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Basic definition

Let f : C→ Ĉ be a transcendental meromorphic function. Assume
f is non-entire i.e.

f −1(∞) 6= ∅.

Let P = {a ∈ C : f (a) =∞} be the set of poles.
the point z ∈ f −n(∞) is called a prepole of order n ∈ N. In
particular the poles are prepoles of order 1.
Thus f n : C \

⋃
k≤n Pk → C is holomorphic,

f n has poles at Pn,
f n is not defined at

⋃
k<n Pk .
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Conclusion

Let f : C→ Ĉ be a transcendental meromorphic function with
poles. Then the family {f n}n∈N is well defined on

C \
∞⋃

k=0

Pk = C \ O−(∞),

where O−(∞) :=
⋃

n≥0 f
−n(∞) and J(f ) = O−(∞)

Fatou did not consider these function, since as he wrote ’there
occurs a serious difficulty when one tries to generelize Julia’s
approach to the meromorphic case’

see p. 358 at P. Fatou, Sur l’itération des fonctions transcendantes
entèries, Acta Mat. 47 (1926), 337-360
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Basic properties

Fatou-Julia theory for meromorphic functions
The basic properties of Fatou and Julia sets of non-entire
transcendental meromorphic functios are the same as for entire
functions.

It was proved in a series of joint papers written by I.N. Baker(*),
Y. Lü(*) and K.

The set of singularities of the inverse function f −1 of f

Sing(f −1) = {a ∈ C : a is a critical or an asymptotic value}
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Tangent function

f (z) = tan(z) = sin z
cos z = sin 2x

cos 2x+cosh 2y + i sinh 2y
cos 2x+cosh 2y .

f is a simply-periodic function ∀z∈Cf (z + π) = f (z)

The fundamental domains are the strips
Lk = {z ∈ C :

(
k − 1

2

)
π < Rez ≤

(
k + 1

2

)
π}, k ∈ Z

The inverse map arctan : Ĉ \ {±i} → C is defined as

arctanw =
1
2i

log
1 + iw
1− iw

.
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Tangent family

Tangent function

f (z) 6= ±i , so i and −i are the asymptotic values

H+ = {z ∈ C; Imz > y0 > 0} is an asymptotic tract
corresponding to i .

H− = {z ∈ C; Imz < −y0 < 0} is an asymptotic tract
corresponding to −i .

f ′(z) = 1
cos2 z 6= 0⇒ Crit(f ) = ∅ ⇒ Sing(f −1) = {i ,−i}
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Tangent function

f has infinitely many poles i.e.

f (z) =
sin(z)

cos z
=∞⇐⇒ z = sk :=

(
k +

1
2

)
π, k ∈ Z.

∞ is not an asymptotic value

Tangent family

Let fλ(z) = λtan(z) = λ e iz−e−iz

e iz+e−iz , λ ∈ C∗.

Singularities

Sing(f −1) = {−λi ,+λi} - asymptotic values of fλ.

Poles

fλ has infinitely many poles sk :=
(
k + 1

2

)
π, k ∈ Z.
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Basic definition
Tangent family

Structure of repelling periodic points in J(f )

Rational functions
Let f be a rational map. Then the set

Pern(f ) = {z ∈ C : z is a repelling periodic point of period n }

is finite. So it has no accumulation points.

Transcendental entire (Baker, Bergweiler)

An entire transcendental function f has infinitely many repelling
periodic points of period n for all n ≥ 2 and ∞ is the unique
accumulation point of Pern(f )
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Basic definition
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Structure of repelling periodic points in J(f )

Transcendental non-entire functions (Baker-Lü-K.)

