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Denote by C the complex plane, by C∞ the
complex sphere C ∪ {∞}, by D the unit disk and
by S = ∂D.
Suppose J is the connected Julia set of a
complex polynomial P and U∞ is the unbounded
component of C∞ \ J, then U∞ is simply
connected and there exists a conformal map
ϕ : D→ U∞ such that ϕ(O) =∞ and ϕ′(O) > 0.



Given a conformal map ϕ : D→ U and α ∈ S,
let:

Rα = ϕ({(reiα | 0 ≤ r < 1}), the external ray,
Π(α) = Rα \ Rα, the principal set of α,
Imp(α) = {w ∈ C |
there exist zi → α in D such that w = limϕ(zi)},

the impression of α.

Both Π(α) and Imp(α) are subcontinua of ∂U
and Π(α) ⊂ Imp(α).
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Definition
A topological space X is locally connected at a
point x ∈ X if for each open set U containing x
there exists an open and connected set V such
that

x ∈ V ⊂ U.

A space X is locally connected if it is locally
connected at every point x ∈ X.

Lemma
A space X is locally connected if and only if
every component of every open set is open.
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If the Julia set J is LC, then:

J is connected

J is HLC (every subcontinuum is LC)

J is finitely Suslinian (For all ε > 0, any
collection of pairwise disjoint subcontinua of
diameter bigger than ε is finite).
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Let σd : D→ D be defined by σd(z) = zd. Let
ϕ : D→ U∞ be the conformal map with
ϕ(O) =∞ and ϕ′(O) > 0. It is well known that if
the degree of P is d then

P ◦ ϕ = ϕ ◦ σd.

If J is LC, this equality extends over S. Hence, in
the LC case, the dynamics of P on J is
semi-conjugate to the dynamics of σd on S.



We can visualize this as follows. Assume J is
LC and ϕ is extended over S.

For each y ∈ J, let Ly be the collection of all
chords in the boundary of the convex hull of
ϕ−1(y) in D and let L =

⋃
y∈J Ly. Then L is an

invariant lamination in the unit disk.
Elements ` ∈ L ar called leaves and
components G of D \ L gaps.



Figure: Lamination L on left, Julia set J on right.
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Figure: Lamination L on left, Julia set J on right.



Following Thurston we can define an invariant
lamination abstractly as follows:

Definition
Suppose that L is a closed set of chords of the
unit disk. Then L is called a d-invariant
lamination if:



1. [non-crossing] for each `1 6= `2 ∈ L, `1 ∩ `2
is at most a common endpoint.

2. [leaf invariance] for each ` = ab ∈ L, either
the chord σ(a)σ(b) = `′ ∈ L or σ(a) = σ(b)
is a point in S. Write σ(`) = `′

3. [onto] for each ` ∈ L there exists `′ ∈ L
such that σ(`′) = `,

4. [d-siblings] for each ` ∈ L such that σ(`) is
a non-degenerate leaf, there exist d
disjoint leaves `1, . . . , `d in L such that
` = `1 and σ(`i) = σ(`) for all i.
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Leaf ` – element of L.
Gap G– component of D \ L.

Given a gap G we denote by σ(G) the convex
hull of the set σ(G ∩ S) in D.

Given an invariant lamination L, we can extend
σ linearly over all leaves in L. We denote this
extension by σ∗ : L ∪ S→ L∪ S.
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Theorem (O.-Valkenburg)
Suppose that G is a gap of a d-invariant
lamination L. Then either

1. σ(G) is a point in S or a leaf of L,
2. σ(G) = H is also a gap of L and the map

σ∗ : Bd(G)→ Bd(H) is the positively
oriented composition of a monotone map
m : Bd(G)→ S, where S is a simple closed
curve, and a covering map g : S→ Bd(H).



The abstract, invariant lamination L
corresponds to a smallest equivalence relation
≈ on S such that if ab ∈ L, then a ≈ b.

Equivalence classes are maybe proper or the
entire circle, Jtop = S/ ≈ is called a topological
Julia set and the map g : Jtop → Jtop induced by
σd a topological polynomial.

