'Cantor bouquets' for non-entire meromorphic functions

Let $f : \mathbb{C} \to \hat{\mathbb{C}}$ be a transcendental meromorphic function. Assume f is non-entire i.e.

$$f^{-1}(\infty) \neq \emptyset.$$

- the point z ∈ f⁻ⁿ(∞) is called a prepole of order n ∈ N. In particular the poles are prepoles of order 1.
- Thus $f^n : \mathbb{C} \setminus \bigcup_{k \le n} P_k \to \mathbb{C}$ is holomorphic,
- f^n has poles at P_n ,
- f^n is not defined at $\bigcup_{k < n} P_k$.

Let $f : \mathbb{C} \to \hat{\mathbb{C}}$ be a transcendental meromorphic function. Assume f is non-entire i.e.

Basic definition

$$f^{-1}(\infty) \neq \emptyset.$$

- the point $z \in f^{-n}(\infty)$ is called a *prepole* of order $n \in \mathbb{N}$. In particular the poles are prepoles of order 1.
- Thus $f^n : \mathbb{C} \setminus \bigcup_{k \le n} P_k \to \mathbb{C}$ is holomorphic,
- fⁿ has poles at P_n,
- f^n is not defined at $\bigcup_{k < n} P_k$.

Let $f : \mathbb{C} \to \hat{\mathbb{C}}$ be a transcendental meromorphic function. Assume f is non-entire i.e.

Basic definition

$$f^{-1}(\infty) \neq \emptyset.$$

- the point $z \in f^{-n}(\infty)$ is called a *prepole* of order $n \in \mathbb{N}$. In particular the poles are prepoles of order 1.
- Thus $f^n : \mathbb{C} \setminus \bigcup_{k \le n} P_k \to \mathbb{C}$ is holomorphic,
- fⁿ has poles at P_n,
- f^n is not defined at $\bigcup_{k < n} P_k$.

Let $f : \mathbb{C} \to \hat{\mathbb{C}}$ be a transcendental meromorphic function. Assume f is non-entire i.e.

Basic definition

$$f^{-1}(\infty) \neq \emptyset.$$

Let $\mathcal{P} = \{a \in \mathbb{C} : f(a) = \infty\}$ be the set of poles.

- the point z ∈ f⁻ⁿ(∞) is called a prepole of order n ∈ N. In particular the poles are prepoles of order 1.
- Thus $f^n:\mathbb{C}\setminus igcup_{k\leq n}P_k
 ightarrow\mathbb{C}$ is holomorphic,
- fⁿ has poles at P_n,

• f^n is not defined at $\bigcup_{k < n} P_k$.

Let $f : \mathbb{C} \to \hat{\mathbb{C}}$ be a transcendental meromorphic function. Assume f is non-entire i.e.

Basic definition

$$f^{-1}(\infty) \neq \emptyset.$$

- the point z ∈ f⁻ⁿ(∞) is called a prepole of order n ∈ N. In particular the poles are prepoles of order 1.
- Thus $f^n:\mathbb{C}\setminus igcup_{k\leq n}P_k o\mathbb{C}$ is holomorphic,
- fⁿ has poles at P_n,
- f^n is not defined at $\bigcup_{k < n} P_k$.

Basic definition

Conclusion

Let $f : \mathbb{C} \to \hat{\mathbb{C}}$ be a transcendental meromorphic function with poles. Then the family $\{f^n\}_{n \in \mathbb{N}}$ is well defined on

$$\mathbb{C}\setminus \bigcup_{k=0}^{\infty} P_k = \mathbb{C}\setminus O^-(\infty),$$

Basic definition

where $O^{-}(\infty) := \bigcup_{n>0} f^{-n}(\infty)$ and $J(f) = \overline{O^{-}(\infty)}$

Fatou did not consider these function, since as he wrote 'there occurs a serious difficulty when one tries to generelize Julia's approach to the meromorphic case'

see p. 358 at P. Fatou, Sur l'itération des fonctions transcendantes entèries, Acta Mat. 47 (1926), 337-360 💿 🚛 🖘 🖘 🖘 🖘 🖘

Basic definition

Conclusion

Let $f : \mathbb{C} \to \hat{\mathbb{C}}$ be a transcendental meromorphic function with poles. Then the family $\{f^n\}_{n \in \mathbb{N}}$ is well defined on

$$\mathbb{C}\setminus \bigcup_{k=0}^{\infty} P_k = \mathbb{C}\setminus O^-(\infty),$$

Basic definition

where
$$O^{-}(\infty) := \bigcup_{n \ge 0} f^{-n}(\infty)$$
 and $J(f) = \overline{O^{-}(\infty)}$

Fatou did not consider these function, since as he wrote 'there occurs a serious difficulty when one tries to generelize Julia's approach to the meromorphic case'

see p. 358 at P. Fatou, Sur l'itération des fonctions transcendantes entèries, Acta Mat. 47 (1926), 337-360

Introduction The class ${\mathcal R}$. The class ${\mathcal R}$. The dynamics and geometry of the Fatou functions

Basic definition

Conclusion

Let $f: \mathbb{C} \to \hat{\mathbb{C}}$ be a transcendental meromorphic function with poles. Then the family $\{f^n\}_{n \in \mathbb{N}}$ is well defined on

$$\mathbb{C}\setminus \bigcup_{k=0}^{\infty} P_k = \mathbb{C}\setminus O^-(\infty),$$

Basic definition

where
$$O^{-}(\infty) := \bigcup_{n \ge 0} f^{-n}(\infty)$$
 and $J(f) = \overline{O^{-}(\infty)}$

Fatou did not consider these function, since as he wrote 'there occurs a serious difficulty when one tries to generelize Julia's approach to the meromorphic case'

see p. 358 at P. Fatou, Sur l'itération des fonctions transcendantes entèries, Acta Mat. 47 (1926), 337-360 Introduction The class ${\mathcal R}$. The class ${\mathcal R}$. The dynamics and geometry of the Fatou functions

Basic definition

Conclusion

Let $f : \mathbb{C} \to \hat{\mathbb{C}}$ be a transcendental meromorphic function with poles. Then the family $\{f^n\}_{n \in \mathbb{N}}$ is well defined on

$$\mathbb{C}\setminus \bigcup_{k=0}^{\infty} P_k = \mathbb{C}\setminus O^-(\infty),$$

Basic definition

where
$$O^{-}(\infty) := \bigcup_{n \ge 0} f^{-n}(\infty)$$
 and $J(f) = \overline{O^{-}(\infty)}$

Fatou did not consider these function, since as he wrote 'there occurs a serious difficulty when one tries to generelize Julia's approach to the meromorphic case'

see p. 358 at P. Fatou, Sur l'itération des fonctions transcendantes entèries, Acta Mat. 47 (1926), 337-360

Basic properties

Fatou-Julia theory for meromorphic functions

The basic properties of Fatou and Julia sets of non-entire transcendental meromorphic functios are the same as for entire functions.

It was proved in a series of joint papers written by I.N. Baker(*), Y. Lü(*) and K.

The set of singularities of the inverse function f^{-1} of f

 $\operatorname{Sing}(f^{-1})=\{a\in\mathbb{C}: ext{ a is a critical or an asymptotic value}\}$

イロト イポト イヨト イヨト 三日

Basic properties

Fatou-Julia theory for meromorphic functions

The basic properties of Fatou and Julia sets of non-entire transcendental meromorphic functios are the same as for entire functions.

It was proved in a series of joint papers written by I.N. Baker(*), Y. Lü(*) and K.

The set of singularities of the inverse function f^{-1} of f

 $\operatorname{Sing}(f^{-1})=\{a\in\mathbb{C}: ext{ a is a critical or an asymptotic value}\}$

イロト イポト イヨト イヨト 三日

Basic properties

Fatou-Julia theory for meromorphic functions

The basic properties of Fatou and Julia sets of non-entire transcendental meromorphic functios are the same as for entire functions.

It was proved in a series of joint papers written by I.N. Baker(*), Y. Lü(*) and K.

The set of singularities of the inverse function f^{-1} of f

 $\operatorname{Sing}(f^{-1}) = \{a \in \mathbb{C} : a \text{ is a critical or an asymptotic value}\}$

(日) (得) (王) (王) (王)

 $\begin{array}{c} \mbox{Introduction} \\ \mbox{The class } \mathcal{R} \\ \mbox{The dynamics and geometry of the Fatou functions} \end{array}$

Basic definition Tangent family

Tangent function

•
$$f(z) = tan(z) = \frac{\sin z}{\cos z} = \frac{\sin 2x}{\cos 2x + \cosh 2y} + i \frac{\sinh 2y}{\cos 2x + \cosh 2y}$$
.

• f is a simply-periodic function $\forall_{z \in \mathbb{C}} f(z + \pi) = f(z)$

- The fundamental domains are the strips $L_k = \{z \in \mathbb{C} : (k - \frac{1}{2}) \pi < \operatorname{Re} z \le (k + \frac{1}{2}) \pi\}, \quad k \in \mathbb{Z}$
- The inverse map arctan : $\hat{\mathbb{C}} \setminus \{\pm i\} \to \mathbb{C}$ is defined as

$$\arctan w = \frac{1}{2i} \log \frac{1+iw}{1-iw}$$

Basic definition Tangent family

Tangent function

•
$$f(z) = tan(z) = \frac{\sin z}{\cos z} = \frac{\sin 2x}{\cos 2x + \cosh 2y} + i \frac{\sinh 2y}{\cos 2x + \cosh 2y}$$
.

- f is a simply-periodic function $\forall_{z \in \mathbb{C}} f(z + \pi) = f(z)$
- The fundamental domains are the strips $L_k = \{z \in \mathbb{C} : (k - \frac{1}{2}) \pi < \operatorname{Re} z \le (k + \frac{1}{2}) \pi\}, \quad k \in \mathbb{Z}$
- The inverse map arctan : $\hat{\mathbb{C}} \setminus \{\pm i\} \to \mathbb{C}$ is defined as

$$\arctan w = \frac{1}{2i} \log \frac{1 + iw}{1 - iw}$$

Basic definition Tangent family

Tangent function

•
$$f(z) = tan(z) = \frac{\sin z}{\cos z} = \frac{\sin 2x}{\cos 2x + \cosh 2y} + i \frac{\sinh 2y}{\cos 2x + \cosh 2y}$$
.

- f is a simply-periodic function $\forall_{z \in \mathbb{C}} f(z + \pi) = f(z)$
- The fundamental domains are the strips $L_k = \{z \in \mathbb{C} : (k - \frac{1}{2}) \pi < \operatorname{Re} z \le (k + \frac{1}{2}) \pi\}, \quad k \in \mathbb{Z}$

• The inverse map arctan : $\hat{\mathbb{C}} \setminus \{\pm i\} \to \mathbb{C}$ is defined as

$$\arctan w = \frac{1}{2i} \log \frac{1+iw}{1-iw}$$

Basic definition Tangent family

Tangent function

•
$$f(z) = tan(z) = \frac{\sin z}{\cos z} = \frac{\sin 2x}{\cos 2x + \cosh 2y} + i \frac{\sinh 2y}{\cos 2x + \cosh 2y}$$
.

- f is a simply-periodic function $\forall_{z \in \mathbb{C}} f(z + \pi) = f(z)$
- The fundamental domains are the strips $L_k = \{z \in \mathbb{C} : (k - \frac{1}{2}) \pi < \operatorname{Re} z \le (k + \frac{1}{2}) \pi\}, \quad k \in \mathbb{Z}$
- The inverse map arctan : $\hat{\mathbb{C}}\setminus\{\pm i\}\to\mathbb{C}$ is defined as

$$\arctan w = \frac{1}{2i} \log \frac{1 + iw}{1 - iw}$$

Tangent function

• $f(z) \neq \pm i$, so *i* and -i are the asymptotic values

 $H^+ = \{z \in \mathbb{C}; \operatorname{Im} z > y_0 > 0\}$ is an asymptotic tract corresponding to *i*.

 $H^- = \{z \in \mathbb{C}; \operatorname{Im} z < -y_0 < 0\}$ is an asymptotic tract corresponding to -i.

• $f'(z) = \frac{1}{\cos^2 z} \neq 0 \Rightarrow Crit(f) = \emptyset \Rightarrow Sing(f^{-1}) = \{i, -i\}$

Tangent function

• $f(z) \neq \pm i$, so *i* and -i are the asymptotic values

 $H^+ = \{z \in \mathbb{C}; \operatorname{Im} z > y_0 > 0\}$ is an asymptotic tract corresponding to *i*.

 $H^- = \{z \in \mathbb{C}; \operatorname{Im} z < -y_0 < 0\}$ is an asymptotic tract corresponding to -i.

