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Setup

We introduce the family of entire transcendental functions

fa(z) = λa(ez/a(z − (a − 1)) + (a − 1)),

where z ∈ C, a ∈ C∗ and λ = e iθ, θ ∈ (R \ Q) ∩ B is FIXED.

fa(0) = 0 and f ′a(0) = λ ⇒ fa has a Siegel disk ∆a around z = 0.

fa has two singular values

simple crit. value fa(c) where c = −1 is a critical point.
asymp. value va = λa(a−1). It has one finite preimage at pa = a−1.

One of the two singular orbits must accumulate on ∂∆a, but they
may alternate.
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Motivation 1

This family ”contains” three very important examples.

the semistandard map f1(z) = λzez ;

the exponential family fa(z) −→
a→0

λ(ez − 1);

the quadratic polynomial fa(z) −→
a→∞

λ(z + z
2

2 )

λ(ez
− 1)

λze
z

λ(z + z
2

2
)

It might provide a link between them.
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Motivation 1

In fact, if we conjugate by u = z/a, we obtain

ga(u) = λ(eu(au − (a − 1)) + (a − 1))

Then, if we write a = a0 + ε, the perturbation is of the form

ga(z) = ga0(z) + εu2h(u),

with h(0) 6= 0.

This type of perturbations were used to relate the semistandard map to
the quadratic family and, in particular, to prove the necessity of the Brjuno
condition for the semistandard map (see [Geyer01]).
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Motivation 2

fa(z) = λa(ez/a(z − (a − 1)) + (a − 1)),

This family contains all ETF functions (up to conformal conjugacy) with
the following properties

finite order,

one asymptotic value va, with exactly one finite preimage pa of va,

a fixed point (at 0) of multiplier λ ∈ C

a simple critical point (at z = −1) and no other critical points.

It follows that va = λa(a − 1) and pa = a − 1.

One parameter family, but no singular orbit has a predetermined behaviour.

Previous work: S. Zakeri, Dynamics of cubic Siegel polynomials,

Comm. Math. Phys., 1999.
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Goals

Long term goal: to find a path linking the quadratic polynomial with
the semistandard map (or other functions), to study properties of
∂∆a.

More inmediate goals:
◮ To study the possible scenarios for the dynamical plane of fa;

◮ To investigate the parameter space: regions of J−stability and their
boundaries, capture components, semi-hyperbolic components,....

◮ To produce examples of bounded or unbounded Siegel disks with
particular properties.
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Possible scenarios

At least one of the singular orbits (SO) must accumulate on ∂∆a. We
see different dynamical planes depending on which SO is
accumulating.

The other SO is free.
◮ If the free SO is attracted to an attracting periodic orbit, we say that a

is a semihyperbolic parameter and a ∈ H = Hc ∪ Hv .
◮ If the free SO intersects the Siegel disc ∆a we say that a is a capture

parameter, and a ∈ C = C c ∪ C v .
◮ If the free SO escapes to infinity, we say that a is an escaping

parameter and a ∈ E c ∪ E v .
◮ The six sets Hc , Hv , C c , C v , E c and E v are pairwise disjoint.
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Parameter plane

H
v

2

H
v
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0 1 11

Escape algorithm. Main capture component C v
0

λ = e2πiθ, θ = 1+
√

5
2 .
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Parameter plane

0

E c (black) and E v (grey) Components of Hc
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Parameter plane

Theorem

a) All components of H ∪ C are open and simply connected.

b) Every component of Hv is unbounded while every component of Hc is
bounded.

c) If a ∈ H ∪ C, then fa is J-stable. Hence, in any component of H ∪ C,
the boundary ∂∆a moves holomorphically with the parameter.

This allows us to spread ”properties” to whole components of J−stability,
as long as they are satisfied for one parameter value.
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proof
Most arguments for this proof are standard but it needs the following fact.

Proposition

The set E c (escaping parameters for the critical orbit) contains curves
a(t) → 0 as t → ∞. As a consequence, no component of H ∪ C can
suround a = 0.

0
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Dynamical planes

a ∈ Hv a = 1 ∈ C v
0 (SS Map)
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Dynamical plane: a ∈ H
c

Unbounded Siegel disk and attracting basin for a ∈ Hc
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Large values of |a| (for any λ)

Theorem

There exists M > 0, such that fa(z) is polynomial-like of degree two for
|a| > M. Moreover the small filled Julia set (and in particular ∆a) is
contained in D(0,R) with R independent of a.

Corollary

The main capture component C v
0 = {a ∈ C | va ∈ ∆a} is bounded

The set Hc ∪ C c ∪ E c is bounded.

For |a| > M and θ ∈ CT, the boundary of ∆a is a quasicircle
containing the critical point. By J−stability, this is true for all
a ∈ Hv , for example.

In fact, for |a| > M, the map fa,θ is linearizable iff Qθ is linearizable
and, moreover, the two Siegel disks are ”quasiconformally related”.
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Unbounded Siegel disks

This situation is in contrast with what happens for |a| < M, where we find
unbounded Siegel disks, and hence with non-locally connected boundary
[Baker+Dominguez]. Recall CT ⊂ D ⊂ H ⊂ B.

Proposition

Let θ ∈ H.

(a) If a ∈ E c . Then ∆a is unbounded and va ∈ ∂∆a.

(b) If a ∈ Hc ∪ C c , then ∆a is unbounded or ∂∆a is an indecomposable
continuum.

Part (a) is an adaptation of Herman’s proof of the fact that the
exponential map has unbounded Siegel disks for these rotation
numbers. Part (b) uses additionally results of Rogers, generalized to
ETF of bounded type.
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Proof ingredients

Theorem (Herman 85)

Suppose θ ∈ H and ∆ bounded. If f |∂∆ is a homeomorphism, then ∂∆
contains a critical point.

Theorem (Rogers 92, generalized)

Let f ∈ B and ∆ be a bounded Siegel disk of f . If ∂∆ is a decomposable
continum, then ∂∆ separates C into exactly two complementary domains.

Theorem (Rottenfusser 08?)

If f ∈ B, then I (f ) ∪ {∞} is arc-connected.
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Two questions

Question 1: Is the boundary of C v
0 a Jordan curve? (curve where both

singular orbits are on the boundary of ∆a) – Yes for cubics [Zakeri’99].

11

Question 2: What is the nature of ∂∆a when a ∈ ∂C v
0 ?

R. Berenguel and N. Fagella (Fac. Mat. UB) ETF family with 2 SV and a SD Toulouse, June 17, 2009 17 / 19



Two questions

Question 1: Is the boundary of C v
0 a Jordan curve? (curve where both

singular orbits are on the boundary of ∆a) – Yes for cubics [Zakeri’99].

11

Question 2: What is the nature of ∂∆a when a ∈ ∂C v
0 ?

R. Berenguel and N. Fagella (Fac. Mat. UB) ETF family with 2 SV and a SD Toulouse, June 17, 2009 17 / 19



Two examples

a1, a2 ∈ ∂C v
0 . Both singular values are conjectured to be on the boundary.

fa1 fa2
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Thank you for your attention!!
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