An entire transcendental family with two singular values and a persistent Siegel disk

Facultat de Matemàtiques de la Universitat de Barcelona
Toulouse, June 17, 2009

Setup

We introduce the family of entire transcendental functions

$$
f_{a}(z)=\lambda a\left(e^{z / a}(z-(a-1))+(a-1)\right),
$$

where $z \in \mathbb{C}$, $a \in \mathbb{C}^{*}$ and $\lambda=e^{i \theta}, \theta \in(\mathbb{R} \backslash \mathbb{Q}) \cap \mathcal{B}$ is FIXED.

- $f_{a}(0)=0$ and $f_{a}^{\prime}(0)=\lambda \Rightarrow f_{a}$ has a Siegel disk Δ_{a} around $z=0$.
- f_{z} has two singular values simple crit. value $f_{a}(c)$ where $c=-1$ is a critical point. asymp. value $v_{a}=\lambda a(a-1)$. It has one finite preimage at $p_{a}=a-1$.
- One of the two singular orbits must accumulate on $\partial \Delta_{a}$, but they may alternate.

Setup

We introduce the family of entire transcendental functions

$$
f_{a}(z)=\lambda a\left(e^{z / a}(z-(a-1))+(a-1)\right),
$$

where $z \in \mathbb{C}$, $a \in \mathbb{C}^{*}$ and $\lambda=e^{i \theta}, \theta \in(\mathbb{R} \backslash \mathbb{Q}) \cap \mathcal{B}$ is FIXED.

- $f_{a}(0)=0$ and $f_{a}^{\prime}(0)=\lambda \Rightarrow f_{a}$ has a Siegel disk Δ_{a} around $z=0$.
- f_{a} has two singular values
simple crit. value $f_{a}(c)$ where $c=-1$ is a critical point.
asymp. value $v_{a}=\lambda a(a-1)$. It has one finite preimage at $p_{a}=a-1$.
- One of the two singular orbits must accumulate on $\partial \triangle_{a}$, but they may alternate.

Setup

We introduce the family of entire transcendental functions

$$
f_{a}(z)=\lambda a\left(e^{z / a}(z-(a-1))+(a-1)\right),
$$

where $z \in \mathbb{C}$, $a \in \mathbb{C}^{*}$ and $\lambda=e^{i \theta}, \theta \in(\mathbb{R} \backslash \mathbb{Q}) \cap \mathcal{B}$ is FIXED.

- $f_{a}(0)=0$ and $f_{a}^{\prime}(0)=\lambda \Rightarrow f_{a}$ has a Siegel disk Δ_{a} around $z=0$.
- f_{a} has two singular values simple crit. value $f_{a}(c)$ where $c=-1$ is a critical point. asymp. value $v_{a}=\lambda a(a-1)$. It has one finite preimage at $p_{a}=a-1$.
may alternate.

Setup

We introduce the family of entire transcendental functions

$$
f_{a}(z)=\lambda a\left(e^{z / a}(z-(a-1))+(a-1)\right),
$$

where $z \in \mathbb{C}$, $a \in \mathbb{C}^{*}$ and $\lambda=e^{i \theta}, \theta \in(\mathbb{R} \backslash \mathbb{Q}) \cap \mathcal{B}$ is FIXED.

- $f_{a}(0)=0$ and $f_{a}^{\prime}(0)=\lambda \Rightarrow f_{a}$ has a Siegel disk Δ_{a} around $z=0$.
- f_{a} has two singular values simple crit. value $f_{a}(c)$ where $c=-1$ is a critical point. asymp. value $v_{a}=\lambda a(a-1)$. It has one finite preimage at $p_{a}=a-1$.
- One of the two singular orbits must accumulate on $\partial \Delta_{a}$, but they may alternate.

Motivation 1

This family "contains" three very important examples.
the semistandard map $f_{1}(z)=\lambda z e^{z}$;
the exponential family $f_{a}(z) \underset{a \rightarrow 0}{\longrightarrow} \lambda\left(e^{z}-1\right)$;
the quadratic nolynomial $f_{\partial}(z) \longrightarrow \lambda\left(z+\frac{z^{2}}{2}\right)$

It might provide a link between them.

Motivation 1

This family "contains" three very important examples. the semistandard map $f_{1}(z)=\lambda z e^{z}$;
the exponential family $f_{a}(z) \underset{a \rightarrow 0}{\longrightarrow} \lambda\left(e^{z}-1\right)$;
the quadratic polynomial $f_{a}(z) \underset{a \rightarrow \infty}{\longrightarrow} \lambda\left(z+\frac{z^{2}}{2}\right)$

It might provide a link between them.

Motivation 1

This family "contains" three very important examples.
the semistandard map $f_{1}(z)=\lambda z e^{z}$;
the exponential family $f_{a}(z) \underset{a \rightarrow 0}{\longrightarrow} \lambda\left(e^{z}-1\right)$;
the quadratic polynomial $f_{a}(z) \underset{a \rightarrow \infty}{\longrightarrow} \lambda\left(z+\frac{z^{2}}{2}\right)$

It might provide a link between them.