Finite gaps correspond to branch points of Jtop
and uncountable gaps to “Fatou domains.”
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In general it is difficult to decide if a lamination L
containing a full set of critical leaves
corresponds to a non-degenerate equivalence
relation.
(see Non-degenerate quadratic laminations by
A. Blokh, D. Childers, J. Mayer and O. for the
quadratic case.)

Thurston has shown that the space of all
2-invariant laminations is itself a lamination
whose quotient space is a locally connected
model for the boundary of mandelbrot setM.
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A map m : X → Y is monotone if m−1(y) is
connected for each y ∈ Y.

Theorem (Blokh-Curry-O.)
All Julia sets J have a locally connected model
Jtop. (I.e., there exists a finest monotone
surjection m : J � Jtop such that Jtop is locally
connected and for every monotone surjection
m′ : J � X, where X is locally connected, there
exists a monotone map m” : Jtop → X such that
m′ = m” ◦ m.)
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It follows from Kiwi’s work that a non-degenerate
locally connected model always exists when P
has no irrational neutral points.



Since Jtop is locally connected, it induces a
lamination L in D whose quotient space is Jtop.
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In certain cases the locally connected model L
for a Julia set J is a point. For example, this is
the case when: deg(P) = 2 and P has a fixed
Cremer point. We will call such polynomials
basic Cremer polynomials.

Theorem (Blokh-O.)
If P is a basic Cremer polynomial and m : J � L
is a monotone surjection, where L is LC, then L
is a point.
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Theorem (Blokh-Curry-O.)
Let P be any polynomial with connected Julia
set. Then the finest LC model of J is not
degenerate if and only if at least one of the
following properties is satisfied.

1. The filled-in Julia set KP contains a
parattracting Fatou domain.

2. The set of all repelling bi-accessible
periodic points is infinite.

3. The polynomial P admits a Siegel
configuration.



Let N be the number of cycles of bounded Fatou
domains of P plus the number of Cremer cycles
of P
Theorem (Fatou, Doaudy-Hubbard,
Shishikura)

N ≤ d − 1

All bounded Fatou domains and all Cremer
cycles “attract”attract a critical point.
It is known that wandering branch points also
attract critical points, allowing an improvement
of the above inequality.



Theorem (Blokh-Curry-O.)
There exist uncountably many distinct cubic
polynomials Pα with connected Julia set Jα such
that

1. Jα is a dendrite,

2. Jα contains a wandering branch point bα of
order 3,

3. for each arc A ⊂ Jα there exists n such that
Pn(bα) ∈ A.

4. the set of all cubic critical WT-portraits is a
dense, uncountable, first category subset of
the set of all cubic critical portraits.
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A wandering – Pn(A) ∩ Pm(A) = ∅ for any n 6= m.
A precritical – an eventual forward image of A
contains a critical point;
non-precritical – otherwise.

ValX(Y) = Val(Y) = |Comp(X \ Y)| – valence of Y
(in X).
If Val(Y) > 1 we call Y a cut-continuum (of X).

If JP is locally connected, the valence Val(x) of a
point x ∈ J equals the number of (external) rays
landing at x.



wandering collection Γ – collection of wandering
continua whose forward images are pairwise
disjoint.

Theorem
(Blokh-Childers-Levin-O.-Schleicher)
Suppose that JP is connected. If Γ 6= ∅ is a
wandering collection of non-precritical continua
of valences M1 > 2, . . . ,Mk > 2 then∑

Γ(Mi − 2) + N ≤ |Cwr| − 1 ≤ d − 2.

With thanks to Shishikura
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N is the number of non-repelling periodic orbits
plus the number of Cremer cycles;
N∞ is the number of repelling orbits without
periodic dynamic rays landing on them;
Given a set Q, denote χQ to be 1 if Q is
non-empty and 0 otherwise.
Also, set

∑m
i=1(Mi − 2) = 0 if m = 0.