Suppose that f is a transcendental non-entire function. Then
J(f ) = O−(∞). Let

z1, z2, . . . , z5 ∈ O−(∞) \ {∞}

are distinct. Define nj by f nj (zj) =∞. Then there exists

j ∈ {1, . . . , 5}

such that zj is a limit point of repelling periodic points of minimal
period nj + 1. Their multipliers tends to ∞.
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Structure of repelling periodic points in J(f )

Tangent family
If v 6= ±λi is a prepole of oreder n, then there exists a sequence of
points zk , k = 1, 2, . . ., such that

1 f n+1(zk) = zk
2 zk → v as k →∞
3 if mk is a multiplier of the periodic cycle containing zk then
|mk | → ∞ as k →∞

Corollary

Unlike to entire functions the set Pern(f ) has plenty of
accumulation points. They are prepoles of order n − 1.
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Basic definition
Tangent family

Tangent family

Example 1

Let λ = (π/2 + ε)i , ε > 0 (small), then fλ has two attracting cycles
of period 2.

Example 2

Let λ = (π/2− ε)i , ε > 0 small, then fλ has one attracting cycles
of period 4.

Example 3

Let λ = (π/2)i then J(fλ) = C and attracting periodic cycles
disappear.
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Tangent family

Hyperbolic components

Hp = {λ ∈ C∗ : fλ has an attracting cycle of period p}.

The components of Hp we denote by Ωp and call them hyperbolic
components.

Virtual centers

Let C0 = {∞}, Cp = {λ : f p
λ (±λi) =∞}, p > 0, C =

⋃∞
0 Cp.

Points in Cp are called virtual centers of order p.
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Tangent family

Theorem (Keen-K.)

The virtual centers λp ∈ Cp−1 are in one to one
correspondence with pairs of hyperbolic components (Ωp,Ω

′
p).

In Ωp each function has a pair of periodic cycles of period p
and each attracts the orbit of an asymptotic value whereas in
Ω′p each function has a single attracting cycle of period 2p
which attracts both asymptotic values.
The virtual center λp ∈ Cp−1 is a common boundary point of
(Ωp,Ω

′
p).

Remark

In our example λ1 = πi
2 is a virtual center of two hyperbolic

components Ω2 and Ω′2.

’Cantor bouquets’ for non-entire meromorphic functions



Introduction
The class R

The dynamics and geometry of the Fatou functions

Basic definition
Tangent family

Tangent family

Theorem (Keen-K.)

The virtual centers λp ∈ Cp−1 are in one to one
correspondence with pairs of hyperbolic components (Ωp,Ω

′
p).

In Ωp each function has a pair of periodic cycles of period p
and each attracts the orbit of an asymptotic value whereas in
Ω′p each function has a single attracting cycle of period 2p
which attracts both asymptotic values.
The virtual center λp ∈ Cp−1 is a common boundary point of
(Ωp,Ω

′
p).

Remark

In our example λ1 = πi
2 is a virtual center of two hyperbolic

components Ω2 and Ω′2.

’Cantor bouquets’ for non-entire meromorphic functions



Introduction
The class R

The dynamics and geometry of the Fatou functions

Basic definition
Tangent family

Tangent family

Theorem (Keen-K.)

The virtual centers λp ∈ Cp−1 are in one to one
correspondence with pairs of hyperbolic components (Ωp,Ω

′
p).

In Ωp each function has a pair of periodic cycles of period p
and each attracts the orbit of an asymptotic value whereas in
Ω′p each function has a single attracting cycle of period 2p
which attracts both asymptotic values.
The virtual center λp ∈ Cp−1 is a common boundary point of
(Ωp,Ω

′
p).

Remark

In our example λ1 = πi
2 is a virtual center of two hyperbolic

components Ω2 and Ω′2.
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The dynamics and geometry of the Fatou functions

Basic definition
Tangent family

Tangent family

The escaping set of f

I (f ) = {z : limn→∞ f n(z)→∞}
For R > 0 we also consider the set
IR(f ) = {z ∈ C : lim infn→∞ |f n(z)| ≥ R}.
Note that I (f ) =

⋂
R>0 IR(f ).

Remark
For tangent maps IR(fλ) is a union of Cantor sets contained in
J(fλ).

