Local invariant sets of irrationally indifferent fixed points of high type

Mitsuhiro Shishikura
 (Kyoto University)

Workshop on

Cantor bouquets in hedgehogs and transcendental iteration
Université Paul Sabatier
Toulouse, France
June 16-19, 2009

Plan

Want to understand the dynamics of a quadratic polynomial f when it has an irrational indifferent fixed point of high type:

$$
\begin{aligned}
& f(z)=e^{2 \pi i \alpha} z+z^{2}, \quad \alpha= \pm \frac{1}{a_{1} \pm \frac{1}{a_{2} \pm \frac{1}{\ddots}}}\left(a_{i} \in \mathbb{N}, a_{i} \geq N \text { large }\right) ~ \\
& \text { (also applies to } \left.e^{2 \pi i \alpha} z(z+1)^{n}, e^{2 \pi i \alpha} z e^{z}\right) \quad
\end{aligned}
$$

Goal:

Topological description of invariant sets around the fixed point Hedgehog, the boundary of Siegel disk

Tools:

Near-parabolic renormalization $f \mapsto \mathcal{R} f$
Inou-S. "uniform lower bound on the nonlinearity of $\mathcal{R}^{n} f$ "
Reconstructing f from $\mathcal{R} f, \mathcal{R}^{2} f, \ldots$

Plan of 3 talks

Talk 1: Inou-Shishikura Theorem Class \mathcal{F}_{1} and its invariance under the near-parabolic renormlaization \mathcal{R} Truncated checkerboard pattern Ω_{f} and its relation to \mathcal{F}_{1}

Talk 2: Reconstructing (part of f) from $\mathcal{R}^{n} f$ $\Omega_{f, k}$'s within Ω_{f}, their gluing and the dynamics the combinatorics of rotation $r_{\alpha, n}: A_{n} \rightarrow A_{n}$, with $A_{n} \subset \mathbb{Z}^{n}$
$\Omega_{f, k_{1}, \ldots, k_{n}}$ for $\left(k_{1}, \ldots, k_{n}\right) \in A_{n}$

Talk 3: Applications
Cantor bouquets, hairs, hedgehogs and the boundary of Siegel disks

Compare dynamics
Easy: Contractions
Nice: Expanding maps (inverse: multivalued contraction)
Lifting argument by inverse branches via appropriate homotopy
\longrightarrow structural stability (homotopical stability)
Hölder continuity of conjugacy
symbolic dynamics, topological model
Hyperbolic rational maps $\widehat{\mathbb{C}}=F_{f} \cup J_{f}$
$F_{f}=$ basin of attracting periodic points; f is expanding on J_{f}.
J_{f} connected \Longrightarrow locally connected

Nasty(?): maps with irrationally indifferent fixed points not expanding at the fixed point
Julia set contains a critical point, which is recurrent (Mañé)

Easy: Contractions
Nice: Hyperbolic rational maps
Nasty(?): maps with irrationally indifferent fixed points not expanding at the fixed point
Julia set contains a critical point, which is recurrent (Mañé) rotation numbers $\{$ bounded type $\} \subset\{$ Diophantine $\} \subset\{$ Brjuno $\}$ Brjuno rotation \# linearizable (Siegel-Brjuno-Yoccoz) Siegel disk = domain of linearization bounded type \rightarrow boundary of Siegel disk is Jordan curve Julia set is locally connected (Herman, Petersen, Petersen-Zackeri)

linearization

Julia set
Chaotic dynamics
Siegel Disk boundary
Physicists expect a "universal phenomenon" at the boundary of SD

Easy: Contractions
Nice: Hyperbolic rational maps
Nasty(?): maps with irrationally indifferent fixed points bounded type Brjuno rotation \#
Nastier: rotation number with large continued fraction coefficients Liouville rotation \#, non-Brjuno or high type non-Brjuno \rightarrow non-linearizable fixed pt (Cremer pt) for some rot \#, bdry of SD is Jordan curve, but no crit pt (Herman) In these cases, Julia sets is NOT locally connected.