Theorem
(Blokh-Childers-Levin-O.-Schleicher)
Let P be any polynomial. Consider a wandering
collection Γ of non-precritical continua/points of
P with Val(W) > 2 for W ∈ Γ. Then∑

W∈Γ

(Val(W)− 2) + N + N∞ ≤ d − 1− χ(Γ).
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Definition
A polynomial P is said to be a basic uniCremer
polynomial if it has a Cremer periodic point and
no repelling/parabolic periodic point of P is
biaccessible (by results of Kiwi and
Goldberg-Milnor then the Cremer point must be
fixed).
Basic uniCremer polynomials have degenerate
locally connected models.



Definition
A topological space X is connected im kleinen
(CIK) at x ∈ X if for each open set U, containing
x there exists a connected set C such that:

x ∈ Int(C) ⊂ C ⊂ U.

Lemma
If X is CIK (at every point), then X is LC.
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Theorem (Blokh-O.)
Let P be a basic Cremer polynomial. Then its
Julia set J must be one of the following two
types.



Solar Julia set J has the following equivalent
properties:

1. there is an impression not
containing the Cremer point;

2. there is a degenerate impression;
3. the set Y of all K-separate angles

with degenerate impressions
contains all angles with dense
orbits and a dense in S1 set of
periodic angles, and the Julia set
J is CIK at the landing points of
these rays;

4. there is a point at which the Julia
set is CIK.



Red dwarf Julia set Every impression contains
the Cremer point p. Then J has the
following properties:

1. the (non-empty) intersection of all
impressions contains all forward
images of all critical points,

2. J is nowhere connected im
kleinen.

Moreover, in this case no point of J is
biaccessible and p is not accessible from C \ J.



Building on results by Inou and Shishikura, Buff
and Chéritat have shown that there exist basic
Cremer polynomials P (i.e., of deg(P) = 2 and
with a fixed Cremer point) whose Julia sets J
have positive Lebesgue area.

Theorem (Blokh, Buff, Chéritat and O.)
There exist basic Cremer polynomials with solar
Julia sets of positive area.
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Theorem (Kiwi, Grispolakis-Mayer-O.)
Suppose P is a basic Cremer polynomial with
solar Julia set J, critical point c, Cremer fixed
point p and P′(p) = e2πiα. Then there exists a
building block B ⊂ J and a Cantor set
A ⊂ [θ2 ,

θ+1
2 ] ⊂ S such that:

1. B is a nowhere dense subcontinuum of J,
2. P(B) = B,
3. p ∪ P−1(p) ∪ O(c) ⊂ B
4. σ(A) = A, minimally, with rotation number α,
5. B =

⋃
γ∈A Imp(γ).

Note {c, p,−p} ⊂ Imp(θ/2) ∩ Imp(θ/2 + 1/2).



∆

∆′

L R

Figure: Example of a locally connected basic Siegel
polynomial Julia set.



Building blocks contain hedgehogs constructed
by Peréz Marco:
For each open set Ucontaining the Cremer
fixed-point p such that U does not contain the
critical point c, there exists an invariant
continuum H with p ∈ H and H ∩ ∂U 6= ∅.
Let ∆ = {H | H is a hedgehog} and let

M =
⋃

H∈∆

H.

Then H is called the mother hedgehog.

Theorem (Childers)
M is connected, contains the critical point c and
ω(c) = M ⊂ B.



Recently Shishikura has shown that there exists
a maximal hedgehog MH such that p, c ∈ MH
and P|MH : MH → MH is a homeomorphism.

H ⊂ M ⊂ MH ⊂ B

where H is any hedgehog
M = ω(c) is he mother hedgehog
MH is the maximal hedgehog and
B =

⋃
θ∈A Imp(θ) is the building block.
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Clearly H 6= M and MH 6= B.

Is the mother hedgehog equal to the maximal
hedgehog,

M = MH??

Shishikura has shown that MH is a Cantor
bouquet:
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A dendroid is an arcwise connected continuum
such that the intersection of any two
subcontinua is connected. Equivalently, a
dendroid is an arcwise connected tree-like
continuum. An endpoint e, of a dendroid X, is a
point such that for each arc A ⊂ X which
contains e, e is an endpoint of A. The cone over
the Cantor set is a dendroid with exactly one
vertex, O, and a (closed) Cantor set of
endpoints.