Take R > 0 such that Sing(f −1) = {±λi} ⊂ D(0,R) and
define B(R) = {z ∈ C : |z | > R}
then all components Uk of f −1(B(R)) are simply-connected,
bounded and contain exactly one pole sk of fλ.
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Basic definition
Tangent family

Tangent family

Remark
For tangent maps IR(fλ) is a union of Cantor sets contained in
J(fλ).
We consider the families

El := {V ∈ f −l (B(R)) s.t. f k(V ) ⊂ B(R), for 0 ≤ k ≤ l−1}.

E :=
⋂∞

l=1 E l ⊂ IR(f ).

Let B(Rl ) = {z ∈ C : |z | > Rl} ∪ {∞}.
We choose a non-decreasing sequence Rl →∞

El be the set of all components of f −l (B(Rl )) for which
f k(V ) ⊂ B(Rl−k) for 0 ≤ k ≤ l − 1.

E :=
⋂∞

l=1 E l ⊂ I (f ).
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Ip(fλ)

For
λ ∈ Cp−1 = {λ : f p−1

λ (±λi) =∞}, p > 1,

we also consider the set

Ip(fλ) = {z ∈ J(fλ) : lim
k→∞

|f kp
λ (z)| =∞} ⊂ J(fλ) = C

Remark
Ip(fλ) contains Cantor bouquets C1 6= C2 such that:

C1 is invariant for invariant for f p,
C2 is invariant for invariant for f 2p,
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The radial Julia set
We define the radial Julia set or conical set Jr (f ) as the set of
points z in J(f ) for which there exists a family of neighborhoods
B(z , rj), rj → 0, which can be mapped by f with bounded
distortion until the diameter of the image reaches a fixed size.

Estimates (K.-Urbański)

If λ ∈ Ωp (resp. Ω′p,p > 1) then

1 < HD(J(fλ)) = HD(Jr (fλ)) < 2

and
0 < HD(I (fλ)) <

1
2
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Estimates (Skorulski)

If λ0 is a virtual center of a pair (Ωp,Ω
′
p),p > 1, then

P(fλ0) := {±λ0i , fλ0(±λ0i), . . . , f
p−1
λ0

(±λ0i) =∞} and
J(fλ0) = C. In this case

1 1 < HD(Jr (fλ0)) < 2

2 0 < HD(I (fλ0)) < 1
2 ,

3 HD(Ip−1(fλ0)) = 2 where
Ip−1(fλ) = {z ∈ J(fλ) : limk→∞ |f

k(p−1)
λ (z)| =∞}.

4 meas(Ip−1(fλ0)) > 0 and ω(z) = P(fλ0) for a.e.
z ∈ J(fλ0) = C
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The class R

The dynamics and geometry of the Fatou functions

Basic definition
Tangent family

Comments
We know that meas(Ip−1(fλ0)) > 0 and ω(z) = P(fλ0) for a.e.
z ∈ J(fλ0) = C.

Theorem (Bock)

If f is a transcendental meromorphic function then at least one of
the following statement holds:

1 limn→∞ distχ(f n(z),P(f )) = 0 for almost all z ∈ J(f );
2 J(f ) = C and for all A ⊂ C of positive measure the set
{n ∈ N : f n(z) ∈ A} is finite for almost all z ∈ C.

Remark
If meas(Ip−1(fλ0)) > 0 then Bock’s th. (part (1)) implies that
ω(z) ⊂ P(fλ0) for a.e. z ∈ J(fλ0) = C. So it remains to prove the
equality only.
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The class R

The dynamics and geometry of the Fatou functions
Continuity of the HD(Jr (f )) in the tangent family

The class R

Definition
Let R be the family of maps of the form

f (z) = R ◦ exp(z),

where R is a non-constant rational function. Then f has two
asymptotic values

ξ1 := R(0), ξ2 := R(∞).