•
$$f'(z) = \frac{1}{\cos^2 z} \neq 0 \Rightarrow Crit(f) = \emptyset \Rightarrow Sing(f^{-1}) = \{i, -i\}$$

Basic definition Tangent family

Tangent function

• f has infinitely many poles i.e.

$$f(z) = rac{\sin(z)}{\cos z} = \infty \iff z = s_k := \left(k + rac{1}{2}
ight)\pi, \quad k \in \mathbb{Z}.$$

ullet ∞ is not an asymptotic value

Tangent family

Let
$$f_{\lambda}(z) = \lambda tan(z) = \lambda \frac{e^{iz} - e^{-iz}}{e^{iz} + e^{-iz}}, \quad \lambda \in \mathbb{C}^*.$$

Singularities

$$Sing(f^{-1}) = \{-\lambda i, +\lambda i\}$$
 - asymptotic values of f_{λ} .

Poles

 f_{λ} has infinitely many poles $s_k := (k + \frac{1}{2}) \pi, \quad k \in \mathbb{Z}.$

Basic definition Tangent family

Tangent function

• f has infinitely many poles i.e.

$$f(z) = rac{\sin(z)}{\cos z} = \infty \iff z = s_k := \left(k + rac{1}{2}
ight)\pi, \quad k \in \mathbb{Z}.$$

ullet ∞ is not an asymptotic value

Tangent family

Let
$$f_{\lambda}(z) = \lambda tan(z) = \lambda \frac{e^{iz} - e^{-iz}}{e^{iz} + e^{-iz}}, \quad \lambda \in \mathbb{C}^*.$$

Singularities

$$Sing(f^{-1}) = \{-\lambda i, +\lambda i\}$$
 - asymptotic values of f_{λ} .

Poles

 f_{λ} has infinitely many poles $s_k := (k + \frac{1}{2}) \pi, \quad k \in \mathbb{Z}.$

Basic definition Tangent family

Tangent function

• f has infinitely many poles i.e.

$$f(z) = rac{\sin(z)}{\cos z} = \infty \iff z = s_k := \left(k + rac{1}{2}
ight)\pi, \quad k \in \mathbb{Z}.$$

• ∞ is not an asymptotic value

Tangent family

Let
$$f_{\lambda}(z) = \lambda tan(z) = \lambda \frac{e^{iz} - e^{-iz}}{e^{iz} + e^{-iz}}, \quad \lambda \in \mathbb{C}^*.$$

Singularities

$$Sing(f^{-1}) = \{-\lambda i, +\lambda i\}$$
 - asymptotic values of f_{λ} .

Poles

 f_{λ} has infinitely many poles $s_k := (k + \frac{1}{2}) \pi, \quad k \in \mathbb{Z}.$

Basic definition Tangent family

Tangent function

• f has infinitely many poles i.e.

$$f(z) = rac{\sin(z)}{\cos z} = \infty \iff z = s_k := \left(k + rac{1}{2}
ight)\pi, \quad k \in \mathbb{Z}.$$

ullet ∞ is not an asymptotic value

Tangent family

Let
$$f_{\lambda}(z) = \lambda tan(z) = \lambda \frac{e^{iz} - e^{-iz}}{e^{iz} + e^{-iz}}, \quad \lambda \in \mathbb{C}^*.$$

Singularities

$$Sing(f^{-1}) = \{-\lambda i, +\lambda i\}$$
 - asymptotic values of f_{λ} .

Poles

 f_{λ} has infinitely many poles $s_k := (k + \frac{1}{2}) \pi, \quad k \in \mathbb{Z}.$

 $\begin{array}{c} \mbox{Introduction} \\ \mbox{The class } \mathcal{R} \\ \mbox{The dynamics and geometry of the Fatou functions} \end{array}$

Basic definition Tangent family

Tangent function

• f has infinitely many poles i.e.

$$f(z) = rac{\sin(z)}{\cos z} = \infty \iff z = s_k := \left(k + rac{1}{2}
ight)\pi, \quad k \in \mathbb{Z}.$$

• ∞ is not an asymptotic value

Tangent family

Let
$$f_{\lambda}(z) = \lambda tan(z) = \lambda \frac{e^{iz} - e^{-iz}}{e^{iz} + e^{-iz}}, \quad \lambda \in \mathbb{C}^*.$$

Singularities

$$Sing(f^{-1}) = \{-\lambda i, +\lambda i\}$$
 - asymptotic values of f_{λ} .

Poles

$$f_{\lambda}$$
 has infinitely many poles $s_k := \left(k + rac{1}{2}
ight)\pi, \quad k \in \mathbb{Z}.$

Structure of repelling periodic points in J(f)

Rational functions

Let f be a rational map. Then the set

 $Per_n(f) = \{z \in \mathbb{C} : z \text{ is a repelling periodic point of period n } \}$

is finite. So it has no accumulation points.

Transcendental entire (Baker, Bergweiler)

An entire transcendental function f has infinitely many repelling periodic points of period n for all $n \ge 2$ and ∞ is the unique accumulation point of $Per_n(f)$

イロト イポト イヨト イヨト 三日

Structure of repelling periodic points in J(f)

Rational functions

Let f be a rational map. Then the set

 $Per_n(f) = \{z \in \mathbb{C} : z \text{ is a repelling periodic point of period n } \}$

is finite. So it has no accumulation points.

Transcendental entire (Baker, Bergweiler)

An entire transcendental function f has infinitely many repelling periodic points of period n for all $n \ge 2$ and ∞ is the unique accumulation point of $Per_n(f)$

Structure of repelling periodic points in J(f)

Transcendental non-entire functions (Baker-Lü-K.)

Suppose that f is a transcendental non-entire function. Then $J(f) = \overline{O^-(\infty)}$. Let

$$z_1, z_2, \ldots, z_5 \in O^-(\infty) \setminus \{\infty\}$$

are distinct. Define n_j by $f^{n_j}(z_j) = \infty$. Then there exists

$$j \in \{1, \ldots, 5\}$$

such that z_j is a limit point of repelling periodic points of minimal period $n_j + 1$. Their multipliers tends to ∞ .

Structure of repelling periodic points in J(f)

Tangent family

If $v \neq \pm \lambda i$ is a prepole of oreder *n*, then there exists a sequence of points z_k , k = 1, 2, ..., such that

$$f^{n+1}(z_k) = z_k$$

$$\ 2_k \to v \ \text{as} \ k \to \infty$$

if m_k is a multiplier of the periodic cycle containing z_k then $|m_k| \to \infty$ as $k \to \infty$

Corollary

Structure of repelling periodic points in J(f)

Tangent family

If $v \neq \pm \lambda i$ is a prepole of oreder *n*, then there exists a sequence of points z_k , k = 1, 2, ..., such that

$$f^{n+1}(z_k) = z_k$$

$$\ 2_k \to v \ \text{as} \ k \to \infty$$

if m_k is a multiplier of the periodic cycle containing z_k then $|m_k| \to \infty$ as $k \to \infty$

Corollary

Structure of repelling periodic points in J(f)

Tangent family

If $v \neq \pm \lambda i$ is a prepole of oreder *n*, then there exists a sequence of points z_k , k = 1, 2, ..., such that

$$f^{n+1}(z_k) = z_k$$

$$2 z_k \to v \text{ as } k \to \infty$$

) if m_k is a multiplier of the periodic cycle containing z_k then $|m_k| \to \infty$ as $k \to \infty$

Corollary

Structure of repelling periodic points in J(f)

Tangent family

If $v \neq \pm \lambda i$ is a prepole of oreder *n*, then there exists a sequence of points z_k , $k = 1, 2, \ldots$, such that

$$\bullet f^{n+1}(z_k) = z_k$$

2)
$$z_k
ightarrow v$$
 as $k
ightarrow \infty$

) if m_k is a multiplier of the periodic cycle containing z_k then $|m_k| \to \infty$ as $k \to \infty$

Corollary

Structure of repelling periodic points in J(f)

Tangent family

If $v \neq \pm \lambda i$ is a prepole of oreder *n*, then there exists a sequence of points z_k , $k = 1, 2, \ldots$, such that

$$f^{n+1}(z_k) = z_k$$

②
$$z_k
ightarrow {\sf v}$$
 as $k
ightarrow \infty$

If m_k is a multiplier of the periodic cycle containing z_k then $|m_k| → ∞$ as k → ∞

Corollary

Structure of repelling periodic points in J(f)

Tangent family

If $v \neq \pm \lambda i$ is a prepole of oreder *n*, then there exists a sequence of points z_k , $k = 1, 2, \ldots$, such that

$$f^{n+1}(z_k) = z_k$$

②
$$z_k
ightarrow {\sf v}$$
 as $k
ightarrow \infty$

If m_k is a multiplier of the periodic cycle containing z_k then $|m_k| → ∞$ as k → ∞

Corollary

Basic definition Tangent family

Example 1

Tangent family

Let $\lambda = (\pi/2 + \epsilon)i$, $\epsilon > 0$ (small), then f_{λ} has two attracting cycles of period 2.

Example 2

Let $\lambda = (\pi/2 - \epsilon)i$, $\epsilon > 0$ small, then f_{λ} has one attracting cycles of period 4.

Example 3

Let $\lambda = (\pi/2)i$ then $J(f_{\lambda}) = \overline{\mathbb{C}}$ and attracting periodic cycles disappear.

'Cantor bouquets' for non-entire meromorphic functions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 うへつ

Basic definition Tangent family

Example 1

Tangent family

Let $\lambda = (\pi/2 + \epsilon)i$, $\epsilon > 0$ (small), then f_{λ} has two attracting cycles of period 2.

Example 2

Let $\lambda = (\pi/2 - \epsilon)i$, $\epsilon > 0$ small, then f_{λ} has one attracting cycles of period 4.

Example 3

Let $\lambda = (\pi/2)i$ then $J(f_{\lambda}) = \overline{\mathbb{C}}$ and attracting periodic cycles disappear.

'Cantor bouquets' for non-entire meromorphic functions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 うへつ

Basic definition Tangent family

Example 1

Tangent family

Let $\lambda = (\pi/2 + \epsilon)i$, $\epsilon > 0$ (small), then f_{λ} has two attracting cycles of period 2.

Example 2

Let $\lambda = (\pi/2 - \epsilon)i$, $\epsilon > 0$ small, then f_{λ} has one attracting cycles of period 4.

Example 3

Let $\lambda = (\pi/2)i$ then $J(f_{\lambda}) = \overline{\mathbb{C}}$ and attracting periodic cycles disappear.

'Cantor bouquets' for non-entire meromorphic functions

 $\overline{ \begin{array}{c} \text{Introduction} \\ \text{The class } \mathcal{R} \end{array} } \\ \text{The dynamics and geometry of the Fatou functions} \end{array} }$

Basic definition Tangent family

Tangent family

Hyperbolic components

 $\mathcal{H}_{p} = \{\lambda \in \mathbb{C}^{*}: f_{\lambda} \text{ has an attracting cycle of period } p\}.$

The components of \mathcal{H}_p we denote by Ω_p and call them hyperbolic components.

Virtual centers

Let $C_0 = \{\infty\}$, $C_p = \{\lambda : f_{\lambda}^p(\pm \lambda i) = \infty\}, p > 0$, $C = \bigcup_0^{\infty} C_p$. Points in C_p are called *virtual centers* of order *p*.

'Cantor bouquets' for non-entire meromorphic functions

Basic definition Tangent family

Tangent family

Hyperbolic components

 $\mathcal{H}_{p} = \{\lambda \in \mathbb{C}^{*}: f_{\lambda} \text{ has an attracting cycle of period } p\}.$

The components of \mathcal{H}_p we denote by Ω_p and call them hyperbolic components.

Virtual centers

Let $C_0 = \{\infty\}$, $C_p = \{\lambda : f_{\lambda}^p(\pm \lambda i) = \infty\}, p > 0$, $C = \bigcup_0^{\infty} C_p$. Points in C_p are called *virtual centers* of order *p*.

'Cantor bouquets' for non-entire meromorphic functions

Basic definition Tangent family

Tangent family

Hyperbolic components

 $\mathcal{H}_{p} = \{\lambda \in \mathbb{C}^{*}: f_{\lambda} \text{ has an attracting cycle of period } p\}.$

The components of \mathcal{H}_p we denote by Ω_p and call them hyperbolic components.

Virtual centers

Let $C_0 = \{\infty\}$, $C_p = \{\lambda : f_{\lambda}^p(\pm \lambda i) = \infty\}, p > 0$, $C = \bigcup_0^{\infty} C_p$. Points in C_p are called *virtual centers* of order *p*.

'Cantor bouquets' for non-entire meromorphic functions

イロト イヨト イヨト ニヨー ろくつ

Tangent family

Theorem (Keen-K.)

- The virtual centers λ_p ∈ C_{p-1} are in one to one correspondence with pairs of hyperbolic components (Ω_p, Ω'_p).
- In Ω_p each function has a pair of periodic cycles of period p and each attracts the orbit of an asymptotic value whereas in Ω'_p each function has a single attracting cycle of period 2p which attracts both asymptotic values.
- The virtual center λ_p ∈ C_{p-1} is a common boundary point of (Ω_p, Ω'_p).