Peréz Marco has shown that the cone over a
Cantor set cannot be a hedgehog.

All hedge hogs must admit arbitrary small
irrational rotations.



There exists a Lelek function:
` : [0, 1]→ [0, 1] is USC such that:

1. for a dense set D0 ⊂ [0, 1], for each d ∈ D0,
`(d) = 0 and `(0) = `(1) = 0,

2. for a dense set D>0 ⊂ [0, 1], for each
d ∈ D>0, `(d) > 0,

3. for each x ∈ (0, 1) there exists yn ↑ x, y′n ↓ x
and lim `(yn) = lim `(y′n) = `(x).

Definition (Aarts-O.)
Given ` as above, the set

H = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ `(x)}

is called the basic hairy arc with base
B = [0, 1]× {0}.



Figure: The Hariry arc.



Figure: The Hariry arc.



Figure: The Hariry arc.



Any space homeomorphic to H/B is called a
Cantor bouquet. Any space X ⊂ C
homeomorphic to H, with all hairs on the same
side of the base, is called a hairy arc and any
space X ⊂ C homeomorphic to H/{(0, 0), (1, 0)},
with all hairs in the unbounded component of
the image of the base, a hairy circle.

Cantor bouquets were first constructed by Lelek.
It follows from work by Devaney that a Cantor
bouquet is homeomorphic to the Julia set of the
exponential map λez, for λ small, in the sphere.



It is known that all Cantor bouquets are
homeomorphic (Charatonik and Bula-O) (even
under homeomorphisms of the entire plane
(Aarts-O.)) if all hairs are limits from both sides)

The set of endpoints E of a Cantor bouquet is a
one-dimensional and totally disconnected.
Moreover, E is homeomorphic to the set of
points in `2 all of whose coordinates are
irrational (Kawamura-O.-Tymchatyn).



By (unpublished) results of Shishikura, Buff and
Chéritat there exist basic Cremer polynomials
whose Julia sets contain a Cantor bouquet
whose vertex is the fixed Cremer point.

Main Problem Are any (all??) basic Cremer
Julia sets arcwise connected?

Lemma (Shishikura)
There exist basic Cremer Julia setssuch that the
maximal hedgehog MH is a Cantor bouquet.
Hence, there exists an arc joining the Cremer
point and its pre-image.
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It follows that there exists a second category
subset D of J, which includes all repelling
periodic points and their preimages, such that
for each d ∈ D there exists an arc A from d to
the fixed Cremer point p.



Definition
A continuum X is indecomposable provided it
cannot be written as the union of two proper
subcontinua.

Definition
A continuum X is arc-like provided for each
ε > 0 there exists an ε-map f : X → [0, 1] (i.e.,
diam(f−1(t)) < ε for all t ∈ [0, 1]).
The pseudo arc P is the unique arc-like
continuum such that every subcontinuum is
indecomposable.
P is hereditarily equivalent and homogeneous.
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The construction of a Cantor bouquet can be
changed so that ever arc is replace by a
pseudoarc. We will call this continuum a pseudo
Cantor bouquet.

Do there exist Cremer Julia sets which contain
pseudo Cantor bouquets?



Theorem (Childers– Mayer–Rogers)
The connected Julia set J of a polynomial is
indecomposable
iff
The impression of every external angle is the
entire Julia set J iff
The impression of one external ray has interior
in J.



Question: does there exist an indecomposable
Julia set??

Theorem (Curry, Mayer, Rogers)
The Makienko conjecture is true if there are no
indecomposable Julia sets.
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The residual Julia set of a rational function is
defined as its Julia set minus the boundaries of
its Fatou components. It is a well-known fact
that, when a component of the Fatou set is fully
invariant under some power of the map, the
residual Julia set is empty. Based on Sullivan’s
dictionary, Peter M. Makienko conjectured that
the converse is true: when the residual Julia set
of a rational map is empty, there is a Fatou
component which is fully invariant under a
power of the map.
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