions of the form

f(z) = H(exp(Q(2))-
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The class R Continuity of the HD(J,(f)) in the tangent family

Continuity of the Hausdorff dimension

@ Since f is periodic we can project f on a cylinder C/~,
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The class R Continuity of the HD(J,(f)) in the tangent family

Continuity of the Hausdorff dimension

@ Since f is periodic we can project f on a cylinder C/~,

o We say z; ~ z if there exists k € Z such that z; = z, + 2kmi.
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The class R Continuity of the HD(J,(f)) in the tangent family

Continuity of the Hausdorff dimension

@ Since f is periodic we can project f on a cylinder C/~,
o We say z; ~ z if there exists k € Z such that z; = z, + 2kmi.

o Let I be a projection of C onto C and F : Mo f oML
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The class R Continuity of the HD(J,(f)) in the tangent family

Continuity of the Hausdorff dimension

@ Since f is periodic we can project f on a cylinder C/~,
o We say z; ~ z if there exists k € Z such that z; = z, + 2kmi.

o Let I be a projection of C onto C and F : Mo f oML

Theorem (S.)
Let f € R be as above. Then
o 1< HD(J(F)=h<2.

@ There exists h-conformal measure on J(F) such that m is
atomless and m(J,(F)) = 1.

o If m' is a probabilistic measure on J(F) which is t-conformal
for some t > 1, then m" = m (unigness of conformal measure).
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The class R Continuity of the HD(J,(f)) in the tangent family

Final conclusion

We consider a projection of f and f,, onto cylinder C i.e.
Fyn:=MNof oM and Fro :=Mofy, o0 M1 Then

o HD(J(£)) = HD(J(Fy)) = hx,
o HD(J,(f\)) = HD(J,(Fy)) = hy for all XA € C*.
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The class R Continuity of the HD(J,(f)) in the tangent family

Final conclusion

We consider a projection of f and f,, onto cylinder C i.e.
Fyn:=MNof oM and Fro :=Mofy, o0 M1 Then

o HD(J(£)) = HD(J(Fy)) = hx,
o HD(J,(f\)) = HD(J,(Fy)) = hy for all XA € C*.
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The class R Continuity of the HD(J,(f)) in the tangent family

Final conclusion

We consider a projection of f and f,, onto cylinder C i.e.
Fyn:=MNof oM and Fro :=Mofy, o0 M1 Then

o HD(J(£)) = HD(J(Fy)) = hx,
o HD(J,(f\)) = HD(J,(Fy)) = hy for all XA € C*.

o It follows from Skorulski’s results that Ay > s > 1.
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The class R Continuity of the HD(J,(f)) in the tangent family

Final conclusion

We consider a projection of f and f,, onto cylinder C i.e.
Fyn:=MNof oM and Fro :=Mofy, o0 M1 Then

o HD(J(£)) = HD(J(Fy)) = hx,
o HD(J,(f\)) = HD(J,(Fy)) = hy for all XA € C*.

o It follows from Skorulski’s results that Ay > s > 1.

o Take {\,}g° such that lim,_oc Ay = Ao.
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The class R Continuity of the HD(J,(f)) in the tangent family

Final conclusion

We consider a projection of f and f,, onto cylinder C i.e.
Fyn:=MNof oM and Fro :=Mofy, o0 M1 Then

o HD(J(£)) = HD(J(Fy)) = hx,
o HD(J,(f\)) = HD(J,(Fy)) = hy for all XA € C*.

o It follows from Skorulski’s results that Ay > s > 1.
o Take {\,}g° such that lim,_oc Ay = Ao.

@ Since hy € [s, 2], we may assume that the sequence {hj,}§°
converges to some t € [s, 2].
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The class R Continuity of the HD(J,(f)) in the tangent family

Final conclusion

o the sequence of conformal measures my, for Fy is tight (......),
so it converges weakly to a Borel probability measure m.
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The class R Continuity of the HD(J,(f)) in the tangent family

Final conclusion

o the sequence of conformal measures my, for Fy is tight (......),
so it converges weakly to a Borel probability measure m.

@ m appears to be t-conformal measure for Fy, and m is
supported on the radial Julia set of F),.
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The class R Continuity of the HD(J,(f)) in the tangent family

Final conclusion

o the sequence of conformal measures my, for Fy is tight (......),
so it converges weakly to a Borel probability measure m.