Remark

Basic definition Tangent family

Tangent family

Theorem (Keen-K.)

- The virtual centers λ_p ∈ C_{p-1} are in one to one correspondence with pairs of hyperbolic components (Ω_p, Ω'_p).
- In Ω_p each function has a pair of periodic cycles of period p and each attracts the orbit of an asymptotic value whereas in Ω'_p each function has a single attracting cycle of period 2p which attracts both asymptotic values.
- The virtual center $\lambda_p \in C_{p-1}$ is a common boundary point of (Ω_p, Ω'_p) .

Remark

Tangent family

Theorem (Keen-K.)

- The virtual centers λ_p ∈ C_{p-1} are in one to one correspondence with pairs of hyperbolic components (Ω_p, Ω'_p).
- In Ω_p each function has a pair of periodic cycles of period p and each attracts the orbit of an asymptotic value whereas in Ω'_p each function has a single attracting cycle of period 2p which attracts both asymptotic values.
- The virtual center $\lambda_p \in C_{p-1}$ is a common boundary point of (Ω_p, Ω'_p) .

Remark

Tangent family

Theorem (Keen-K.)

- The virtual centers λ_p ∈ C_{p-1} are in one to one correspondence with pairs of hyperbolic components (Ω_p, Ω'_p).
- In Ω_p each function has a pair of periodic cycles of period p and each attracts the orbit of an asymptotic value whereas in Ω'_p each function has a single attracting cycle of period 2p which attracts both asymptotic values.
- The virtual center $\lambda_p \in C_{p-1}$ is a common boundary point of (Ω_p, Ω'_p) .

Remark

Basic definition Tangent family

Tangent family

The escaping set of f

•
$$I(f) = \{z : \lim_{n \to \infty} f^n(z) \to \infty\}$$

• For R > 0 we also consider the set $I_R(f) = \{z \in \mathbb{C} : \liminf_{n \to \infty} |f^n(z)| \ge R\}$

• Note that
$$I(f) = \bigcap_{R>0} I_R(f)$$
.

Remark

- Take R > 0 such that $\operatorname{Sing}(f^{-1}) = \{\pm \lambda i\} \subset D(0, R)$ and define $B(R) = \{z \in \overline{\mathbb{C}} : |z| > R\}$
- then all components U_k of f⁻¹(B(R)) are simply-connected, bounded and contain exactly one pole s_k of f_λ.

Basic definition Tangent family

Tangent family

The escaping set of f

•
$$I(f) = \{z : \lim_{n \to \infty} f^n(z) \to \infty\}$$

• For R > 0 we also consider the set $I_R(f) = \{z \in \mathbb{C} : \liminf_{n \to \infty} |f^n(z)| \ge R\}.$

• Note that $I(f) = \bigcap_{R>0} I_R(f)$.

Remark

- Take R > 0 such that $\operatorname{Sing}(f^{-1}) = \{\pm \lambda i\} \subset D(0, R)$ and define $B(R) = \{z \in \overline{\mathbb{C}} : |z| > R\}$
- then all components U_k of f⁻¹(B(R)) are simply-connected, bounded and contain exactly one pole s_k of f_λ.

Basic definition Tangent family

Tangent family

The escaping set of f

•
$$I(f) = \{z : \lim_{n \to \infty} f^n(z) \to \infty\}$$

• For R > 0 we also consider the set $I_R(f) = \{z \in \mathbb{C} : \liminf_{n \to \infty} |f^n(z)| \ge R\}.$

• Note that
$$I(f) = \bigcap_{R>0} I_R(f)$$
.

Remark

- Take R > 0 such that $\operatorname{Sing}(f^{-1}) = \{\pm \lambda i\} \subset D(0, R)$ and define $B(R) = \{z \in \overline{\mathbb{C}} : |z| > R\}$
- then all components U_k of f⁻¹(B(R)) are simply-connected, bounded and contain exactly one pole s_k of f_λ.

Basic definition Tangent family

Tangent family

The escaping set of f

•
$$I(f) = \{z : \lim_{n \to \infty} f^n(z) \to \infty\}$$

• For R > 0 we also consider the set $I_R(f) = \{z \in \mathbb{C} : \liminf_{n \to \infty} |f^n(z)| \ge R\}.$

• Note that
$$I(f) = \bigcap_{R>0} I_R(f)$$
.

Remark

- Take R > 0 such that $\operatorname{Sing}(f^{-1}) = \{\pm \lambda i\} \subset D(0, R)$ and define $B(R) = \{z \in \overline{\mathbb{C}} : |z| > R\}$
- then all components U_k of $f^{-1}(B(R))$ are simply-connected, bounded and contain exactly one pole s_k of f_{λ} .

Basic definition Tangent family

Tangent family

The escaping set of f

•
$$I(f) = \{z : \lim_{n \to \infty} f^n(z) \to \infty\}$$

• For R > 0 we also consider the set $I_R(f) = \{z \in \mathbb{C} : \liminf_{n \to \infty} |f^n(z)| \ge R\}.$

• Note that
$$I(f) = \bigcap_{R>0} I_R(f)$$
.

Remark

For tangent maps $I_R(f_\lambda)$ is a union of Cantor sets contained in $J(f_\lambda)$.

• Take R > 0 such that $\operatorname{Sing}(f^{-1}) = \{\pm \lambda i\} \subset D(0, R)$ and define $B(R) = \{z \in \overline{\mathbb{C}} : |z| > R\}$

• then all components U_k of $f^{-1}(B(R))$ are simply-connected, bounded and contain exactly one pole s_k of f_{λ} .

Basic definition Tangent family

Tangent family

The escaping set of f

•
$$I(f) = \{z : \lim_{n \to \infty} f^n(z) \to \infty\}$$

• For R > 0 we also consider the set $I_R(f) = \{z \in \mathbb{C} : \liminf_{n \to \infty} |f^n(z)| \ge R\}.$

• Note that
$$I(f) = \bigcap_{R>0} I_R(f)$$
.

Remark

- Take R > 0 such that $\operatorname{Sing}(f^{-1}) = \{\pm \lambda i\} \subset D(0, R)$ and define $B(R) = \{z \in \overline{\mathbb{C}} : |z| > R\}$
- then all components U_k of $f^{-1}(B(R))$ are simply-connected, bounded and contain exactly one pole s_k of f_{λ} .

Tangent family

Remark

For tangent maps $I_R(f_\lambda)$ is a union of Cantor sets contained in $J(f_\lambda)$. We consider the families

E_l := {*V* ∈ *f^{-l}*(*B*(*R*)) s.t. *f^k*(*V*) ⊂ *B*(*R*), for 0 ≤ *k* ≤ *l*−1}. *E* := ∩[∞]_{*l*=1} *E_l* ⊂ *l_R*(*f*).

Tangent family

Let $B(R_I) = \{z \in \mathbb{C} : |z| > R_I\} \cup \{\infty\}.$

• We choose a non-decreasing sequence $R_I \rightarrow \infty$

- E_l be the set of all components of $f^{-l}(B(R_l))$ for which $f^k(V) \subset B(R_{l-k})$ for $0 \le k \le l-1$.
- $E := \bigcap_{l=1}^{\infty} \overline{E}_l \subset I(f).$

Tangent family

Remark

For tangent maps $I_R(f_\lambda)$ is a union of Cantor sets contained in $J(f_\lambda)$.

We consider the families

• $E_l := \{ V \in f^{-l}(B(R)) \text{ s.t. } f^k(V) \subset B(R), \text{ for } 0 \le k \le l-1 \}.$ • $E := \bigcap_{l=1}^{\infty} \overline{E}_l \subset I_R(f).$

Tangent family

Let $B(R_I) = \{z \in \mathbb{C} : |z| > R_I\} \cup \{\infty\}.$

- We choose a non-decreasing sequence $R_I \rightarrow \infty$
- E_l be the set of all components of $f^{-l}(B(R_l))$ for which $f^k(V) \subset B(R_{l-k})$ for $0 \le k \le l-1$.
- $E := \bigcap_{l=1}^{\infty} \overline{E}_l \subset I(f).$

Tangent family

Remark

For tangent maps $I_R(f_\lambda)$ is a union of Cantor sets contained in $J(f_\lambda)$.

We consider the families

• $E_l := \{ V \in f^{-l}(B(R)) \text{ s.t. } f^k(V) \subset B(R), \text{ for } 0 \le k \le l-1 \}.$ • $E := \bigcap_{l=1}^{\infty} \overline{E}_l \subset I_R(f).$

Tangent family

Let $B(R_I) = \{z \in \mathbb{C} : |z| > R_I\} \cup \{\infty\}.$

- We choose a non-decreasing sequence $R_I \rightarrow \infty$
- E_l be the set of all components of $f^{-l}(B(R_l))$ for which $f^k(V) \subset B(R_{l-k})$ for $0 \le k \le l-1$.
- $E := \bigcap_{l=1}^{\infty} \overline{E}_l \subset I(f).$

Tangent family

Remark

For tangent maps $I_R(f_\lambda)$ is a union of Cantor sets contained in $J(f_\lambda)$.

We consider the families

•
$$E_l := \{ V \in f^{-l}(B(R)) \text{ s.t. } f^k(V) \subset B(R), \text{ for } 0 \le k \le l-1 \}.$$

Tangent family

•
$$E := \bigcap_{I=1}^{\infty} \overline{E}_I \subset I_R(f).$$

Let
$$B(R_I) = \{z \in \mathbb{C} : |z| > R_I\} \cup \{\infty\}.$$

• We choose a non-decreasing sequence $R_I \rightarrow \infty$

• E_l be the set of all components of $f^{-l}(B(R_l))$ for which $f^k(V) \subset B(R_{l-k})$ for $0 \le k \le l-1$.

•
$$E := \bigcap_{l=1}^{\infty} \overline{E}_l \subset I(f).$$

Tangent family

Remark

For tangent maps $I_R(f_\lambda)$ is a union of Cantor sets contained in $J(f_\lambda)$.

We consider the families

•
$$E_l := \{ V \in f^{-l}(B(R)) \text{ s.t. } f^k(V) \subset B(R), \text{ for } 0 \le k \le l-1 \}.$$

Tangent family

•
$$E := \bigcap_{I=1}^{\infty} \overline{E}_I \subset I_R(f).$$

Let
$$B(R_I) = \{z \in \mathbb{C} : |z| > R_I\} \cup \{\infty\}.$$

• We choose a non-decreasing sequence $R_I \rightarrow \infty$

- E_l be the set of all components of $f^{-l}(B(R_l))$ for which $f^k(V) \subset B(R_{l-k})$ for $0 \le k \le l-1$.
- $E := \bigcap_{l=1}^{\infty} \overline{E}_l \subset I(f).$

Tangent family

Remark

For tangent maps $I_R(f_\lambda)$ is a union of Cantor sets contained in $J(f_\lambda)$.

We consider the families

•
$$E_l := \{ V \in f^{-l}(B(R)) \text{ s.t. } f^k(V) \subset B(R), \text{ for } 0 \le k \le l-1 \}.$$

•
$$E := \bigcap_{I=1}^{\infty} \overline{E}_I \subset I_R(f).$$

Let $B(R_I) = \{z \in \mathbb{C} : |z| > R_I\} \cup \{\infty\}.$

- We choose a non-decreasing sequence $R_I
 ightarrow \infty$
- E_l be the set of all components of $f^{-l}(B(R_l))$ for which $f^k(V) \subset B(R_{l-k})$ for $0 \le k \le l-1$.

```
• E := \bigcap_{l=1}^{\infty} \overline{E}_l \subset I(f).
```

Tangent family

Remark

For tangent maps $I_R(f_\lambda)$ is a union of Cantor sets contained in $J(f_\lambda)$.