Questions: bdry of SD = J?
$\mathrm{J}=$ indecomposable continuum?
impression of 0-ray = J?
How can we describe the topology of J?
Are they Monsters?
We are going to deal with this case (high type).

Irrationally indifferent fixed points or rotation-like dynamics study via renormalization (constructed as a return map)

g

Successive construction of $\mathcal{R} f, \mathcal{R}^{2} f, \ldots$, helps to understand the dynamics of f (orbits, invariant sets, rigidity, bifurcation, ...)

For bounded type (or Dioph., Brjuno), the number of iteration needed in the construction of $\mathcal{R} f$ is not too big.

+ upper bounds on the non-linearity of the renormalizations \longrightarrow solution of linearization problem, etc...

For high type, the number of iteration will be very big and the return map (renormalization) $\mathcal{R} f$ is close to identity.
identity: the most difficult map to study (fif you want to study perturbation) Non-linearity helps! Need lower bound on non-linearity.

More on renormalization for irrationally indifferent fixed points

$$
\begin{aligned}
& f(z)=e^{2 \pi i \alpha} z+O\left(z^{2}\right) \begin{array}{c}
\text { to be defined } \\
\text { later }
\end{array} \\
& \alpha= \pm \frac{1}{a_{1} \begin{array}{l}
\pm \frac{1}{a_{2} \pm \frac{1}{\ddots}} \\
\hline
\end{array}}=\alpha_{1} \quad \mathcal{R} f(z)=e^{2 \pi i \alpha_{1}} z+O\left(z^{2}\right)
\end{aligned}
$$

Want: non-linear term of $\mathcal{R}^{n} f$ not too small
Inou-S.: If $f(z)=e^{2 \pi i \alpha} z+z^{2}$ and α is of sufficiently high type, then $\mathcal{R}^{n} f$ are defined and $\left|\left(\mathcal{R}^{n} f\right)^{\prime \prime}(0)\right| \geq \exists c>0 \quad(n=0,1,2, \ldots)$.

Applications

Theorem 1 (structure): Let $f(z)=e^{2 \pi i \alpha} h(z)$, where $h(z)=z+z^{2}$ or $h \in \mathcal{F}_{1}$ with α sufficiently high type.

Then there exist domains $\Omega^{(0)} \supset \Omega^{(1)} \supset \Omega^{(2)} \supset \ldots$, such that $\Omega^{(n)} \backslash\{0\}=\bigcup_{\left(k_{1}, \ldots, k_{n}\right) \in A_{n}} \Omega_{k_{1}, \ldots, k_{n}}^{(n)}$, where $\Omega_{k_{1}, \ldots, k_{n}}^{(n)}$'s are "almost cyclically permuted" by f and the intersection $\Lambda_{f}=\bigcap_{n=0}^{\infty} \Omega^{(n)}$ is a closed, forward invariant set containing 0 and the forward critical orbit. Every point in Λ_{f} is recurrent and f is injective on this set.

more description on $\Omega_{k_{1}, \ldots, k_{n}}^{(n)}$ and the action of f will be explained in Talk 2.

Theorem 2 (hairs): Let f and $\Omega_{k_{1}, k_{2}, \ldots, k_{n}}^{(n)}$ be as in Theorem 1. For an "allowable" sequence k_{1}, k_{2}, \ldots, the intersection $\cap_{n=1}^{\infty} \Omega_{k_{1}, k_{2}, \ldots, k_{n}}^{(n)}$ is either empty or an arc tending to 0 (closed arc when 0 is added). The set of these arcs are cyclically permuted by f. In particular, there is an arc in Λ_{f} from the critical point to 0 .

Applications (continued)

Theorem 3: Let f be a quadratic polynomial as in Theorem 1. Then the Julia set J_{f} is decomposable and locally connected at every periodic point except 0 .

Theorem 4: Let f be as in Theorem 1. Then Λ_{f} contains all "hedgehogs" in Perez Marco's sense.