We assume that

ξ1 := R(0) 6=∞, ξ2 := R(∞) 6=∞,

so f is non-entire.
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The dynamics and geometry of the Fatou functions
Continuity of the HD(Jr (f )) in the tangent family

The class R

Subfamilies of R
We define two subfamilies:

R1 - only one asymptotic value e.g. ξ1 is mapped

onto a pole i.e. there is q1 ≥ 1 such that f q1(ξ1) =∞

R2 - both asymptotic values ξ1, ξ2 are mapped

onto poles i.e. there are q1 ≥ 1, q2 ≥ 1 such that

f q1(ξ1) =∞, f q2(ξ2) =∞,

’Cantor bouquets’ for non-entire meromorphic functions



Introduction
The class R

The dynamics and geometry of the Fatou functions
Continuity of the HD(Jr (f )) in the tangent family

The class R

Subfamilies of R
We define two subfamilies:

R1 - only one asymptotic value e.g. ξ1 is mapped

onto a pole i.e. there is q1 ≥ 1 such that f q1(ξ1) =∞

R2 - both asymptotic values ξ1, ξ2 are mapped

onto poles i.e. there are q1 ≥ 1, q2 ≥ 1 such that

f q1(ξ1) =∞, f q2(ξ2) =∞,

’Cantor bouquets’ for non-entire meromorphic functions



Introduction
The class R

The dynamics and geometry of the Fatou functions
Continuity of the HD(Jr (f )) in the tangent family

The class R

Subfamilies of R
We define two subfamilies:

R1 - only one asymptotic value e.g. ξ1 is mapped

onto a pole i.e. there is q1 ≥ 1 such that f q1(ξ1) =∞

R2 - both asymptotic values ξ1, ξ2 are mapped

onto poles i.e. there are q1 ≥ 1, q2 ≥ 1 such that

f q1(ξ1) =∞, f q2(ξ2) =∞,

’Cantor bouquets’ for non-entire meromorphic functions



Introduction
The class R

The dynamics and geometry of the Fatou functions
Continuity of the HD(Jr (f )) in the tangent family

The class R

Theorem (Skorulski)

Let f ∈ R1 (only one asymptotic value ξ1 is mapped onto a pole
f q1(ξ1) =∞). Let Iq1(f ) := {z ∈ J(f ) : limk→∞ f kq1(z) =∞}.
Then

1 HD(Iq1(f )) = 2

2 If additionally Sing(f −1) \ {ξ1} ⊂ F (f ) then meas(J(f )) = 0.

Remark (Mc Mullen)

Compare with fλ(z) = λez for λ ∈ (0, 1/e)

1 HD(I (f )) = 2

2 meas(J(f )) = 0.
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Theorem (Skorulski)

Let f ∈ R2 i.e. there are q1 ≥ 1, q2 ≥ 1 such that f q1(ξ1) =∞,
f q2(ξ2) =∞. Then the set

PAsymp(f ) := {ξ1, . . . , f q1(ξ1) =∞, ξ2, . . . , f q2(ξ1) =∞}

is a metric attractor i.e. the Lebesgue’s measure of

{z ∈ J(f ) : ω(z) ⊂ PAsymp(f )}

is positive.
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Theorem (Skorulski)

Let f ∈ R2 and distχ(P2(f ), J(f )) > 0 where

P2(f ) := cl{Θ+(Sing(f −1)) \Θ+({ξ1, ξ2})}

then
meas(J(f )) is positive, J(f ) 6= C

for a.e. z ∈ J(f ) we have ω(z) = Pasymp(f ) = where

PAsymp(f ) := {ξ1, . . . , f q1(ξ1) =∞, ξ2, . . . , f q2(ξ1) =∞}

J(f ) is ’a Cantor bouquet’.
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Continuity of the Hausdorff dimension

If λ ∈ Ωp (resp. Ω′p) then P(fλ) ⊂ F (fλ) and the Julia J(fλ)

1 has empty interior
2 the Lebesgue measure of the Julia set is zero

since dist(P(fλ), J(fλ)) > 0 where P(fλ) =
⋃∞

0 f n
λ (±λi).

(2) follows e.g. from Stallard’s results for meromorphic functions

Theorem (K.-Urbański)

If λ ∈ Ωp (resp. Ω′p), p > 1 then P(fλ) ⊂ F (fλ) and

1 < HD(J(fλ)) = HD(Jr (fλ)) < 2

The last estimate follows from our results concerning conformal
measure for expanding meromorphic functions (Math. Annalen,
2002) and from (2).
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Continuity of the Hausdorff dimension

Theorem (S.)