We consider the families

•
$$E_l := \{ V \in f^{-l}(B(R)) \text{ s.t. } f^k(V) \subset B(R), \text{ for } 0 \le k \le l-1 \}.$$

Tangent family

•
$$E := \bigcap_{I=1}^{\infty} \overline{E}_I \subset I_R(f).$$

Let $B(R_I) = \{z \in \mathbb{C} : |z| > R_I\} \cup \{\infty\}.$

- We choose a non-decreasing sequence $R_I \to \infty$
- E_l be the set of all components of $f^{-l}(B(R_l))$ for which $f^k(V) \subset B(R_{l-k})$ for $0 \le k \le l-1$.
- $E := \bigcap_{I=1}^{\infty} \overline{E}_I \subset I(f).$

Tangent family

$I_p(f_\lambda)$

For

$$\lambda \in \mathcal{C}_{p-1} = \{\lambda : f_{\lambda}^{p-1}(\pm \lambda i) = \infty\}, p > 1,$$

Tangent family

we also consider the set

$$I_p(f_{\lambda}) = \{z \in J(f_{\lambda}) : \lim_{k \to \infty} |f_{\lambda}^{kp}(z)| = \infty\} \subset J(f_{\lambda}) = \overline{\mathbb{C}}$$

Remark

 $I_p(f_\lambda)$ contains Cantor bouquets $C_1 \neq C_2$ such that:

- C₁ is invariant for invariant for f^p,
- C_2 is invariant for invariant for f^{2p} ,

イロト イポト イヨト イヨト 三日

Tangent family

$I_p(f_\lambda)$

For

$$\lambda \in \mathcal{C}_{p-1} = \{\lambda : f_{\lambda}^{p-1}(\pm \lambda i) = \infty\}, p > 1,$$

Tangent family

we also consider the set

$$I_p(f_{\lambda}) = \{z \in J(f_{\lambda}) : \lim_{k \to \infty} |f_{\lambda}^{kp}(z)| = \infty\} \subset J(f_{\lambda}) = \overline{\mathbb{C}}$$

Remark

 $I_p(f_{\lambda})$ contains Cantor bouquets $C_1 \neq C_2$ such that:

- C_1 is invariant for invariant for f^p ,
- C_2 is invariant for invariant for f^{2p} ,

 $\fbox{\begin{tinted} \hline lntroduction \\ The class \mathcal{R} \\ The dynamics and geometry of the Fatou functions \\ \hline \end{tilde{}}$

Basic definition Tangent family

Tangent family

The radial Julia set

We define the radial Julia set or conical set $J_r(f)$ as the set of points z in J(f) for which there exists a family of neighborhoods $B(z, r_j), r_j \rightarrow 0$, which can be mapped by f with bounded distortion until the diameter of the image reaches a fixed size.

Estimates (K.-Urbański)

```
If \lambda \in \Omega_p (resp. \Omega'_p, p > 1) then
```

$$1 < \operatorname{HD}(J(f_{\lambda})) = \operatorname{HD}(J_r(f_{\lambda})) < 2$$

and

$$0 < \mathrm{HD}(I(f_{\lambda})) < \frac{1}{2}$$

'Cantor bouquets' for non-entire meromorphic functions

Basic definition Tangent family

Tangent family

The radial Julia set

We define the radial Julia set or conical set $J_r(f)$ as the set of points z in J(f) for which there exists a family of neighborhoods $B(z, r_j), r_j \rightarrow 0$, which can be mapped by f with bounded distortion until the diameter of the image reaches a fixed size.

Estimates (K.-Urbański)

If $\lambda \in \Omega_p$ (resp. $\Omega'_p, p > 1$) then

$$1 < \operatorname{HD}(J(f_{\lambda})) = \operatorname{HD}(J_r(f_{\lambda})) < 2$$

and

$$0 < \operatorname{HD}(I(f_{\lambda})) < \frac{1}{2}$$

'Cantor bouquets' for non-entire meromorphic functions

Basic definition Tangent family

Tangent family

Estimates (Skorulski)

If λ_0 is a virtual center of a pair $(\Omega_p, \Omega'_p), p > 1$, then $P(f_{\lambda_0}) := \{\pm \lambda_0 i, f_{\lambda_0}(\pm \lambda_0 i), \dots, f_{\lambda_0}^{p-1}(\pm \lambda_0 i) = \infty\}$ and $J(f_{\lambda_0}) = \overline{\mathbb{C}}$. In this case $1 < \operatorname{HD}(J_r(f_{\lambda_0})) < 2$

$$0 < \mathrm{HD}(I(f_{\lambda_0})) < \frac{1}{2},$$

• HD $(I_{p-1}(f_{\lambda_0})) = 2$ where $I_{p-1}(f_{\lambda}) = \{z \in J(f_{\lambda}) : \lim_{k \to \infty} |f_{\lambda}^{k(p-1)}(z)| = \infty\}$

• meas $(I_{p-1}(f_{\lambda_0})) > 0$ and $\omega(z) = P(f_{\lambda_0})$ for a.e. $z \in J(f_{\lambda_0}) = \mathbb{C}$

'Cantor bouquets' for non-entire meromorphic functions

Basic definition Tangent family

Tangent family

Estimates (Skorulski)

If λ_0 is a virtual center of a pair $(\Omega_p, \Omega'_p), p > 1$, then $P(f_{\lambda_0}) := \{\pm \lambda_0 i, f_{\lambda_0}(\pm \lambda_0 i), \dots, f_{\lambda_0}^{p-1}(\pm \lambda_0 i) = \infty\}$ and $J(f_{\lambda_0}) = \overline{\mathbb{C}}$. In this case $1 < \operatorname{HD}(J_r(f_{\lambda_0})) < 2$

$$0 < \mathrm{HD}(I(f_{\lambda_0})) < \frac{1}{2},$$

■ HD($I_{p-1}(f_{\lambda_0})$) = 2 where $I_{p-1}(f_{\lambda}) = \{z \in J(f_{\lambda}) : \lim_{k \to \infty} |f_{\lambda}^{k(p-1)}(z)| = \infty\}$

• meas $(I_{p-1}(f_{\lambda_0})) > 0$ and $\omega(z) = P(f_{\lambda_0})$ for a.e. $z \in J(f_{\lambda_0}) = \mathbb{C}$

Basic definition Tangent family

Tangent family

Estimates (Skorulski)

If λ_0 is a virtual center of a pair $(\Omega_p, \Omega'_p), p > 1$, then $P(f_{\lambda_0}) := \{\pm \lambda_0 i, f_{\lambda_0}(\pm \lambda_0 i), \dots, f_{\lambda_0}^{p-1}(\pm \lambda_0 i) = \infty\}$ and $J(f_{\lambda_0}) = \overline{\mathbb{C}}$. In this case $1 < \operatorname{HD}(J_r(f_{\lambda_0})) < 2$

 $0 < \mathrm{HD}(I(f_{\lambda_0})) < \frac{1}{2},$

• HD $(I_{p-1}(f_{\lambda_0})) = 2$ where $I_{p-1}(f_{\lambda}) = \{z \in J(f_{\lambda}) : \lim_{k \to \infty} |f_{\lambda}^{k(p-1)}(z)| = \infty\}$

• meas $(I_{p-1}(f_{\lambda_0})) > 0$ and $\omega(z) = P(f_{\lambda_0})$ for a.e. $z \in J(f_{\lambda_0}) = \mathbb{C}$

Basic definition Tangent family

Tangent family

Estimates (Skorulski)

If λ_0 is a virtual center of a pair $(\Omega_p, \Omega'_p), p > 1$, then $P(f_{\lambda_0}) := \{\pm \lambda_0 i, f_{\lambda_0}(\pm \lambda_0 i), \dots, f_{\lambda_0}^{p-1}(\pm \lambda_0 i) = \infty\}$ and $J(f_{\lambda_0}) = \overline{\mathbb{C}}$. In this case $1 < \operatorname{HD}(J_r(f_{\lambda_0})) < 2$

$$0 < \mathrm{HD}(I(f_{\lambda_0})) < \frac{1}{2},$$

• HD $(I_{p-1}(f_{\lambda_0})) = 2$ where $I_{p-1}(f_{\lambda}) = \{z \in J(f_{\lambda}) : \lim_{k \to \infty} |f_{\lambda}^{k(p-1)}(z)| = \infty\}.$

• meas $(I_{p-1}(f_{\lambda_0})) > 0$ and $\omega(z) = P(f_{\lambda_0})$ for a.e. $z \in J(f_{\lambda_0}) = \mathbb{C}$

Basic definition Tangent family

Tangent family

Estimates (Skorulski)

If λ_0 is a virtual center of a pair $(\Omega_p, \Omega'_p), p > 1$, then $P(f_{\lambda_0}) := \{\pm \lambda_0 i, f_{\lambda_0}(\pm \lambda_0 i), \dots, f_{\lambda_0}^{p-1}(\pm \lambda_0 i) = \infty\}$ and $J(f_{\lambda_0}) = \overline{\mathbb{C}}$. In this case $1 < \operatorname{HD}(J_r(f_{\lambda_0})) < 2$

$$0 < \mathrm{HD}(I(f_{\lambda_0})) < \frac{1}{2},$$

■ HD(
$$I_{p-1}(f_{\lambda_0})$$
) = 2 where
 $I_{p-1}(f_{\lambda}) = \{z \in J(f_{\lambda}) : \lim_{k \to \infty} |f_{\lambda}^{k(p-1)}(z)| = \infty\}$

• meas
$$(I_{p-1}(f_{\lambda_0})) > 0$$
 and $\omega(z) = P(f_{\lambda_0})$ for a.e.
 $z \in J(f_{\lambda_0}) = \mathbb{C}$

Comments

We know that $meas(I_{p-1}(f_{\lambda_0})) > 0$ and $\omega(z) = P(f_{\lambda_0})$ for *a.e.* $z \in J(f_{\lambda_0}) = \mathbb{C}$.

Theorem (Bock)

If f is a transcendental meromorphic function then at least one of the following statement holds:

lim_{n→∞} dist_x(fⁿ(z), P(f)) = 0 for almost all z ∈ J(f);
 J(f) = C and for all A ⊂ C of positive measure the set {n ∈ N : fⁿ(z) ∈ A} is finite for almost all z ∈ C.

Remark

Comments

We know that $meas(I_{p-1}(f_{\lambda_0})) > 0$ and $\omega(z) = P(f_{\lambda_0})$ for *a.e.* $z \in J(f_{\lambda_0}) = \mathbb{C}$.

Theorem (Bock)

If f is a transcendental meromorphic function then at least one of the following statement holds:

lim_{n→∞} dist_χ(fⁿ(z), P(f)) = 0 for almost all z ∈ J(f);
 J(f) = C and for all A ⊂ C of positive measure the set {n ∈ N : fⁿ(z) ∈ A} is finite for almost all z ∈ C.

Remark

Comments

We know that $meas(I_{p-1}(f_{\lambda_0})) > 0$ and $\omega(z) = P(f_{\lambda_0})$ for *a.e.* $z \in J(f_{\lambda_0}) = \mathbb{C}$.

Theorem (Bock)

If f is a transcendental meromorphic function then at least one of the following statement holds:

• $\lim_{n\to\infty} dist_{\chi}(f^n(z), P(f)) = 0$ for almost all $z \in J(f)$;

J(f) = $\overline{\mathbb{C}}$ and for all A ⊂ $\overline{\mathbb{C}}$ of positive measure the set {n ∈ \mathbb{N} : fⁿ(z) ∈ A} is finite for almost all z ∈ \mathbb{C} .

Remark

Comments

We know that $meas(I_{p-1}(f_{\lambda_0})) > 0$ and $\omega(z) = P(f_{\lambda_0})$ for *a.e.* $z \in J(f_{\lambda_0}) = \mathbb{C}$.

Theorem (Bock)

If f is a transcendental meromorphic function then at least one of the following statement holds:

$$Iim_{n\to\infty} \operatorname{dist}_{\chi}(f^n(z), P(f)) = 0 \text{ for almost all } z \in J(f);$$

② $J(f) = \overline{\mathbb{C}}$ and for all $A \subset \overline{\mathbb{C}}$ of positive measure the set { $n \in \mathbb{N}$: $f^n(z) \in A$ } is finite for almost all $z \in \mathbb{C}$.

Remark

Comments

We know that $meas(I_{p-1}(f_{\lambda_0})) > 0$ and $\omega(z) = P(f_{\lambda_0})$ for *a.e.* $z \in J(f_{\lambda_0}) = \mathbb{C}$.

Theorem (Bock)

If f is a transcendental meromorphic function then at least one of the following statement holds:

$$Iim_{n\to\infty} \operatorname{dist}_{\chi}(f^n(z),P(f)) = 0 \text{ for almost all } z \in J(f);$$

② $J(f) = \overline{\mathbb{C}}$ and for all $A \subset \overline{\mathbb{C}}$ of positive measure the set { $n \in \mathbb{N}$: $f^n(z) \in A$ } is finite for almost all $z \in \mathbb{C}$.

Remark

The class ${\cal R}$

Definition

Let ${\mathcal R}$ be the family of maps of the form

$$f(z)=R\circ exp(z),$$

where R is a non-constant rational function. Then f has two asymptotic values

$$\xi_1 := R(0), \quad \xi_2 := R(\infty).$$

We assume that

$$\xi_1 := R(0) \neq \infty, \quad \xi_2 := R(\infty) \neq \infty,$$

so f is non-entire.