Theorem 5 (boundary of Siegel disk): Let f be as in Theorem 1, and assume that α is a Brjuno number. By Siegel-Brjuno, f is linearizable and has a Siegel disk Δ_{f}.
Then the boundary $\partial \Delta_{f}$ is a Jordan curve.
Furthermore, one can give a bound on the modulus of continuity in terms of continued fraction expansion of α.
(Earlier results by Herman, Petersen, Petersen-Zackeri, via surgery.)

Theorem 6: In Theorem 5, $\partial \Delta_{f}$ contains the critical point if and only if $\alpha \in \mathcal{H}$.

Definition of Renormalization $\mathcal{R} f$

 If one can define a "fundamental region"so that its quotient is isomorphic to $\mathbb{C} / \mathbb{Z}, \quad$ then the renormalization $\mathcal{R} f$ can be defined.

Inou-S.: For f as in the theorem, we have the sequence:

Key idea in renormalization

$$
f_{0}=f \quad f_{1}=\mathcal{R} f_{0} \quad f_{2}=\mathcal{R} f_{1} \quad f_{3}=\mathcal{R} f_{2}
$$

f may be very recurrent, non-expanding, non-linear, has critical pt The sequence of "renormalizers" (coordinate changes between consecutive renormalizations) is like iteration of expanding maps.

Nice "dynamics"!

In the limit $N \rightarrow \infty, g_{i}$'s are "like" exponential maps (parabolic renormalization).
quadratic polynomials are transcendental!
(if you consider renormalizations)

Yoccoz sectorial renormalization

works for any germ, any rot. \# may lose a lot by cut-off, when rot. \# is small no critical points

Perez Marco renormalization for quadratic type germs
 works for quadratic type need to show the existence no critical points

Near-parabolic renormalization

uniformize
works only for $f=e^{2 \pi i \alpha} h$
$h \in \mathcal{F}_{1}$ or $h=z+z^{2}$
α of high type
invariant class for renormalization implies QTC
the map has a critical point

Theorem (IS): Let $P(z)=z(1+z)^{2}$. There exists a Jordan domain V (with $V \ni 0,-\frac{1}{3}, \not \supset-1$) and large N such that the following holds for the class

$$
\mathcal{F}_{1}=\left\{\begin{array}{l|l}
h=P \circ \varphi^{-1}: \varphi(V) \rightarrow \mathbb{C} & \begin{array}{c}
\varphi: V \rightarrow \mathbb{C} \text { is univalent } \\
\varphi(0)=0, \varphi^{\prime}(0)=1
\end{array}
\end{array}\right\} .
$$

(0) If $h \in \mathcal{F}_{1}$, then $h(z)=z+O\left(z^{2}\right),\left|h^{\prime \prime}(0)\right| \geq c>0, h$ has a unique critical point $\left(=\varphi\left(-\frac{1}{3}\right)\right)$;
(1) If $f=e^{2 \pi i \alpha} h$ with $h(z)=z+z^{2}$ or $h \in \mathcal{F}_{1}$ and α is of high type $\left(a_{i} \geq N\right)$, then $\mathcal{R} f$ is defined and can be written as $\mathcal{R} f=e^{2 \pi i \alpha_{1}} h_{1}$ with $h_{1} \in \mathcal{F}_{1}$ and $\alpha_{1}= \pm\left\{\frac{1}{\alpha}\right\}$.

Outline of Proof:

For f as above, one can find a "truncated checkerboard pattern" Ω_{f} (in pre-Fatou coordinate). justified by numerical estimates

If there is a truncated checkerboard pattern, then $\mathcal{R} f$ can be written by $h_{1} \in \mathcal{F}_{1}$.
proof by picture

Why Non-linearity (or non-zero second derivative) helps? If $f^{\prime \prime}(0)$ not small and $f^{\prime}(0)=e^{2 \pi i \alpha}$, with α high type, then

Can use Douady-Hubbard-Lavaurs theory of parabolic implosion.