If λ0 is a virtual center of a pair (Ωp,Ω
′
p) then for a.e.

z ∈ J(fλ0) = C we have ω(z) = P(fλ0)},
=⇒ meas(Jr (fλ0)) = 0.

Let hλ := HD(Jr (fλ))

J(fλ0) = C then HD(J(fλ)) = 2
Question hλ0 = HD(Jr (fλ0)) =?

Theorem (S.)

Let f ∈ R such that at least one asymptotic value is mapped onto
a pole. Then 1 < hλ0 = HD(Jr (fλ0)) < 2.
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Continuity of the Hausdorff dimension

Question
Does limλ→λ0hλ = hλ0 < 2 for λ ∈ Ωp?

Theorem. (K.-Urbański)

For p ≥ 1 let (Ωp,Ω
′
p) be a pair of hyperbolic components with

virtual center at λ0 then

limλ→λ0hλ = hλ0

for λ ∈ Ωp ∪ Ω′p.

Continuity of hλ for λ ∈ Ωp follows from the previous result proved
for hyperbolic functions of the form

f (z) = H(exp(Q(z)).
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Continuity of the Hausdorff dimension

Since f is periodic we can project f on a cylinder C/∼,

We say z1 ∼ z2 if there exists k ∈ Z such that z1 = z2 + 2kπi .

Let Π be a projection of C onto C and F : Π ◦ f ◦ Π−1.

Theorem (S.)

Let f ∈ R be as above. Then
1 < HD(Jr (F )) = h < 2.
There exists h-conformal measure on J(F) such that m is
atomless and m(Jr (F )) = 1.
If m′ is a probabilistic measure on J(F ) which is t-conformal
for some t > 1, then m′ = m (uniqness of conformal measure).
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Final conclusion

We consider a projection of fλ and fλ0 onto cylinder C i.e.
Fλ := Π ◦ fλ ◦ Π−1 and Fλ0 := Π ◦ fλ0 ◦ Π−1. Then

HD(J(fλ)) = HD(J(Fλ)) = hλ,
HD(Jr (fλ)) = HD(Jr (Fλ)) = hλ for all λ ∈ C∗.

It follows from Skorulski’s results that hλ ≥ s > 1.

Take {λn}∞0 such that limn→∞ λn = λ0.

Since hλ ∈ [s, 2], we may assume that the sequence {hλn}∞0
converges to some t ∈ [s, 2].
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The dynamics and geometry of the Fatou functions
Continuity of the HD(Jr (f )) in the tangent family

Final conclusion

the sequence of conformal measures mhλ
for Fλ is tight (......),

so it converges weakly to a Borel probability measure m.

m appears to be t-conformal measure for Fλ0 and m is
supported on the radial Julia set of Fλ0 .

Skorulski proved that for Fλ0 there exists only one conformal
measure supported on the radial Julia set and its exponent is
equal to hλ0 . Consequently t = hλ0 .
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The dynamics and geometry of the Fatou functions

The Fatou functions

Definition

P.Fatou considered the function f (z) = z + 1 + e−z . He proved
that {z ∈ C : Rez > 0} is an invariant domain. Today we call
such a component an invariant Baker domain.

Baker domain
Let U be periodic component of F (f ). If there exists z0 ∈ ∂U such
that f np(z)→ z0 for z ∈ U as n→∞, but f p(z0) is not defined.
In this case U is called Baker domain.

In this case z0 =∞.

Definition
For λ ∈ C∗ = C \ {0} we consider the family of maps
fλ(z) = z + e−z + λ
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The Fatou functions

To honor P.Fatou we will call all the functions fλ Fatou functions.

We assume that Reλ > 1.