The class ${\cal R}$

Subfamilies of ${\mathcal R}$

We define two subfamilies:

• \mathcal{R}_1 - only one asymptotic value e.g. ξ_1 is mapped

onto a pole i.e. there is $q_1 \geq 1$ such that $f^{q_1}(\xi_1) = \infty$

• \mathcal{R}_2 - both asymptotic values ξ_1, ξ_2 are mapped

onto poles i.e. there are $q_1 \geq 1, q_2 \geq 1$ such that

 $f^{q_1}(\xi_1) = \infty, \ f^{q_2}(\xi_2) = \infty,$

Subfamilies of ${\mathcal R}$

We define two subfamilies:

• \mathcal{R}_1 - only one asymptotic value e.g. ξ_1 is mapped

onto a pole i.e. there is $q_1 \geq 1$ such that $f^{q_1}(\xi_1) = \infty$

• \mathcal{R}_2 - both asymptotic values ξ_1, ξ_2 are mapped

onto poles i.e. there are $q_1 \geq 1, q_2 \geq 1$ such that

 $f^{q_1}(\xi_1) = \infty, \ f^{q_2}(\xi_2) = \infty,$

Subfamilies of ${\mathcal R}$

We define two subfamilies:

• \mathcal{R}_1 - only one asymptotic value e.g. ξ_1 is mapped

onto a pole i.e. there is $q_1 \geq 1$ such that $f^{q_1}(\xi_1) = \infty$

• \mathcal{R}_2 - both asymptotic values ξ_1, ξ_2 are mapped

onto poles i.e. there are $q_1 \ge 1, q_2 \ge 1$ such that

$$f^{q_1}(\xi_1)=\infty$$
, $f^{q_2}(\xi_2)=\infty$,

Theorem (Skorulski)

Let $f \in \mathcal{R}_1$ (only one asymptotic value ξ_1 is mapped onto a pole $f^{q_1}(\xi_1) = \infty$). Let $I_{q_1}(f) := \{z \in J(f) : \lim_{k \to \infty} f^{kq_1}(z) = \infty\}$. Then

•
$$HD(I_{q_1}(f)) = 2$$

ⓐ If additionally $Sing(f^{-1}) \setminus \{\xi_1\} \subset F(f)$ then meas(J(f)) = 0.

Remark (Mc Mullen)

Compare with
$$f_{\lambda}(z) = \lambda e^{z}$$
 for $\lambda \in (0, 1/e)$
 $HD(I(f)) = 2$

• meas(J(f)) = 0.

Theorem (Skorulski)

Let $f \in \mathcal{R}_1$ (only one asymptotic value ξ_1 is mapped onto a pole $f^{q_1}(\xi_1) = \infty$). Let $I_{q_1}(f) := \{z \in J(f) : \lim_{k \to \infty} f^{kq_1}(z) = \infty\}$. Then

•
$$HD(I_{q_1}(f)) = 2$$

ⓐ If additionally $Sing(f^{-1}) \setminus \{\xi_1\} \subset F(f)$ then meas(J(f)) = 0.

Remark (Mc Mullen)

Compare with
$$f_{\lambda}(z) = \lambda e^{z}$$
 for $\lambda \in (0, 1/e)$
 $HD(I(f)) = 2$

• meas(J(f)) = 0.

Theorem (Skorulski)

Let $f \in \mathcal{R}_1$ (only one asymptotic value ξ_1 is mapped onto a pole $f^{q_1}(\xi_1) = \infty$). Let $I_{q_1}(f) := \{z \in J(f) : \lim_{k \to \infty} f^{kq_1}(z) = \infty\}$. Then

•
$$HD(I_{q_1}(f)) = 2$$

③ If additionally Sing(f^{-1}) \ { $ξ_1$ } ⊂ F(f) then meas(J(f)) = 0.

Remark (Mc Mullen)

```
Compare with f_{\lambda}(z) = \lambda e^{z} for \lambda \in (0, 1/e)

HD(I(f)) = 2
```

• meas(J(f)) = 0.

Theorem (Skorulski)

Let $f \in \mathcal{R}_1$ (only one asymptotic value ξ_1 is mapped onto a pole $f^{q_1}(\xi_1) = \infty$). Let $I_{q_1}(f) := \{z \in J(f) : \lim_{k \to \infty} f^{kq_1}(z) = \infty\}$. Then

•
$$HD(I_{q_1}(f)) = 2$$

③ If additionally Sing(f^{-1}) \ { $ξ_1$ } ⊂ F(f) then meas(J(f)) = 0.

Remark (Mc Mullen)

Compare with
$$f_{\lambda}(z) = \lambda e^{z}$$
 for $\lambda \in (0, 1/e)$
 $HD(I(f)) = 2$

2 meas(J(f)) = 0.

Theorem (Skorulski)

Let $f \in \mathcal{R}_1$ (only one asymptotic value ξ_1 is mapped onto a pole $f^{q_1}(\xi_1) = \infty$). Let $I_{q_1}(f) := \{z \in J(f) : \lim_{k \to \infty} f^{kq_1}(z) = \infty\}$. Then

•
$$HD(I_{q_1}(f)) = 2$$

③ If additionally Sing(f^{-1}) \ { $ξ_1$ } ⊂ F(f) then meas(J(f)) = 0.

Remark (Mc Mullen)

Compare with
$$f_{\lambda}(z) = \lambda e^{z}$$
 for $\lambda \in (0, 1/e)$
• $HD(I(f)) = 2$

2
$$meas(J(f)) = 0.$$

Theorem (Skorulski)

Let $f \in \mathcal{R}_1$ (only one asymptotic value ξ_1 is mapped onto a pole $f^{q_1}(\xi_1) = \infty$). Let $I_{q_1}(f) := \{z \in J(f) : \lim_{k \to \infty} f^{kq_1}(z) = \infty\}$. Then

•
$$HD(I_{q_1}(f)) = 2$$

③ If additionally Sing(f^{-1}) \ { $ξ_1$ } ⊂ F(f) then meas(J(f)) = 0.

Remark (Mc Mullen)

Compare with
$$f_{\lambda}(z) = \lambda e^{z}$$
 for $\lambda \in (0, 1/e)$
 $HD(I(f)) = 2$

2
$$meas(J(f)) = 0.$$

Theorem (Skorulski)

Let $f \in \mathcal{R}_2$ i.e. there are $q_1 \ge 1, q_2 \ge 1$ such that $f^{q_1}(\xi_1) = \infty$, $f^{q_2}(\xi_2) = \infty$. Then the set

$$\mathcal{P}_{Asymp}(f) := \{\xi_1, \dots, f^{q_1}(\xi_1) = \infty, \quad \xi_2, \dots, f^{q_2}(\xi_1) = \infty\}$$

is a metric attractor i.e. the Lebesgue's measure of

$$\{z \in J(f) : \omega(z) \subset P_{Asymp}(f)\}$$

is positive.

< □ > < ∂ > < ই > < ই > ই < ⊙ <
 'Cantor bouquets' for non-entire meromorphic functions

Theorem (Skorulski)

Let $f \in \mathcal{R}_2$ and $dist_{\chi}(P_2(f), J(f)) > 0$ where

$$P_2(f) := cl\{\Theta^+(\mathit{Sing}(f^{-1})) \setminus \Theta^+(\{\xi_1,\xi_2\})\}$$

then

•
$$meas(J(f))$$
 is positive, $J(f) \neq \mathbb{C}$

• for a.e. $z \in J(f)$ we have $\omega(z) = P_{asymp}(f) =$ where

 $P_{Asymp}(f) := \{\xi_1, \dots, f^{q_1}(\xi_1) = \infty, \quad \xi_2, \dots, f^{q_2}(\xi_1) = \infty\}$

• J(f) is 'a Cantor bouquet'.

Theorem (Skorulski)

Let $f \in \mathcal{R}_2$ and $dist_{\chi}(P_2(f), J(f)) > 0$ where

$$P_2(f) := cl\{\Theta^+(\mathit{Sing}(f^{-1})) \setminus \Theta^+(\{\xi_1,\xi_2\})\}$$

then

• meas(J(f)) is positive, $J(f) \neq \mathbb{C}$

• for a.e. $z \in J(f)$ we have $\omega(z) = P_{asymp}(f) =$ where

 $P_{Asymp}(f) := \{\xi_1, \dots, f^{q_1}(\xi_1) = \infty, \quad \xi_2, \dots, f^{q_2}(\xi_1) = \infty\}$

J(f) is 'a Cantor bouquet'.

Theorem (Skorulski)

Let $f \in \mathcal{R}_2$ and $dist_{\chi}(P_2(f), J(f)) > 0$ where

$$P_2(f) := cl\{\Theta^+(\mathit{Sing}(f^{-1})) \setminus \Theta^+(\{\xi_1,\xi_2\})\}$$

then

- meas(J(f)) is positive, $J(f) \neq \mathbb{C}$
- for a.e. $z \in J(f)$ we have $\omega(z) = P_{asymp}(f) =$ where

$$P_{Asymp}(f) := \{\xi_1, \dots, f^{q_1}(\xi_1) = \infty, \quad \xi_2, \dots, f^{q_2}(\xi_1) = \infty\}$$

• J(f) is 'a Cantor bouquet'.

Theorem (Skorulski)

Let $f \in \mathcal{R}_2$ and $dist_{\chi}(P_2(f), J(f)) > 0$ where

$$P_2(f) := cl\{\Theta^+(\mathit{Sing}(f^{-1})) \setminus \Theta^+(\{\xi_1,\xi_2\})\}$$

then

- meas(J(f)) is positive, $J(f) \neq \mathbb{C}$
- for a.e. $z \in J(f)$ we have $\omega(z) = P_{asymp}(f) =$ where

$$P_{Asymp}(f) := \{\xi_1, \dots, f^{q_1}(\xi_1) = \infty, \quad \xi_2, \dots, f^{q_2}(\xi_1) = \infty\}$$

• J(f) is 'a Cantor bouquet'.

If $\lambda \in \Omega_p$ (resp. Ω'_p) then $\overline{P(f_\lambda)} \subset F(f_\lambda)$ and the Julia $J(f_\lambda)$

- has empty interior
- ② the Lebesgue measure of the Julia set is zero since $dist(\overline{P(f_{\lambda})}, J(f_{\lambda})) > 0$ where $P(f_{\lambda}) = \bigcup_{0}^{\infty} f_{\lambda}^{n}(\pm \lambda i)$.

(2) follows e.g. from Stallard's results for meromorphic functions

Theorem (K.-Urbański)

If $\lambda \in \Omega_p$ (resp. Ω'_p), p > 1 then $\overline{P(f_\lambda)} \subset F(f_\lambda)$ and

 $1 < HD(J(f_{\lambda})) = HD(J_r(f_{\lambda})) < 2$

If $\lambda \in \Omega_p$ (resp. Ω'_p) then $\overline{P(f_\lambda)} \subset F(f_\lambda)$ and the Julia $J(f_\lambda)$

has empty interior

② the Lebesgue measure of the Julia set is zero since $dist(\overline{P(f_{\lambda})}, J(f_{\lambda})) > 0$ where $P(f_{\lambda}) = \bigcup_{0}^{\infty} f_{\lambda}^{n}(\pm \lambda i)$.

(2) follows e.g. from Stallard's results for meromorphic functions

Theorem (K.-Urbański)

If $\lambda \in \Omega_p$ (resp. Ω'_p), p > 1 then $\overline{P(f_\lambda)} \subset F(f_\lambda)$ and

 $1 < HD(J(f_{\lambda})) = HD(J_r(f_{\lambda})) < 2$

If
$$\lambda \in \Omega_p$$
 (resp. Ω'_p) then $\overline{P(f_\lambda)} \subset F(f_\lambda)$ and the Julia $J(f_\lambda)$

- has empty interior
- ② the Lebesgue measure of the Julia set is zero since $dist(\overline{P(f_{\lambda})}, J(f_{\lambda})) > 0$ where $P(f_{\lambda}) = \bigcup_{0}^{\infty} f_{\lambda}^{n}(\pm \lambda i)$.

(2) follows e.g. from Stallard's results for meromorphic functions

Theorem (K.-Urbański)

If $\lambda \in \Omega_p$ (resp. Ω'_p), p > 1 then $\overline{P(f_\lambda)} \subset F(f_\lambda)$ and

 $1 < HD(J(f_{\lambda})) = HD(J_r(f_{\lambda})) < 2$

If
$$\lambda \in \Omega_p$$
 (resp. Ω'_p) then $\overline{P(f_\lambda)} \subset F(f_\lambda)$ and the Julia $J(f_\lambda)$

- has empty interior
- ② the Lebesgue measure of the Julia set is zero since $dist(\overline{P(f_{\lambda})}, J(f_{\lambda})) > 0$ where $P(f_{\lambda}) = \bigcup_{0}^{\infty} f_{\lambda}^{n}(\pm \lambda i)$.

(2) follows e.g. from Stallard's results for meromorphic functions

Theorem (K.-Urbański)

If $\lambda \in \Omega_p$ (resp. Ω'_p), p > 1 then $\overline{P(f_\lambda)} \subset F(f_\lambda)$ and

 $1 < HD(J(f_{\lambda})) = HD(J_r(f_{\lambda})) < 2$

If
$$\lambda \in \Omega_p$$
 (resp. Ω'_p) then $\overline{P(f_\lambda)} \subset F(f_\lambda)$ and the Julia $J(f_\lambda)$

- has empty interior
- One was a structure of the Julia set is zero since dist($\overline{P(f_{\lambda})}, J(f_{\lambda})$) > 0 where $P(f_{\lambda}) = \bigcup_{0}^{\infty} f_{\lambda}^{n}(\pm \lambda i)$.

