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Plan

Want to understand the dynamics of a quadratic polynomial f
when it has an irrational indifferent fixed point of high type:

. 1
f(z)=e™% + 22, a=4=4 : (a; € N, a; > N large)

CL1:|:
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a2:|:—

(also applies to €2™%z(z + 1)", 2™ ze?)

Goal:
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Plan of 3 talks

Talk 1: Inou-Shishikura Theorem

Class F7 and its invariance under

the near-parabolic renormlaization R
Truncated checkerboard pattern {2y and
its relation to Fj

Talk 2: Reconstructing (part of f) from R™f
(2¢’s within ¢, their gluing and the dynamics
the combinatorics of rotation ry , : A, — Ay,
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Compare dynamics
Easy: Contractions
Nice: Expanding maps (inverse: multivalued contraction)

Lifting argument by inverse branches via appropriate homotopy

—> structural stability (homotopical stability)
Holder continuity of conjugacy
symbolic dynamics, topological model

- Hyperbolic rational maps C=FyUJ;




Easy: Contractions
Nice: Hyperbolic rational maps

Nasty(?): maps with irrationally indifferent fixed points
not expanding at the fixed point
Julia set contains a critical point, which is recurrent (Mang¢)

rotation numbers {bounded type} C {Diophantine} C {Brjuno}
Brjuno rotation # —» linearizable (Siegel-Brjuno-Yoccoz)

Siegel disk = domain of linearization
bounded type == boundary of Siegel disk is Jordan curve

Julia set 1s locally connected
(Herman, Petersen, Petersen-Zackeri)

linearization
Outside??
Julia set
Chaotic dynamics
Siegel Disk boundary
Physicists expect a “universal phenomenon™ at the boundary of SD




Easy: Contractions
Nice: Hyperbolic rational maps
Nasty(?): maps with irrationally indifferent fixed points
bounded type  Brjuno rotation #
Nastier: rotation number with large continued fraction coefficients

Liouville rotation #, non-Brjuno or high type

non-Brjuno = non-linearizable fixed pt (Cremer pt)

for some rot #, bdry of SD 1s Jordan curve, but no crit pt (Herman)
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Irrationally indifferent fixed points or rotation-like dynamics
study via renormalization (constructed as a return map)

= D)

Successive construction of Rf, R?*f, , helps to understand the
dynamics of f (orbits, invariant sets, rlgldlty, bifurcation, .. .)

For bounded type (or Dioph., Brjuno), the number of iteration
needed in the construction of Rf is not too big.
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More on renormalization for irrationally indifferent fixed points

f( ) 2maz_|_0 l tobelacz:iined l - Rf 27T7,O¢12_|_O( )

a =+

1
CL1:|:

ag + 1 |=o high type = a, a1, a9, ... small

Want: non-linear term of R™ f not too small

Inou—S If f(2) .__Q?ZZ i /i and o is of sufﬁ(nently high type,




Applications

Theorem 1 (structure): Let f(z) = e*™*h(z), where h(z) = 2+ 22 or
h € F1 with « sufficiently high type.

Then there exist domains Q© > QM) 5 Q@) 5 . such that
0 0 = U gy, 957y where O are “almos
cyclically permuted” by f and the intersection Ay = ﬂzozo Q) g
a closed, forward invariant set containing 0 and the forward critical
orbit. Every point in A is recurrent and f is injective on this set.

more description on Qg’z) r,. and the action of f
- will be explained in Talk 2.



Applications (continued)

Theorem 3: Let f be a quadratic polynomial as in Theorem 1. Then
the Julia set J; is decomposable and locally connected at every pe-
riodic point except 0.

Theorem 4: Let f be as in Theorem 1. Then A, contains all “hedge-
hogs” in Perez Marco’s sense.

Theorem 5 (boundary of Siegel disk): Let f be as in Theorem 1, and

assume that « is a Brjuno number. By Siegel-Brjuno, f is linearizable
nd has a Siegel disk Ay.
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Definition of Renormalization R f
If one can define a “fundamental region” :) so that 1ts quotient 1s

isomorphic to C/Z , then the renormalization R f can be defined.

first return map C*=C~ {0}

/ - C/7.
¥ Rf
o
Exp'(z)

= exp(2miz)

uniformize

Inou-S.: For f as in the theorem, we have the sequence:
f Rf R2 f RE f
© 0 60
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Key i1dea 1n renormalization
Jo=1 fi=Rfe JL=Rh J3=R/J

gO 91 gz X

f may be very recurrent, non-expanding, non-linear, has critical pt

The sequence of “renormalizers” (coordinate changes between
consecutive renormalizations) is like iteration of expanding maps.




Yoccoz sectorial renormalization

first return map works for any germ, any rot. #

may lose a lot by cut-off, when
rot. # 1s small

glue un1f0rm1ze no critical points

Perez Marco renormalization for quadratic type germs

first return map works for quadratic type

need to show the existence

no critical points
umforrmze

glue

Near-parabolic renormalization works only for f = e2miap
firstreturn map . _ ¢ heFiorh=z+ 22

—— a of high type
! EXp invariant class for renormalization
radl R iz implies QTC

umfornnze the map has a critical point

if




Theorem (IS): Let P(z) = 2(1 + z)?. There exists a Jordan domain
V (with V 30, —%, # —1) and large N such that the following holds

for the class

~7:1={h=P090_1:90(V)—>(C ¢:V—>C18un1valent}.

p(0) =0, ¢'(0) =1

(0) If h € Fy, then h(z) = z+ O(z?), |h”(0)| > ¢ > 0, h has a unique

critical point (= ¢(—3));

(1) If f = e?™>h with h(z) = 2 + 22 or| h € F1|and « is of high type
(a; 2 N), then Rf is defined and can be written as Rf = e*™*** hy

R




Why Non-linearity (or non-zero second derivative) helps?