pre-Fatou coordinate and the lift of f

$$
F_{0}(w)=w+1+o(1)
$$

$$
z=\tau_{0}(w)=-\frac{1}{w}
$$

$$
f_{0}(z)=z+a_{2} z^{2}+\ldots\left(a_{2} \neq 0\right)
$$

lift $F_{f} \quad$ deck transf $T_{f}(w)=w+\frac{1}{\alpha}$

universal covering of $\widehat{\mathbb{C}} \backslash\{0, \sigma\}$ $\{0, \sigma\}$ fixed noints

$$
f^{\prime}(0)=e^{2 \pi i \alpha}, \alpha \text { small }|\arg \alpha|<\frac{\pi}{4}
$$

Basic checkerboard pattern for parabolic map

$$
F_{0}(w)=w+1+o(1)
$$

$\mathcal{R}_{0} f$

If a parabolic basin contains only one simple critical point, then the checkerboard pattern (and the dynamics) in the basin is the same
$g=\mathcal{R}_{0} f$ is again in the class \mathcal{F}_{0}, i.e.
$g: \operatorname{Dom}(g) \backslash\{0\} \rightarrow \mathbb{C} \backslash\{0\}$ is a branched covering with only one critical value
(with all crit. pts simple)

Basic checkerboard pattern for parabolic map 2

When the map is only partial defined or perturbed to non-parabolic, not every detail of the pattern is preserved.

The pattern persists to some extent.

Truncedtedkerboard pattern

Truncated pattern induces a cubic-like covering

Near-parabolic case:
Truncated checkerboard pattern $\Omega_{f}=\Omega_{f}^{(0)}$ (truncated also on the side)

universal covering of $\widehat{\mathbb{C}} \backslash\{0, \sigma\} \quad \tau_{f}$

This shows that $\mathcal{R} f \in e^{2 \pi i \alpha_{1}} \mathcal{F}_{1}$.
Instead of f itself, one should consider the canonical map $F_{c a n}$ on $\Omega_{f} / \tilde{\theta}_{f}$, where θ_{f} is the gluing which depends on f.

One more thing ...

Inou-S.: the invariant class \mathcal{F}_{1} under near-parabolic renormalization

$$
\begin{aligned}
f=e^{2 \pi i \alpha} h & \longmapsto \mathcal{R} f=e^{2 \pi i \alpha_{1}} h_{1} \\
\mathcal{F}_{1} \ni h & \stackrel{\mathcal{R}_{\alpha}}{\longmapsto} h_{1} \in \mathcal{F}_{1}
\end{aligned}
$$

\Longleftrightarrow a priori bound
\mathcal{F}_{1} is in one to one correspondence with a Teichmüller space (of a punctured disk).
by Royden-Gardiner theorem = Schwarz lemma for Teichmüller space
$\longrightarrow \mathcal{R}_{\alpha}$ is a contraction \mathcal{R} is hyperbolic for α high type

Prove one, get another one freeé!

*- Requires slight improvement of domain of h_{1}, estimate in the cotangent space of Teichmüller space and an isoperimetric inequality for quadratic differentials.

Nice dynamics!

À suivre...

Assumption: $f=e^{2 \pi i \alpha} h$ with $h(z)=z+z^{2}$ or $h \in \mathcal{F}_{1}$ and α is of high type $\left(a_{i} \geq N\right)$.
Then $\mathcal{R} f, \mathcal{R}^{2} f, \ldots$ are defined and can be written as $\mathcal{R}^{n} f=e^{2 \pi i \alpha_{n}} h_{n}$ with $h_{n} \in \mathcal{F}_{1}$.

For a parabolic h (whose second derivative is not too small), one can find a "truncated checkerboard pattern" Ω_{f}. With a help of numerical estimates, one can give estiamtes on attracting Fatou coordinate $\Phi_{\text {attr }}$ and define associaeted rectangles etc. and their finite number of inverse images via (the region with critical point) until they arrive in the region where repelling Fatou coordinate $\Phi_{\text {rep }}$ is defined.