(2) follows e.g. from Stallard's results for meromorphic functions

Theorem (K.-Urbański)

If
$$\lambda \in \Omega_p$$
 (resp. Ω'_p), $p > 1$ then $\overline{P(f_\lambda)} \subset F(f_\lambda)$ and

$$1 < HD(J(f_{\lambda})) = HD(J_r(f_{\lambda})) < 2$$

If
$$\lambda \in \Omega_p$$
 (resp. Ω'_p) then $\overline{P(f_\lambda)} \subset F(f_\lambda)$ and the Julia $J(f_\lambda)$

- has empty interior
- Solution is the Lebesgue measure of the Julia set is zero since dist($\overline{P(f_{\lambda})}, J(f_{\lambda})$) > 0 where $P(f_{\lambda}) = \bigcup_{0}^{\infty} f_{\lambda}^{n}(\pm \lambda i)$.

(2) follows e.g. from Stallard's results for meromorphic functions

Theorem (K.-Urbański)

If
$$\lambda \in \Omega_p$$
 (resp. Ω'_p), $p > 1$ then $\overline{P(f_\lambda)} \subset F(f_\lambda)$ and

$$1 < HD(J(f_{\lambda})) = HD(J_r(f_{\lambda})) < 2$$

Continuity of the $HD(J_r(f))$ in the tangent family

Continuity of the Hausdorff dimension

Theorem (S.)

• If λ_0 is a virtual center of a pair (Ω_p, Ω'_p) then for a.e. $z \in J(f_{\lambda_0}) = \overline{\mathbb{C}}$ we have $\omega(z) = P(f_{\lambda_0})$ },

• \implies meas $(J_r(f_{\lambda_0})) = 0.$

• Let
$$h_{\lambda} := HD(J_r(f_{\lambda}))$$

•
$$J(f_{\lambda_0}) = \overline{\mathbb{C}}$$
 then $HD(J(f_{\lambda})) = 2$

• Question
$$h_{\lambda_0} = HD(J_r(f_{\lambda_0})) = ?$$

Theorem (S.)

Continuity of the $HD(J_r(f))$ in the tangent family

Continuity of the Hausdorff dimension

Theorem (S.)

• If λ_0 is a virtual center of a pair (Ω_p, Ω'_p) then for a.e. $z \in J(f_{\lambda_0}) = \overline{\mathbb{C}}$ we have $\omega(z) = P(f_{\lambda_0})$ },

•
$$\implies$$
 meas $(J_r(f_{\lambda_0})) = 0.$

• Let
$$h_{\lambda} := HD(J_r(f_{\lambda}))$$

•
$$J(f_{\lambda_0}) = \mathbb{C}$$
 then $HD(J(f_{\lambda})) = 2$

• Question
$$h_{\lambda_0} = HD(J_r(f_{\lambda_0})) = ?$$

Theorem (S.)

Continuity of the $HD(J_r(f))$ in the tangent family

Continuity of the Hausdorff dimension

Theorem (S.)

• If λ_0 is a virtual center of a pair (Ω_p, Ω'_p) then for a.e. $z \in J(f_{\lambda_0}) = \overline{\mathbb{C}}$ we have $\omega(z) = P(f_{\lambda_0})$ },

•
$$\implies$$
 meas $(J_r(f_{\lambda_0})) = 0.$

• Let
$$h_{\lambda} := HD(J_r(f_{\lambda}))$$

•
$$J(f_{\lambda_0}) = \overline{\mathbb{C}}$$
 then $HD(J(f_{\lambda})) = 2$

• Question
$$h_{\lambda_0} = HD(J_r(f_{\lambda_0})) = ?$$

Theorem (S.)

Continuity of the $HD(J_r(f))$ in the tangent family

Continuity of the Hausdorff dimension

Theorem (S.)

• If λ_0 is a virtual center of a pair (Ω_p, Ω'_p) then for a.e. $z \in J(f_{\lambda_0}) = \overline{\mathbb{C}}$ we have $\omega(z) = P(f_{\lambda_0})$ },

•
$$\implies$$
 meas $(J_r(f_{\lambda_0})) = 0.$

• Let
$$h_{\lambda} := HD(J_r(f_{\lambda}))$$

•
$$J(f_{\lambda_0}) = \overline{\mathbb{C}}$$
 then $HD(J(f_{\lambda})) = 2$

• Question
$$h_{\lambda_0} = HD(J_r(f_{\lambda_0})) = ?$$

Theorem (S.)

Continuity of the $HD(J_r(f))$ in the tangent family

Continuity of the Hausdorff dimension

Theorem (S.)

• If λ_0 is a virtual center of a pair (Ω_p, Ω'_p) then for a.e. $z \in J(f_{\lambda_0}) = \overline{\mathbb{C}}$ we have $\omega(z) = P(f_{\lambda_0})$ },

•
$$\implies$$
 meas $(J_r(f_{\lambda_0})) = 0.$

• Let
$$h_{\lambda} := HD(J_r(f_{\lambda}))$$

•
$$J(f_{\lambda_0}) = \overline{\mathbb{C}}$$
 then $HD(J(f_{\lambda})) = 2$

• Question
$$h_{\lambda_0} = HD(J_r(f_{\lambda_0})) = ?$$

Theorem (S.)

Continuity of the $HD(J_r(f))$ in the tangent family

Continuity of the Hausdorff dimension

Theorem (S.)

• If λ_0 is a virtual center of a pair (Ω_p, Ω'_p) then for a.e. $z \in J(f_{\lambda_0}) = \overline{\mathbb{C}}$ we have $\omega(z) = P(f_{\lambda_0})$ },

•
$$\implies$$
 meas $(J_r(f_{\lambda_0})) = 0.$

• Let
$$h_{\lambda} := HD(J_r(f_{\lambda}))$$

•
$$J(f_{\lambda_0}) = \overline{\mathbb{C}}$$
 then $HD(J(f_{\lambda})) = 2$

• Question
$$h_{\lambda_0} = HD(J_r(f_{\lambda_0})) = ?$$

Theorem (S.)

Continuity of the $HD(J_r(f))$ in the tangent family

Continuity of the Hausdorff dimension

Question

Does
$$\lim_{\lambda \to \lambda_0} h_{\lambda} = h_{\lambda_0} < 2$$
 for $\lambda \in \Omega_p$?

Theorem. (K.-Urbański)

For $p \geq 1$ let (Ω_p, Ω'_p) be a pair of hyperbolic components with virtual center at λ_0 then

$${\it lim}_{\lambda o\lambda_0}h_\lambda=h_{\lambda_0}$$

for $\lambda \in \Omega_p \cup \Omega'_p$.

Continuity of h_{λ} for $\lambda \in \Omega_p$ follows from the previous result proved for hyperbolic functions of the form

$$f(z) = H(exp(Q(z))).$$

(□ > ()

Continuity of the $HD(J_r(f))$ in the tangent family

Continuity of the Hausdorff dimension

Question

Does
$$\lim_{\lambda \to \lambda_0} h_{\lambda} = h_{\lambda_0} < 2$$
 for $\lambda \in \Omega_p$?

Theorem. (K.-Urbański)

For $p\geq 1$ let (Ω_p,Ω_p') be a pair of hyperbolic components with virtual center at λ_0 then

$$\lim_{\lambda \to \lambda_0} h_{\lambda} = h_{\lambda_0}$$

for $\lambda \in \Omega_p \cup \Omega'_p$.

Continuity of h_{λ} for $\lambda \in \Omega_p$ follows from the previous result proved for hyperbolic functions of the form

$$f(z) = H(exp(Q(z))).$$

'Cantor bouquets' for non-entire meromorphic functions

< 日 > (同 > (回 > (回 >))) 目 : (回 >) (u =) (u

Continuity of the $HD(J_r(f))$ in the tangent family

Continuity of the Hausdorff dimension

Question

Does
$$\lim_{\lambda \to \lambda_0} h_{\lambda} = h_{\lambda_0} < 2$$
 for $\lambda \in \Omega_p$?

Theorem. (K.-Urbański)

For $p\geq 1$ let (Ω_p,Ω_p') be a pair of hyperbolic components with virtual center at λ_0 then

$$\mathit{lim}_{\lambda
ightarrow \lambda_0} \mathit{h}_\lambda = \mathit{h}_{\lambda_0}$$

for $\lambda \in \Omega_p \cup \Omega'_p$.

Continuity of h_{λ} for $\lambda \in \Omega_p$ follows from the previous result proved for hyperbolic functions of the form

$$f(z) = H(exp(Q(z))).$$

イロト イポト イヨト イヨト 三日

- $\bullet\,$ Since f is periodic we can project f on a cylinder $\mathbb{C}/{\sim}$,
- We say $z_1 \sim z_2$ if there exists $k \in \mathbb{Z}$ such that $z_1 = z_2 + 2k\pi i$.
- Let Π be a projection of $\mathbb C$ onto $\mathcal C$ and $F : \Pi \circ f \circ \Pi^{-1}$.

Theorem (S.

Let $f \in \mathcal{R}$ be as above. Then

- $1 < HD(J_r(F)) = h < 2.$
- There exists h-conformal measure on J(F) such that m is atomless and $m(J_r(F)) = 1$.
- If m' is a probabilistic measure on J(F) which is t-conformal for some t > 1, then m' = m (uniquess of conformal measure)

- $\bullet\,$ Since f is periodic we can project f on a cylinder $\mathbb{C}/{\sim}$,
- We say $z_1 \sim z_2$ if there exists $k \in \mathbb{Z}$ such that $z_1 = z_2 + 2k\pi i$.
- Let Π be a projection of $\mathbb C$ onto $\mathcal C$ and $F : \Pi \circ f \circ \Pi^{-1}$.

Theorem (S.

Let $f \in \mathcal{R}$ be as above. Then

- $1 < HD(J_r(F)) = h < 2.$
- There exists h-conformal measure on J(F) such that m is atomless and $m(J_r(F)) = 1$.
- If m' is a probabilistic measure on J(F) which is t-conformal for some t > 1, then m' = m (uniquess of conformal measure)

- $\bullet\,$ Since f is periodic we can project f on a cylinder $\mathbb{C}/{\sim}$,
- We say $z_1 \sim z_2$ if there exists $k \in \mathbb{Z}$ such that $z_1 = z_2 + 2k\pi i$.
- Let Π be a projection of \mathbb{C} onto \mathcal{C} and $F : \Pi \circ f \circ \Pi^{-1}$.

Theorem (S.)

Let $f \in \mathcal{R}$ be as above. Then

- $1 < HD(J_r(F)) = h < 2.$
- There exists h-conformal measure on J(F) such that m is atomless and $m(J_r(F)) = 1$.

• If m' is a probabilistic measure on J(F) which is t-conformal for some t > 1, then m' = m (uniquess of conformal measure)

- $\bullet\,$ Since f is periodic we can project f on a cylinder $\mathbb{C}/{\sim}$,
- We say $z_1 \sim z_2$ if there exists $k \in \mathbb{Z}$ such that $z_1 = z_2 + 2k\pi i$.
- Let Π be a projection of \mathbb{C} onto \mathcal{C} and $F : \Pi \circ f \circ \Pi^{-1}$.

Theorem (S.)

Let $f \in \mathcal{R}$ be as above. Then

- $1 < HD(J_r(F)) = h < 2.$
- There exists h-conformal measure on J(F) such that m is atomless and $m(J_r(F)) = 1$.
- If m' is a probabilistic measure on J(F) which is t-conformal for some t > 1, then m' = m (uniquess of conformal measure).

We consider a projection of f_{λ} and f_{λ_0} onto cylinder C i.e. $F_{\lambda} := \Pi \circ f_{\lambda} \circ \Pi^{-1}$ and $F_{\lambda_0} := \Pi \circ f_{\lambda_0} \circ \Pi^{-1}$. Then

- $HD(J(f_{\lambda})) = HD(J(F_{\lambda})) = h_{\lambda}$,
- $HD(J_r(f_{\lambda})) = HD(J_r(F_{\lambda})) = h_{\lambda}$ for all $\lambda \in \mathbb{C}^*$.

• It follows from Skorulski's results that $h_{\lambda} \ge s > 1$.

• Take $\{\lambda_n\}_0^\infty$ such that $\lim_{n\to\infty} \lambda_n = \lambda_0$.

Since $h_{\lambda} \in [s, 2]$, we may assume that the sequence $\{h_{\lambda_n}\}_0^{\infty}$ converges to some $t \in [s, 2]$.

We consider a projection of f_{λ} and f_{λ_0} onto cylinder C i.e. $F_{\lambda} := \Pi \circ f_{\lambda} \circ \Pi^{-1}$ and $F_{\lambda_0} := \Pi \circ f_{\lambda_0} \circ \Pi^{-1}$. Then

- $HD(J(f_{\lambda})) = HD(J(F_{\lambda})) = h_{\lambda}$,
- $HD(J_r(f_{\lambda})) = HD(J_r(F_{\lambda})) = h_{\lambda}$ for all $\lambda \in \mathbb{C}^*$.