@ m appears to be t-conformal measure for Fy, and m is
supported on the radial Julia set of F),.

o Skorulski proved that for Fy, there exists only one conformal
measure supported on the radial Julia set and its exponent is
equal to hy,. Consequently t = hy,.
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The dynamics and geometry of the Fatou functions

The Fatou functions

Definition

P.Fatou considered the function f(z) = z+ 1+ e *. He proved
that {z€ C: Rez > 0} is an invariant domain. Today we call
such a component an invariant Baker domain.
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The dynamics and geometry of the Fatou functions

The Fatou functions

Definition

P.Fatou considered the function f(z) = z+ 1+ e *. He proved
that {z€ C: Rez > 0} is an invariant domain. Today we call
such a component an invariant Baker domain.

| A\

Baker domain

Let U be periodic component of F(f). If there exists zg € QU such
that f"P(z) — zg for z € U as n — oo, but fP(zy) is not defined.
In this case U is called Baker domain.

"Cantor bouquets’ for non-entire meromorphic functions



The dynamics and geometry of the Fatou functions

The Fatou functions

Definition

P.Fatou considered the function f(z) = z+ 1+ e *. He proved
that {z€ C: Rez > 0} is an invariant domain. Today we call
such a component an invariant Baker domain.

Baker domain

| A\

Let U be periodic component of F(f). If there exists zg € QU such
that f"P(z) — zg for z € U as n — oo, but fP(zy) is not defined.
In this case U is called Baker domain.

In this case zg = co.
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The dynamics and geometry of the Fatou functions

The Fatou functions

Definition
P.Fatou considered the function f(z) = z+ 1+ e *. He proved

that {z€ C: Rez > 0} is an invariant domain. Today we call
such a component an invariant Baker domain.

Baker domain

| A\

Let U be periodic component of F(f). If there exists zg € QU such
that f"P(z) — zg for z € U as n — oo, but fP(zy) is not defined.
In this case U is called Baker domain.

\

In this case zg = co.

Definition

For A € C* = C\ {0} we consider the family of maps
hz)=z4+e 2+
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The dynamics and geometry of the Fatou functions

The Fatou functions

To honor P.Fatou we will call all the functions f, Fatou functions.

We assume that Re\ > 1.
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The dynamics and geometry of the Fatou functions

The Fatou functions

To honor P.Fatou we will call all the functions f, Fatou functions.

We assume that Re\ > 1.

Proposition (K.-Urbanski)
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The dynamics and geometry of the Fatou functions

The Fatou functions

To honor P.Fatou we will call all the functions f, Fatou functions.

We assume that Re\ > 1.

Proposition (K.-Urbanski)

@ The map £, has a Baker domain at co and domain
{z€ C: Rez > ¢\ >0}

is contained in Baker domain.
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The dynamics and geometry of the Fatou functions

The Fatou functions

To honor P.Fatou we will call all the functions f, Fatou functions.

We assume that Re\ > 1.

Proposition (K.-Urbanski)

@ The map £, has a Baker domain at co and domain
{z€ C: Rez > ¢\ >0}

is contained in Baker domain.

o The Julia set J(f\) is the Cantor bouquet contained in

U{zG(C:2n7r+«9<Imz<2(n+1)7r—9}
ne€Z
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The dynamics and geometry of the Fatou functions

The Fatou functions

The Fatou function f has infinitely many critical values

ck=2nki+1+\ keZ
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The dynamics and geometry of the Fatou functions

The Fatou functions

The Fatou function f has infinitely many critical values

ck=2nki+1+\ keZ

Theorem ( Eremenko-Lyubich, Goldberg-Keen)

If transcendental entire function f has only finitely many critical and
asymptotic values, then the Fatou set F(f) has no wandering
domains.
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The dynamics and geometry of the Fatou functions

The Fatou functions

The Fatou function f has infinitely many critical values

ck=2nki+1+\ keZ

Theorem ( Eremenko-Lyubich, Goldberg-Keen)

If transcendental entire function f has only finitely many critical and
asymptotic values, then the Fatou set F(f) has no wandering
domains.

— Fatou functions f\(z) = z + €% + A do not satisfy these
assumptions. f\ ¢ B.
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The dynamics and geometry of the Fatou functions

The Fatou functions

The Fatou function f has infinitely many critical values

ck=2nki+1+\ keZ

Theorem ( Eremenko-Lyubich, Goldberg-Keen)

If transcendental entire function f has only finitely many critical and
asymptotic values, then the Fatou set F(f) has no wandering
domains.