Proposition (K.-Urbański)

The map fλ has a Baker domain at ∞ and domain

{z ∈ C : Rez > ελ > 0}

is contained in Baker domain.
The Julia set J(fλ) is the Cantor bouquet contained in⋃

n∈Z
{z ∈ C : 2nπ + θ < Imz < 2(n + 1)π − θ}

for some θ > 0.
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The Fatou functions

The Fatou function fλ has infinitely many critical values

ck = 2πki + 1 + λ, k ∈ Z

Theorem ( Eremenko-Lyubich, Goldberg-Keen)

If transcendental entire function f has only finitely many critical and
asymptotic values, then the Fatou set F(f) has no wandering
domains.

=⇒ Fatou functions fλ(z) = z + e−z + λ do not satisfy these
assumptions. fλ /∈ B.

Proposition (K.-Urbański)

The Fatou set of the Fatou function fλ consists exactly of the
images of all backward iterates of the Baker’s domain D at z0 =∞.
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The Fatou functions

To prove this we applied the fact that e−z is semiconjugacy
between

fλ(z) = z + e−z + λ

and
gλ(z) = e−λze−z

It is easy to show that for Reλ > 0 the function gλ has
exactly one attracting fixed point z=0
its multiplier g ′λ(0) = e−λ

gλ has only one singularity z=1 and it is a critical point
gλ is in class S satisfying assumptions of Sullivan’s th.
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The Fatou functions

Proposition (K.-Urbański)

Let I∞(fλ) = {z ∈ C : f n(z)→ −∞}. Then I∞(f ) ⊂ J(fλ)
and the Hausdorff dimension HD(I∞(fλ)) = 2.
Let Jr (fλ) := J(fλ) \ I∞(fλ). Then 1 < HD(Jr (fλ)) < 2.

Theorem (K.-Urbański)

If Reλ > 1 then the function

λ→ HD(Jr (fλ))

is real analytic.
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Proof

To prove this theorem we apply thermodynamic formalism of
potentials

−tlog |F ′λ|,

where Fλ is the projection of fλ to the infinite cylinder

Q = C/∼

and
w∼z

iff w − z = 2πiZ.
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1 step

We fix parameter λ and omit it in the notations
For t ≥ 0 and z ∈ Q \ PC (F ) we define the lower and upper
topological pressure respectively by

Pz(t) = liminfn→∞
1
n
log

∑
x∈F−n(z)

|(F n)′(x)|−t

Pz(t) = limsupn→∞
1
n
log

∑
x∈F−n(z)

|(F n)′(x)|−t .

Remark

Pz(t) and Pz(t) are independent of z. In fact for t > 1 we have
P(t) = P(t) Let P(t) denote the common value of P(t) and P(t)

’Cantor bouquets’ for non-entire meromorphic functions



Introduction
The class R

The dynamics and geometry of the Fatou functions

1 step

We fix parameter λ and omit it in the notations
For t ≥ 0 and z ∈ Q \ PC (F ) we define the lower and upper
topological pressure respectively by

Pz(t) = liminfn→∞
1
n
log

∑
x∈F−n(z)

|(F n)′(x)|−t

Pz(t) = limsupn→∞
1
n
log

∑
x∈F−n(z)

|(F n)′(x)|−t .

Remark

Pz(t) and Pz(t) are independent of z. In fact for t > 1 we have
P(t) = P(t) Let P(t) denote the common value of P(t) and P(t)

’Cantor bouquets’ for non-entire meromorphic functions



Introduction
The class R

The dynamics and geometry of the Fatou functions

1 step

Proposition

The function t 7→ P(t), t ≥ 0, has the following properties.
a) There exists t ∈ (0, 1) such that 0 ≤ P(t) < +∞.
b) P(t) < +∞ for all t > 1.
c) The function P(t) restricted to the interval (1,+∞) is convex,
continuous and strictly decreasing.
d) limt→+∞P(t) = −∞.
e) There exists exactly one t > 1 such that P(t) = 0.