If you see Truncated checherboard pattern Ω_{f}, it induces a "cubic-like map" $\mathcal{R}_{0} f$ from \mathbb{C}^{*} (on repelling side) to \mathbb{C}^{*} (on attracting side)

Near-parabolic case: work in pre-Fatou coordinate (deck transf added) We still see truncated checkerboard pattern $\Omega_{f}=\Omega_{f}^{(0)}$ (truncated also on the side)
deck transf θ_{f}

This shows that $\mathcal{R} f \in e^{2 \pi i \alpha_{1}} \mathcal{F}_{1}$. Instead of f itself, one should consider the canonical map $F_{\text {can }}$ on $\Omega_{f} /{\widetilde{\theta_{f}}}$, where θ_{f} is the gluing which depends on f.

Talk 2: Reconstructing (part of f) from $\mathcal{R}^{n} f$
$\Omega_{f, k}$'s within Ω_{f}, their gluing and the dynamics the combinatorics of rotation $r_{\alpha, n}: A_{n} \rightarrow A_{n}$, with $A_{n} \subset \mathbb{Z}^{n}$ $\Omega_{f, k_{1}, \ldots, k_{n}}$ for $\left(k_{1}, \ldots, k_{n}\right) \in A_{n}$

How can one conclude something about f by knowing that the renormalizations $\mathcal{R} f, \mathcal{R}^{2} f, \ldots$ are defined and not too bad?

How can we understand f (or part of it) from $\mathcal{R} f$, or from $\mathcal{R}^{2} f, \ldots$?
Why non-trivial?

FCT renromalization adding machine
$\left(\mathbb{Z} / a_{1} \mathbb{Z}\right) \times\left(\mathbb{Z} / a_{2} \mathbb{Z}\right) \times\left(\mathbb{Z} / a_{s} \mathbb{Z}\right) \times \ldots$ approximate period $=-a_{1} a_{2} \ldots a_{n}$

Zen question:
What was you SELF when your parents were not yet born?

Need to understand what the dynamics f really is

$F_{\text {can }}$ on $\Omega_{c a n}+\theta_{f}$

How did the dynamics of $g=\mathcal{R} f$ appear within the dynamics of f ?
We build a heuristic model, an abstract model for which $g \leftrightarrow F_{c a n}$ on $\Omega_{c a n} / \widetilde{\theta}_{f}$ appears as the return map.
 gluing:
θ_{g}

1. well-defined after gluing 2. return map is $F_{c a n}$ modulo θ_{g}
2. this picture embeds into f

K. Kodaira's Essay on his theory of elliptic surfaces

Michelangelo (1475-1564)

For Michelangelo, the job of the sculptor was to free the forms that were already inside the stone. He believed that every stone had a sculpture within it, and that the work of sculpting was simply a matter of chipping away all that was not a part of the statue.

Unkei (? -1224)
(according to Soseki Natsume's novel)

Construction of $\Omega_{f, k}^{(1)}$ within Ω_{f} $\Omega_{f} \quad \Omega_{\mathcal{R} f}$

τ_{f}
$\operatorname{Exp}^{\sharp} \circ \Phi_{a t t r} \quad \tau_{\mathcal{R} f}$
f

Truncated checkerboard pattern

Construction (Theorem 1: Structure Theorem)
 Ω_{f}
 $\Omega_{\mathcal{R} f}$

each $\Omega_{k_{1}, k_{2}, \ldots, k_{n}}^{(n)}$ is isomorphic to truncated checkerboard pattern $\Omega_{\mathcal{R}^{n} f} \quad$ they are glued via $\theta_{\mathcal{R}^{n} f}$
$\Lambda_{f}=\bigcap_{n=0}^{\infty} \bigcup_{\left(k_{1}, \ldots, k_{n}\right) \in A_{n}} \Omega_{f, k_{1}, k_{2}, \ldots, k_{n}}^{(n)} \quad \begin{aligned} & \text { is an invariant set containing the critical } \\ & \text { orbit "maximal hedgehog" }\end{aligned}$

Continue with blackboard

Merci!