— Fatou functions f\(z) = z + €% + A do not satisfy these
assumptions. f\ ¢ B.

Proposition (K.-Urbanski)

The Fatou set of the Fatou function f\ consists exactly of the
images of all backward iterates of the Baker's domain D at zp = cc.
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The dynamics and geometry of the Fatou functions

The Fatou functions

—Z

To prove this we applied the fact that e
between

is semiconjugacy

hz)=z+e 2+
and
g\(z) = e Pze?
It is easy to show that for Re\ > 0 the function gy has
o exactly one attracting fixed point z=0
o its multiplier g{(0) = e~
@ g has only one singularity z=1 and it is a critical point

@ g is in class S satisfying assumptions of Sullivan’s th.
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The dynamics and geometry of the Fatou functions

The Fatou functions

Proposition (K.-Urbanski)

o Let In(f\)={z€C: f"(z) = —oc}. Then I(f) C J(f))
and the Hausdorff dimension HD(/s(£)) = 2.

"Cantor bouquets’ for non-entire meromorphic functions



The dynamics and geometry of the Fatou functions

The Fatou functions

Proposition (K.-Urbanski)

o Let In(f\)={z€C: f"(z) = —oc}. Then I(f) C J(f))
and the Hausdorff dimension HD(/s(£)) = 2.
o Let J.(A) :=J(H)\ Io(fr). Then 1 < HD(J,(£)) < 2.
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The dynamics and geometry of the Fatou functions

The Fatou functions

Proposition (K.-Urbanski)
o Let In(f\)={z€C: f"(z) = —oc}. Then I(f) C J(f))
and the Hausdorff dimension HD(/s(£)) = 2.
o Let J.(A) :=J(H)\ Io(fr). Then 1 < HD(J,(£)) < 2.

Theorem (K.-Urbanski)
If ReA > 1 then the function

A — HD(J,(f)))

is real analytic.
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The dynamics and geometry of the Fatou functions

Proof

To prove this theorem we apply thermodynamic formalism of
potentials
—t/Og‘F)I\‘,

where Fy is the projection of £, to the infinite cylinder

and
W~z

iff w—z =2miZ.
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The dynamics and geometry of the Fatou functions

1 step

We fix parameter A and omit it in the notations
For t > 0and z € Q \ PC(F) we define the lower and upper
topological pressure respectively by

1
Py (t) = liminfy oo~ FrY ()|t
(t) = liminf,—.0c—log EF§H( )I( ) ()]

o 1 R
P2(t) = limsupn—.co—log > |(F")'(x)| "
x€F—n(z)
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The dynamics and geometry of the Fatou functions

1 step

We fix parameter A and omit it in the notations
For t > 0and z € Q\ PC(F) we define the lower and upper
topological pressure respectively by

T 1 ny\/ —t
Px(t) = liminfy.. ~log > IFY ()]

x€EF—n(z)

= . 1 n _
P,(t) = l/msup,,ﬂoo;log Z I(F™Y (x)| ¢
x€F—n(z)

(t) are independent of z. In fact for t > 1 we have
et

P(t) denote the common value of P(t) and P(t)
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The dynamics and geometry of the Fatou functions

1 step

Proposition

The function t — P(t), t > 0, has the following properties.

a) There exists t € (0,1) such that 0 < P(t) < +o0.

b) P(t) < +oo for all t > 1.

c) The function P(t) restricted to the interval (1,400) is convex,
continuous and strictly decreasing.

d) limi— ;oo P(t) = —o0.

e) There exists exactly one t > 1 such that P(t) = 0.
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The dynamics and geometry of the Fatou functions

1 step

Proposition

The function t — P(t), t > 0, has the following properties.

a) There exists t € (0,1) such that 0 < P(t) < +o0.

b) P(t) < +oo for all t > 1.

c) The function P(t) restricted to the interval (1,400) is convex,
continuous and strictly decreasing.

d) limi— ;oo P(t) = —o0.

e) There exists exactly one t > 1 such that P(t) = 0.

Let h denote the value of t for which P(t) =0
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The dynamics and geometry of the Fatou functions

1 step

Proposition

The function t — P(t), t > 0, has the following properties.

a) There exists t € (0,1) such that 0 < P(t) < +o0.

b) P(t) < +oo for all t > 1.

c) The function P(t) restricted to the interval (1,400) is convex,
continuous and strictly decreasing.

d) limi— ;oo P(t) = —o0.

e) There exists exactly one t > 1 such that P(t) = 0.