• It follows from Skorulski's results that $h_{\lambda} \ge s > 1$.

• Take $\{\lambda_n\}_0^\infty$ such that $\lim_{n\to\infty} \lambda_n = \lambda_0$.

Since $h_{\lambda} \in [s, 2]$, we may assume that the sequence $\{h_{\lambda_n}\}_0^{\infty}$ converges to some $t \in [s, 2]$.

We consider a projection of f_{λ} and f_{λ_0} onto cylinder C i.e. $F_{\lambda} := \Pi \circ f_{\lambda} \circ \Pi^{-1}$ and $F_{\lambda_0} := \Pi \circ f_{\lambda_0} \circ \Pi^{-1}$. Then

•
$$HD(J(f_{\lambda})) = HD(J(F_{\lambda})) = h_{\lambda}$$
,

•
$$HD(J_r(f_{\lambda})) = HD(J_r(F_{\lambda})) = h_{\lambda}$$
 for all $\lambda \in \mathbb{C}^*$.

• It follows from Skorulski's results that $h_{\lambda} \ge s > 1$.

• Take $\{\lambda_n\}_0^\infty$ such that $\lim_{n\to\infty} \lambda_n = \lambda_0$.

Since $h_{\lambda} \in [s, 2]$, we may assume that the sequence $\{h_{\lambda_n}\}_0^{\infty}$ converges to some $t \in [s, 2]$.

We consider a projection of f_{λ} and f_{λ_0} onto cylinder C i.e. $F_{\lambda} := \Pi \circ f_{\lambda} \circ \Pi^{-1}$ and $F_{\lambda_0} := \Pi \circ f_{\lambda_0} \circ \Pi^{-1}$. Then

•
$$HD(J(f_{\lambda})) = HD(J(F_{\lambda})) = h_{\lambda}$$
,

•
$$HD(J_r(f_{\lambda})) = HD(J_r(F_{\lambda})) = h_{\lambda}$$
 for all $\lambda \in \mathbb{C}^*$.

• It follows from Skorulski's results that $h_{\lambda} \ge s > 1$.

• Take $\{\lambda_n\}_0^\infty$ such that $\lim_{n\to\infty} \lambda_n = \lambda_0$.

Since $h_{\lambda} \in [s, 2]$, we may assume that the sequence $\{h_{\lambda_n}\}_0^{\infty}$ converges to some $t \in [s, 2]$.

We consider a projection of f_{λ} and f_{λ_0} onto cylinder C i.e. $F_{\lambda} := \Pi \circ f_{\lambda} \circ \Pi^{-1}$ and $F_{\lambda_0} := \Pi \circ f_{\lambda_0} \circ \Pi^{-1}$. Then

•
$$HD(J(f_{\lambda})) = HD(J(F_{\lambda})) = h_{\lambda}$$
,

•
$$HD(J_r(f_{\lambda})) = HD(J_r(F_{\lambda})) = h_{\lambda}$$
 for all $\lambda \in \mathbb{C}^*$.

- It follows from Skorulski's results that $h_{\lambda} \ge s > 1$.
- Take $\{\lambda_n\}_0^\infty$ such that $\lim_{n\to\infty} \lambda_n = \lambda_0$.
- Since $h_{\lambda} \in [s, 2]$, we may assume that the sequence $\{h_{\lambda_n}\}_0^{\infty}$ converges to some $t \in [s, 2]$.

- the sequence of conformal measures $m_{h_{\lambda}}$ for F_{λ} is tight (.....), so it converges weakly to a Borel probability measure m.
- m appears to be t-conformal measure for F_{λ_0} and m is supported on the radial Julia set of F_{λ_0} .
- Skorulski proved that for F_{λ_0} there exists only one conformal measure supported on the radial Julia set and its exponent is equal to h_{λ_0} . Consequently $t = h_{\lambda_0}$.

- the sequence of conformal measures $m_{h_{\lambda}}$ for F_{λ} is tight (.....), so it converges weakly to a Borel probability measure m.
- m appears to be t-conformal measure for F_{λ_0} and m is supported on the radial Julia set of F_{λ_0} .

• Skorulski proved that for F_{λ_0} there exists only one conformal measure supported on the radial Julia set and its exponent is equal to h_{λ_0} . Consequently $t = h_{\lambda_0}$.

- the sequence of conformal measures $m_{h_{\lambda}}$ for F_{λ} is tight (.....), so it converges weakly to a Borel probability measure m.
- m appears to be t-conformal measure for F_{λ_0} and m is supported on the radial Julia set of F_{λ_0} .
- Skorulski proved that for F_{λ_0} there exists only one conformal measure supported on the radial Julia set and its exponent is equal to h_{λ_0} . Consequently $t = h_{\lambda_0}$.

The Fatou functions

Definition

P.Fatou considered the function $f(z) = z + 1 + e^{-z}$. He proved that $\{z \in \mathbb{C} : Rez > 0\}$ is an invariant domain. Today we call such a component an invariant Baker domain.

Baker domain

Let U be periodic component of F(f). If there exists $z_0 \in \partial U$ such that $f^{np}(z) \to z_0$ for $z \in U$ as $n \to \infty$, but $f^p(z_0)$ is not defined. In this case U is called Baker domain.

In this case $z_0 = \infty$.

Definition

For $\lambda \in \mathbb{C}^* = \mathbb{C} \setminus \{0\}$ we consider the family of maps $f_{\lambda}(z) = z + e^{-z} + \lambda$

The Fatou functions

Definition

P.Fatou considered the function $f(z) = z + 1 + e^{-z}$. He proved that $\{z \in \mathbb{C} : Rez > 0\}$ is an invariant domain. Today we call such a component an invariant Baker domain.

Baker domain

Let U be periodic component of F(f). If there exists $z_0 \in \partial U$ such that $f^{np}(z) \to z_0$ for $z \in U$ as $n \to \infty$, but $f^p(z_0)$ is not defined. In this case U is called Baker domain.

In this case $z_0=\infty$.

Definition

For $\lambda \in \mathbb{C}^* = \mathbb{C} \setminus \{0\}$ we consider the family of maps $f_{\lambda}(z) = z + e^{-z} + \lambda$

The Fatou functions

Definition

P.Fatou considered the function $f(z) = z + 1 + e^{-z}$. He proved that $\{z \in \mathbb{C} : Rez > 0\}$ is an invariant domain. Today we call such a component an invariant Baker domain.

Baker domain

Let U be periodic component of F(f). If there exists $z_0 \in \partial U$ such that $f^{np}(z) \to z_0$ for $z \in U$ as $n \to \infty$, but $f^p(z_0)$ is not defined. In this case U is called Baker domain.

In this case $z_0 = \infty$.

Definition

For $\lambda \in \mathbb{C}^* = \mathbb{C} \setminus \{0\}$ we consider the family of maps $f_{\lambda}(z) = z + e^{-z} + \lambda$

The Fatou functions

Definition

P.Fatou considered the function $f(z) = z + 1 + e^{-z}$. He proved that $\{z \in \mathbb{C} : Rez > 0\}$ is an invariant domain. Today we call such a component an invariant Baker domain.

Baker domain

Let U be periodic component of F(f). If there exists $z_0 \in \partial U$ such that $f^{np}(z) \to z_0$ for $z \in U$ as $n \to \infty$, but $f^p(z_0)$ is not defined. In this case U is called Baker domain.

In this case $z_0 = \infty$.

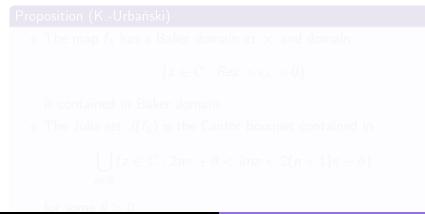
Definition

For $\lambda \in \mathbb{C}^* = \mathbb{C} \setminus \{0\}$ we consider the family of maps $f_\lambda(z) = z + e^{-z} + \lambda$

The Fatou functions

To honor P.Fatou we will call all the functions f_{λ} Fatou functions.

We assume that $Re\lambda > 1$.



The Fatou functions

To honor P.Fatou we will call all the functions f_{λ} Fatou functions.

We assume that $Re\lambda > 1$.

Proposition (K.-Urbański)

• The map f_λ has a Baker domain at ∞ and domain

 $\{z \in \mathbb{C} : Rez > \epsilon_{\lambda} > 0\}$

is contained in Baker domain.

• The Julia set $J(f_{\lambda})$ is the Cantor bouquet contained in

 $\bigcup_{n\in\mathbb{Z}} \{z\in\mathbb{C}: 2n\pi+\theta < Imz < 2(n+1)\pi-\theta\}$

for some $\theta > 0$

The Fatou functions

To honor P.Fatou we will call all the functions f_{λ} Fatou functions.

We assume that $Re\lambda > 1$.

Proposition (K.-Urbański)

• The map f_λ has a Baker domain at ∞ and domain

$$\{z \in \mathbb{C} : Rez > \epsilon_{\lambda} > 0\}$$

is contained in Baker domain.

• The Julia set $J(f_{\lambda})$ is the Cantor bouquet contained in

 $\bigcup_{n\in\mathbb{Z}} \{z\in\mathbb{C}: 2n\pi+\theta < Imz < 2(n+1)\pi-\theta\}$

for some $\theta > 0$

The Fatou functions

To honor P.Fatou we will call all the functions f_{λ} Fatou functions.

We assume that $Re\lambda > 1$.

Proposition (K.-Urbański)

ullet The map f_λ has a Baker domain at ∞ and domain

$$\{z \in \mathbb{C} : Rez > \epsilon_{\lambda} > 0\}$$

is contained in Baker domain.

• The Julia set $J(f_{\lambda})$ is the Cantor bouquet contained in

$$\bigcup_{n\in\mathbb{Z}} \{z\in\mathbb{C}: 2n\pi+\theta < Imz < 2(n+1)\pi-\theta\}$$

for some $\theta > 0$.

The Fatou function f_{λ} has infinitely many critical values

$$c_k = 2\pi ki + 1 + \lambda, \quad k \in \mathbb{Z}$$

Theorem (Eremenko-Lyubich, Goldberg-Keen)

If transcendental entire function f has only finitely many critical and asymptotic values, then the Fatou set F(f) has no wandering domains.

⇒ Fatou functions $f_{\lambda}(z) = z + e^{-z} + \lambda$ do not satisfy these assumptions. $f_{\lambda} \notin B$.

Proposition (K.-Urbański)

The Fatou set of the Fatou function f_λ consists exactly of the images of all backward iterates of the Baker's domain D at $z_0=\infty$

The Fatou function f_{λ} has infinitely many critical values

$$c_k = 2\pi ki + 1 + \lambda, \quad k \in \mathbb{Z}$$

Theorem (Eremenko-Lyubich, Goldberg-Keen)

If transcendental entire function f has only finitely many critical and asymptotic values, then the Fatou set F(f) has no wandering domains.

⇒ Fatou functions $f_{\lambda}(z) = z + e^{-z} + \lambda$ do not satisfy these assumptions. $f_{\lambda} \notin B$.

Proposition (K.-Urbański)

The Fatou set of the Fatou function f_λ consists exactly of the images of all backward iterates of the Baker's domain D at $z_0=\infty$

The Fatou function f_{λ} has infinitely many critical values

$$c_k = 2\pi ki + 1 + \lambda, \quad k \in \mathbb{Z}$$

Theorem (Eremenko-Lyubich, Goldberg-Keen)

If transcendental entire function f has only finitely many critical and asymptotic values, then the Fatou set F(f) has no wandering domains.

 \implies Fatou functions $f_{\lambda}(z) = z + e^{-z} + \lambda$ do not satisfy these assumptions. $f_{\lambda} \notin \mathcal{B}$.

Proposition (K.-Urbański)

The Fatou set of the Fatou function f_λ consists exactly of the images of all backward iterates of the Baker's domain D at $z_0=\infty$

The Fatou function f_{λ} has infinitely many critical values

$$c_k = 2\pi ki + 1 + \lambda, \quad k \in \mathbb{Z}$$

Theorem (Eremenko-Lyubich, Goldberg-Keen)

If transcendental entire function f has only finitely many critical and asymptotic values, then the Fatou set F(f) has no wandering domains.

 \implies Fatou functions $f_{\lambda}(z) = z + e^{-z} + \lambda$ do not satisfy these assumptions. $f_{\lambda} \notin \mathcal{B}$.

Proposition (K.-Urbański)

The Fatou set of the Fatou function f_{λ} consists exactly of the images of all backward iterates of the Baker's domain D at $z_0 = \infty$.