Let h denote the value of t for which P(t) = 0

Proposition (Bowen formula)

h = HD(Jr (F )).
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1 step

Proposition
For

(t, λ) ∈ (1,+∞)× {λ ∈ C : Reλ > 1}

the function

(t, λ) 7→ Pλ(t) = limn→∞
1
n
log

∑
x∈F−n

λ (z)

|(F n
λ )′(x)|−t

is continuous.
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2 step

(*) Fix now λ0 ∈ C with Reλ0 > 1 and t0 ∈ (1,∞).
(*) Let Cb = Cb(J(F )) be the space of all bounded
continuous complex valued functions defined on J(F ).
(*) Fix α ∈ (0, 1]. Given g ∈ Cb let

vα = inf{L ≥ 0 : |g(y)− g(x)| ≤ L|y − x |α for all x , y ∈ J(F )

with |y − x | ≤ δ be the α-variation of the function g and let

||g ||α = vα(g) + ||g ||∞.

Clearly the space

Hα = Hα(J(F )) = {g ∈ Cb(J(F )) : ||g ||α <∞}

endowed with the norm || · ||α is a Banach space densely contained
in Cb with respect to the || · ||∞ norm.
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2 step

(*) For every λ ∈ B(λ0, r) and every t > 1 let

L0
λ,t : Hα(J(Fλ0))→ Hα(J(Fλ0))

be the generalized Perron-Frobenius operator defined as

L0
λ,tg(z) =

∑
x∈F−1λ0

(z)

∣∣F ′λ(hλ(x))
∣∣−t g(x),

where hλ is q.c. conjugacy between Fλ0 and Fλ,
|F ′λ ◦ hλ|−t is called a potential.
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2 step

(*) For t ∈ (1,∞) we consider the dual operator

L∗λ,t : H∗α(J(Fλ0))→ H∗α(J(Fλ0))

given by the formula

L∗λ,tm(g) = m(L0
λ,tg)

Then there exists a conformal measure mλ0,t such that

L∗λ,t(mλ0,t) = ePλ0 (t)mλ0,t

In particular, if
t = h = HD(Jr (fλ0))

then
Pλ0(h) = 0

so ePλ0 (h) = 1 is an engeinvalue of the Perron-Frobenius operator.
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2 step

(*) Since the potential |F ′λ ◦ hλ|−t does not depend on

(λ, t) ∈ C2

in a holomorphic way, we have to embed λ into C2

and t into C.
We embed the complex plane C into C2 by the formula

x + iy 7→ (x , y) ∈ C2.

So, λ ∈ C = R2 may be treated as an element of C2.
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2 step

Proposition
Fix λ0 with Reλ0 > 1 and t0 > 1. There then exist R > 0 and a
holomorphic function

L : DC3((λ0, t0),R)→ L(Hα(J(F (λ0))

such that for every (λ, t) ∈ B(λ0,R)× B(t0,R) ⊂ C× R

L(λ, t) = L0
λ,t .
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3 step

(*) For λ = λ0 applying theorem of Ionescu-Tulcea and
Marinescu we can prove that for t ∈ B(t0,R)

ePλ0 (t)

is a simple isolated eingevalue of the operator

L(λ0, t) = L0
λ0,t .

(*) Next applying perturbation theory for linear operators (Kato’s
results) we can show that there exists a holomorphic function

γ : DC3((λ0, t0),R) 7→ C

such that the number
γ(λ, t)

is a simple isolated eigenvalue of L(λ, t), where

γ(λ0, t) = ePλ0 (t)
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3 step

(*) We can prove that γ(λ, t) has the form

γ(λ, t) = ePλ(t)

=⇒ the function
(λ, t) 7→ Pλ(t)

is real analytic for (λ, t) ∈ B(λ0, r ′)× (t0 − ρ, t0 + ρ)
(*) Since P(hλ) = 0 where

hλ = HD(J(Fλ)),

it follows from the Implicite Function Theorem that in order to
conclude the proof it suffices to show that

∂Pλ(t)

∂t
6= 0

for all (λ, t) ∈ B(λ0,R3)× (t0 − ρ, t0 + ρ).
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(*) Thus the map

(λ, t) 7→ HD(J(Fλ)) = HD(J(fλ)),

is real analytic for

(λ, t) ∈ B(λ0,R3)× (t0 − ρ, t0 + ρ)
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