A

Let h denote the value of t for which P(t) =0

Proposition (Bowen formula)
h = HD(J,(F)).
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The dynamics and geometry of the Fatou functions

1 step

For
(t,A\) € (1,+00) x {A € C: ReX > 1}

the function

T 1 ny/ —t
(t,\) — Py(t) = //m,,_>oo;/0g Z [(FX) ()
x€F; "(2)

is continuous.
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The dynamics and geometry of the Fatou functions

2 step

(*) Fix now \g € C with ReAg > 1 and tp € (1, ).
(*) Let Cp = Cp(J(F)) be the space of all bounded
continuous complex valued functions defined on J(F).
(*) Fix a € (0,1]. Given g € Cp let

Vo = inf{L >0:[g(y) —g(x)| < Lly — x|* forall x,y € J(F)
with |y — x| < 4 be the a-variation of the function g and let
lgllo = va(g) + lg]loo-
Clearly the space
Ho = Ha(J(F)) = {g € Co(J(F)) : llglla < oo}

endowed with the norm || - ||, is a Banach space densely contained
in Cp with respect to the || - ||oo norm.
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The dynamics and geometry of the Fatou functions

2 step

(*) For every A\ € B(\g,r) and every t > 1 let
L3¢+ Ha(J(Fxo)) = Ha(J(Fxo))
be the generalized Perron-Frobenius operator defined as
£3.8(z)= > |Fm()] " ax)
xGF)\_ol(z)

where hy is g.c. conjugacy between Fy, and F},
|F{ o hy|7" is called a potential.
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The dynamics and geometry of the Fatou functions

2 step

(*) For t € (1,00) we consider the dual operator

L3¢+ Ho(J(Fxe)) — HA(J(Fxo))
given by the formula
L3 ,m(g) = m(L3 &)
Then there exists a conformal measure my, ; such that
L;,t(mko,t) = eP)\O(t)m)\o,t

In particular, if
t =h=HD(J,(f,))
then
Px,(h) =0

so 0" = 1 is an engeinvalue of the Perron-Frobenius operator.
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The dynamics and geometry of the Fatou functions

2 step

(*) Since the potential |F} o hy|~* does not depend on
(\t)eC?

in a holomorphic way, we have to embed \ into C2

and t into C.
We embed the complex plane C into C2? by the formula

x 4 iy — (x,y) € C2.

So, A € C = R? may be treated as an element of C2.
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The dynamics and geometry of the Fatou functions

2 step

Proposition
Fix Ag with ReX\g > 1 and ty > 1. There then exist R > 0 and a
holomorphic function

L : Des((Xo, to), R) — L(Ha(J(F(No))

such that for every (A, t) € B(Ao, R) x B(tp,R) CC xR

L(\t) = ﬁ&t.
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The dynamics and geometry of the Fatou functions

3 step

(*) For A = Ao applying theorem of lonescu-Tulcea and
Marinescu we can prove that for t € B(tp, R)

ePro(t)
is a simple isolated eingevalue of the operator
0
L()\()7 t) - E}\Q,f'

(*) Next applying perturbation theory for linear operators (Kato's
results) we can show that there exists a holomorphic function

v D(C?’(()‘O? to), R) — C

such that the number
(A 1)
is a simple isolated eigenvalue of L(),t), where

Py, (t
'7()‘0’ t) =€ ho(t)
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The dynamics and geometry of the Fatou functions

3 step

(*) We can prove that y(\, t) has the form
(A t) = P (1)
= the function
(A, t) — Py(t)
is real analytic for (A, t) € B(Xo, ') x (to — p, to + p)
(*) Since P(hy) = 0 where
hy = HD(J(F))),
it follows from the Implicite Function Theorem that in order to
conclude the proof it suffices to show that
OP(t)
———2#£0
ot 7
for all ()\, t) € B()\o, R3) X (to —p,to+ p).

'Cantor bouquets’ for non-entire meromorphic functions



The dynamics and geometry of the Fatou functions

(*) Thus the map

(A, ) = HD(J(Fx)) = HD(J(£)),

is real analytic for
()‘7 t) € B(A07 R3) X (to —p,to+ p)

'Cantor bouquets’ for non-entire meromorphic functions



	Introduction
	Basic definition
	Tangent family

	The class R
	Continuity of the HD(Jr(f)) in the tangent family

	The dynamics and geometry of the Fatou functions