To prove this we applied the fact that e^{-z} is semiconjugacy between

$$f_{\lambda}(z) = z + e^{-z} + \lambda$$

and

$$g_\lambda(z)=e^{-\lambda}ze^{-z}$$

It is easy to show that for $Re\lambda > 0$ the function g_λ has

- exactly one attracting fixed point z=0
- its multiplier $g'_{\lambda}(0) = e^{-\lambda}$
- g_{λ} has only one singularity z=1 and it is a critical point
- g_{λ} is in class S satisfying assumptions of Sullivan's th.

The Fatou functions

Proposition (K.-Urbański)

- Let $I_{\infty}(f_{\lambda}) = \{z \in \mathbb{C} : f^{n}(z) \to -\infty\}$. Then $I_{\infty}(f) \subset J(f_{\lambda})$ and the Hausdorff dimension $HD(I_{\infty}(f_{\lambda})) = 2$.
- Let $J_r(f_{\lambda}) := J(f_{\lambda}) \setminus I_{\infty}(f_{\lambda})$. Then $1 < HD(J_r(f_{\lambda})) < 2$.

Theorem (K.-Urbański)

If $Re\lambda > 1$ then the function

 $\lambda \to HD(J_r(f_\lambda))$

is real analytic.

'Cantor bouquets' for non-entire meromorphic functions

The Fatou functions

Proposition (K.-Urbański)

- Let $I_{\infty}(f_{\lambda}) = \{z \in \mathbb{C} : f^{n}(z) \to -\infty\}$. Then $I_{\infty}(f) \subset J(f_{\lambda})$ and the Hausdorff dimension $HD(I_{\infty}(f_{\lambda})) = 2$.
- Let $J_r(f_{\lambda}) := J(f_{\lambda}) \setminus I_{\infty}(f_{\lambda})$. Then $1 < HD(J_r(f_{\lambda})) < 2$.

Theorem (K.-Urbański)

If $Re\lambda > 1$ then the function

$$\lambda \to HD(J_r(f_\lambda))$$

is real analytic.

'Cantor bouquets' for non-entire meromorphic functions

イロト イポト イヨト イヨト 三日

The Fatou functions

Proposition (K.-Urbański)

- Let $I_{\infty}(f_{\lambda}) = \{z \in \mathbb{C} : f^{n}(z) \to -\infty\}$. Then $I_{\infty}(f) \subset J(f_{\lambda})$ and the Hausdorff dimension $HD(I_{\infty}(f_{\lambda})) = 2$.
- Let $J_r(f_{\lambda}) := J(f_{\lambda}) \setminus I_{\infty}(f_{\lambda})$. Then $1 < HD(J_r(f_{\lambda})) < 2$.

Theorem (K.-Urbański)

If $Re\lambda > 1$ then the function

$$\lambda \to HD(J_r(f_\lambda))$$

is real analytic.

'Cantor bouquets' for non-entire meromorphic functions

イロト イポト イヨト イヨト 三日

Proof

To prove this theorem we apply thermodynamic formalism of potentials $% \left({{{\bf{n}}_{\rm{p}}}} \right)$

 $-tlog|F'_{\lambda}|,$

where F_{λ} is the projection of f_{λ} to the infinite cylinder

 $Q=\mathbb{C}/{\sim}$

and

 $W \sim Z$

iff $w - z = 2\pi i\mathbb{Z}$.

We fix parameter λ and omit it in the notations For $t \ge 0$ and $z \in Q \setminus PC(F)$ we define the lower and upper topological pressure respectively by

$$\underline{P_z}(t) = \liminf_{n \to \infty} \frac{1}{n} \log \sum_{x \in F^{-n}(z)} |(F^n)'(x)|^{-t}$$
$$\overline{P_z}(t) = \limsup_{n \to \infty} \frac{1}{n} \log \sum_{x \in F^{-n}(z)} |(F^n)'(x)|^{-t}.$$

Remark

 $\underline{P_z}(t)$ and $\overline{P_z}(t)$ are independent of z. In fact for t > 1 we have $\underline{P}(t) = \overline{P}(t)$ Let P(t) denote the common value of $\underline{P}(t)$ and $\overline{P}(t)$

We fix parameter λ and omit it in the notations For $t \ge 0$ and $z \in Q \setminus PC(F)$ we define the lower and upper topological pressure respectively by

$$\underline{P_z}(t) = \liminf_{n \to \infty} \frac{1}{n} \log \sum_{x \in F^{-n}(z)} |(F^n)'(x)|^{-t}$$
$$\overline{P_z}(t) = \limsup_{n \to \infty} \frac{1}{n} \log \sum_{x \in F^{-n}(z)} |(F^n)'(x)|^{-t}.$$

Remark

 $\underline{P_z}(t)$ and $\overline{P_z}(t)$ are independent of z. In fact for t > 1 we have $\underline{P}(t) = \overline{P}(t)$ Let P(t) denote the common value of $\underline{P}(t)$ and $\overline{P}(t)$

Proposition

The function $t \mapsto P(t)$, $t \ge 0$, has the following properties.

- a) There exists $t \in (0,1)$ such that $0 \leq P(t) < +\infty$.
- b) $P(t) < +\infty$ for all t > 1.

c) The function P(t) restricted to the interval $(1, +\infty)$ is convex, continuous and strictly decreasing.

d)
$$\lim_{t\to+\infty} P(t) = -\infty.$$

e) There exists exactly one t > 1 such that P(t) = 0.

Let h denote the value of t for which P(t)=0

Proposition (Bowen formula) $h = HD(J_r(F)).$

(日) (得) (王) (王) (王)

Proposition

The function $t \mapsto P(t)$, $t \ge 0$, has the following properties.

- a) There exists $t \in (0,1)$ such that $0 \leq P(t) < +\infty$.
- b) $P(t) < +\infty$ for all t > 1.

c) The function P(t) restricted to the interval $(1, +\infty)$ is convex, continuous and strictly decreasing.

d)
$$\lim_{t\to+\infty} \mathbb{P}(t) = -\infty.$$

e) There exists exactly one t > 1 such that P(t) = 0.

Let h denote the value of t for which P(t) = 0

Proposition (Bowen formula) $h = HD(J_r(F)).$

Proposition

The function $t \mapsto P(t)$, $t \ge 0$, has the following properties.

a) There exists $t \in (0,1)$ such that $0 \leq P(t) < +\infty$.

b)
$$P(t) < +\infty$$
 for all $t > 1$.

c) The function P(t) restricted to the interval $(1, +\infty)$ is convex, continuous and strictly decreasing.

d)
$$\lim_{t\to+\infty} P(t) = -\infty.$$

e) There exists exactly one t > 1 such that P(t) = 0.

Let h denote the value of t for which P(t) = 0

Proposition (Bowen formula)

 $h = HD(J_r(F)).$

Proposition

For

$$(t,\lambda)\in (1,+\infty) imes \{\lambda\in \mathbb{C}: {\it Re}\lambda>1\}$$

the function

$$(t,\lambda)\mapsto P_{\lambda}(t)=lim_{n\to\infty}\frac{1}{n}log\sum_{x\in F_{\lambda}^{-n}(z)}|(F_{\lambda}^{n})'(x)|^{-t}$$

is continuous.

ヘロト 人間 とくほと くほとう 'Cantor bouquets' for non-entire meromorphic functions

э

(*) Fix now
$$\lambda_0 \in \mathbb{C}$$
 with $Re\lambda_0 > 1$ and $t_0 \in (1, \infty)$.
(*) Let $C_b = C_b(J(F))$ be the space of all bounded continuous complex valued functions defined on $J(F)$.
(*) Fix $\alpha \in (0, 1]$. Given $g \in C_b$ let

with $|y-x| \leq \delta$ be the $\alpha\text{-variation}$ of the function g and let

$$||g||_{lpha} = \mathsf{v}_{lpha}(g) + ||g||_{\infty}.$$

Clearly the space

$$H_{\alpha} = \operatorname{H}_{\alpha}(J(F)) = \{g \in C_b(J(F)) : ||g||_{\alpha} < \infty\}$$

endowed with the norm $|| \cdot ||_{\alpha}$ is a Banach space densely contained in C_b with respect to the $|| \cdot ||_{\infty}$ norm.

(*) For every
$$\lambda \in B(\lambda_0, r)$$
 and every $t > 1$ let
 $\mathcal{L}^0_{\lambda, t} : H_{\alpha}(J(F_{\lambda_0})) \to H_{\alpha}(J(F_{\lambda_0}))$

be the generalized Perron-Frobenius operator defined as

$$\mathcal{L}^0_{\lambda,t}g(z) = \sum_{x\in F_{\lambda_0}^{-1}(z)} \left|F'_{\lambda}(h_{\lambda}(x))\right|^{-t}g(x),$$

where h_{λ} is q.c. conjugacy between F_{λ_0} and F_{λ} , $|F'_{\lambda} \circ h_{\lambda}|^{-t}$ is called a potential.

(*) For $t\in(1,\infty)$ we consider the dual operator

$$\mathcal{L}^*_{\lambda,t}: H^*_{\alpha}(J(F_{\lambda_0})) \to H^*_{\alpha}(J(F_{\lambda_0}))$$

given by the formula

$$\mathcal{L}^*_{\lambda,t}m(g) = m(\mathcal{L}^0_{\lambda,t}g)$$

Then there exists a conformal measure $m_{\lambda_0,t}$ such that

$$\mathcal{L}^*_{\lambda,t}(m_{\lambda_0,t}) = e^{P_{\lambda_0}(t)} m_{\lambda_0,t}$$

In particular, if

$$t = h = HD(J_r(f_{\lambda_0}))$$

then

$$P_{\lambda_0}(h) = 0$$

so $e^{P_{\lambda_0}(h)} = 1$ is an engeinvalue of the Perron-Frobenius operator.

(*) Since the potential $|F'_{\lambda} \circ h_{\lambda}|^{-t}$ does not depend on

 $\left(\lambda,t\right)\in\mathbb{C}^{2}$

in a holomorphic way, we have to embed λ into \mathbb{C}^2 and t into $\mathbb{C}.$

We embed the complex plane $\mathbb C$ into $\mathbb C^2$ by the formula

$$x + iy \mapsto (x, y) \in \mathbb{C}^2.$$

So, $\lambda \in \mathbb{C} = \mathbb{R}^2$ may be treated as an element of $\mathbb{C}^2.$

Proposition

Fix λ_0 with $Re\lambda_0 > 1$ and $t_0 > 1$. There then exist R > 0 and a holomorphic function

$$L: \mathbb{D}_{\mathbb{C}^3}((\lambda_0, t_0), R) \to L(\mathrm{H}_{\alpha}(J(F(\lambda_0))))$$

such that for every $(\lambda, t) \in B(\lambda_0, R) imes B(t_0, R) \subset \mathbb{C} imes \mathbb{R}$

$$L(\lambda, t) = \mathcal{L}^{0}_{\lambda, t}.$$

< □ > < ∂ > < ই > < ই > ই < ⊙ <
 'Cantor bouquets' for non-entire meromorphic functions

(*) For $\lambda = \lambda_0$ applying theorem of Ionescu-Tulcea and Marinescu we can prove that for $t \in B(t_0, R)$

 $e^{P_{\lambda_0}(t)}$

is a simple isolated eingevalue of the operator

$$L(\lambda_0, t) = \mathcal{L}^0_{\lambda_0, t}.$$

(*) Next applying perturbation theory for linear operators (Kato's results) we can show that there exists a holomorphic function

$$\gamma: \mathbb{D}_{\mathbb{C}^3}((\lambda_0, t_0), R) \mapsto \mathbb{C}$$

such that the number

 $\gamma(\lambda, t)$

is a simple isolated eigenvalue of $L(\lambda, t)$, where

$$\gamma(\lambda_0, t) = e^{P_{\lambda_0}(t)}$$

(*) We can prove that $\gamma(\lambda,t)$ has the form

$$\gamma(\lambda,t) = e^{P_{\lambda}(t)}$$

 $\Longrightarrow \mathsf{the} \ \mathsf{function}$

$$(\lambda,t)\mapsto P_\lambda(t)$$

is real analytic for $(\lambda, t) \in B(\lambda_0, r') \times (t_0 - \rho, t_0 + \rho)$ (*) Since $P(h_{\lambda}) = 0$ where

$$h_{\lambda} = HD(J(F_{\lambda})),$$

it follows from the Implicite Function Theorem that in order to conclude the proof it suffices to show that

$$rac{\partial P_{\lambda}(t)}{\partial t}
eq 0$$

 $\text{for all } (\lambda,t)\in B(\lambda_0,R_3)\times(t_0-\rho,t_0+\rho). \quad \text{for all } (\lambda,t)\in B(\lambda_0,R_3)\times(t_0-\rho,t_0+\rho).$

(*) Thus the map

$$(\lambda, t) \mapsto HD(J(F_{\lambda})) = HD(J(f_{\lambda})),$$

is real analytic for

$$(\lambda, t) \in B(\lambda_0, R_3) \times (t_0 - \rho, t_0 + \rho)$$