If £7(0) not small and f/(0) = e*™*, with « high type, then

Can use Douady-Hubbard-Lavaurs theory of parabolic implosion.

fo(z )_Z_'_QQZ + ... (az # 0) f/(0) =e*™* o small |argal <%
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attracting repelling
Fatou coordinate / Fatou coordinate

B F- A
—

horn map

RfIXfOEf

Sl first return map




pre-Fatou coordinate and the lift of f

universal covering.of C \ {0, o}

{0,0} fixed\points

f'(0) = e™* o small |arga| < Z



Basic checkerboard pattern for parabolic map
Fo(w) =w+ 1+ o(1)

If a parabolic basin
contains only one

* simple critical point,
then the checkerboard
pattern (and the
dynamics) in the

\627riz pae=tam (w) — _% Jezmz basin is the same

g =Rof is again in

the class Fy, i.e.

g :Dom(g)~{0} — C~ {0}
is a branched covering with
only one critical value
(with all crit. pts simple)




Basic checkerboard pattern for parabolic map 2

When the map 1s only
partial defined or perturbed
to non-parabolic,

not every detail of the
pattern 1s preserved.

The pattern persists to
some extent.




Trunchedkerboard pattern

Truncated portions D_,,, D" D" are y to-remmain after a perturbation



Truncated pattern induces a cubic-like covering

Rof € Fq

almost definition of F;



Near-parabolic case: Truncated checkerboard pattern O, = Qgco)
deck transt 6 £ / (truncated also on the side)

C/z

X o
universal covering of C \ {0,0} T f p2miz

f

This shows that Rf € e?™1 F;.

Instead of f itself, one should
consider the canonical map Fi .,

on ¢/ r;f , where 0 is the gluing

which depends on f.
o 0,0 fixed pts C*=C~ {0}




One more thing ...

Inou-S.: the invariant class F; under near-parabolic renormalization
f — 627riah | 5 Rf _ 627Tia1 hl
Ra
Fi122h— h; € F;
<= a priori bound

J7 1s in one to one correspondence with a Teichmuller space
(of a punctured disk).

by Royden-Gardiner theorem = Schwarz lemma for Teichmiiller space
_), > R, 1s a contraction
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Assumption: f = e?™%*h with h(z) = 2z + 2% or h € F; and

« is of high type (a; > N).

Then Rf,R?f,... are defined and can be written as R™ f = e*™**~h,,
with h,, € Fi.

For a parabolic h (whose second derivative is not too small), one can
find a “truncated checkerboard pattern” 2. With a help of numeri-
cal estimates, one can give estiamtes on attracting Fatou coordinate
® .+ and define associaeted rectangles etc. and their finite number
of inverse images via (the region with critical point) until they arrive
in the region where repelling Fatou coordinate ®,.., is defined.




If you see Truncated checherboard pattern 2, it induces a “cubic-like
map” Rof from C* (on repelling side) to C* (on attracting side)




Near-parabolic case:  work in pre-Fatou coordinate (deck transf added)
We still see truncated checkerboard pattern ¢ = Qgpo)

deck transt 6 f / (truncated also on the side)

C/z

X o
universal covering of C \ {0,0} T f p2miz

f

This shows that Rf € e?™1 F;.

Instead of f itself, one should

consider the canonical map Fi..,

on s/ 5K where 6 is the gluing
f

which depends on f.
o 0,0 fixed pts C*=C~ {0}



Talk 2: Reconstructing (part of f) from R™f

(¢ ’s within 2, their gluing and the dynamics
the combinatorics of rotation r4 ,, : A, — A,, with A,, C Z"
Qf,kl,...,kn for (kl, Cee kn) c A,




How can one conclude something about f by knowing that
the renormalizations Rf, R*f,... are defined and not too bad?

How can we understand f (or part of it) from Rf, or from R?f,...7

Why non-trivial?

fo=f fi=Rfo fo=RA fa=Rf FCT renromalization

90 9 92 oo adding machine

(Z)arZ) % (Z)asZ) x (Z)asZ) . ..

approximate period><a1 as...an,




Need to understand what the dynamics f really is

Fcan on Qcan + (gf

f canonical map  trunc. pattern gluing which
commutes with F.,,




How did the dynamics of g = Rf appear within the dynamics of f?

We build a heuristic model, O

an abstract model for which

g — Fcan on Qcan/g’
f
appears as the return map.

g<—>

FCG,’I’L
gluing:
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K. Kodaira’s Essay
on his theory of elliptic surfaces




Construction of QS}I){ within )




Truncated checkerboard pattern




Construction (Theorem 1: Structure Theorem)
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each Q,(;f)h . 18 isomorphic to truncated checkerboard pattern Qg they are glued via O~ ¢

W= ﬂ U Q(nzﬂ | ko....k, 18 aninvariant set containing the critical

Y

=l (RS e = AT orbit  “maximal hedgehog”