Motivation 1

This family "contains" three very important examples. the semistandard map $f_{1}(z)=\lambda z e^{z}$;
the exponential family $f_{a}(z) \underset{a \rightarrow 0}{\longrightarrow} \lambda\left(e^{z}-1\right)$;
the quadratic polynomial $f_{a}(z) \underset{a \rightarrow \infty}{\longrightarrow} \lambda\left(z+\frac{z^{2}}{2}\right)$

It might provide a link between them.

Motivation 1

In fact, if we conjugate by $u=z / a$, we obtain

$$
g_{a}(u)=\lambda\left(e^{u}(a u-(a-1))+(a-1)\right)
$$

Then, if we write $a=a_{0}+\varepsilon$, the perturbation is of the form

$$
g_{a}(z)=g_{a_{0}}(z)+\varepsilon u^{2} h(u),
$$

with $h(0) \neq 0$.

This type of perturbations were used to relate the semistandard map to the quadratic family and, in particular, to prove the necessity of the Brjuno condition for the semistandard map (see [Geyer01]).

Motivation 1

In fact, if we conjugate by $u=z / a$, we obtain

$$
g_{a}(u)=\lambda\left(e^{u}(a u-(a-1))+(a-1)\right)
$$

Then, if we write $a=a_{0}+\varepsilon$, the perturbation is of the form

$$
g_{a}(z)=g_{a_{0}}(z)+\varepsilon u^{2} h(u),
$$

with $h(0) \neq 0$.

This type of perturbations were used to relate the semistandard map to the quadratic family and, in particular, to prove the necessity of the Brjuno condition for the semistandard map (see [Geyer01]).

Motivation 1

In fact, if we conjugate by $u=z / a$, we obtain

$$
g_{a}(u)=\lambda\left(e^{u}(a u-(a-1))+(a-1)\right)
$$

Then, if we write $a=a_{0}+\varepsilon$, the perturbation is of the form

$$
g_{a}(z)=g_{a_{0}}(z)+\varepsilon u^{2} h(u),
$$

with $h(0) \neq 0$.
This type of perturbations were used to relate the semistandard map to the quadratic family and, in particular, to prove the necessity of the Brjuno condition for the semistandard map (see [Geyer01]).

Motivation 2

$$
f_{a}(z)=\lambda a\left(e^{z / a}(z-(a-1))+(a-1)\right),
$$

This family contains all ETF functions (up to conformal conjugacy) with the following properties

- finite order,
- one asymptotic value v_{a}, with exactly one finite preimage p_{a} of v_{a},
- a fixed point (at 0) of multiplier $\lambda \in \mathbb{C}$
- a simple critical point (at $z=-1$) and no other critical points. It follows that $v_{a}=\lambda a(a-1)$ and $p_{a}=a-1$.

One parameter family, but no singular orbit has a predetermined behaviour. S. Zakeri, Dynamics of cubic Siegel polynomials,

Motivation 2

$$
f_{a}(z)=\lambda a\left(e^{z / a}(z-(a-1))+(a-1)\right),
$$

This family contains all ETF functions (up to conformal conjugacy) with the following properties

- finite order,
- one asymptotic value v_{a}, with exactly one finite preimage p_{a} of v_{a},
- a fixed point (at 0) of multiplier $\lambda \in \mathbb{C}$
- a simple critical point (at $z=-1$) and no other critical points. It follows that $v_{a}=\lambda a(a-1)$ and $p_{a}=a-1$.

One parameter family, but no singular orbit has a predetermined behaviour. S. Zakeri, Dynamics of cubic Siegel polynomials,

Motivation 2

$$
f_{a}(z)=\lambda a\left(e^{z / a}(z-(a-1))+(a-1)\right),
$$

This family contains all ETF functions (up to conformal conjugacy) with the following properties

- finite order,
- one asymptotic value v_{a}, with exactly one finite preimage p_{a} of v_{a},
- a fixed point (at 0) of multiplier $\lambda \in \mathbb{C}$
- a simple critical point (at $z=-1$) and no other critical points. It follows that $v_{a}=\lambda a(a-1)$ and $p_{a}=a-1$.

One parameter family, but no singular orbit has a predetermined behaviour.
Previous work: S. Zakeri, Dynamics of cubic Siegel polynomials, Comm. Math. Phys., 1999.

Goals

Long term goal: to find a path linking the quadratic polynomial with the semistandard map (or other functions), to study properties of $\partial \Delta_{a}$.

More inmediate goals:

- To study the possible scenarios for the dynamical plane of f_{a};
- To investigate the parameter space: regions of J-stability and their boundaries, capture components, semi-hyperbolic components,....
- To nroduce examples of bounded or unbounded Siegel disks with particular properties.

Goals

Long term goal: to find a path linking the quadratic polynomial with the semistandard map (or other functions), to study properties of $\partial \Delta_{a}$.

More inmediate goals:

- To study the possible scenarios for the dynamical plane of f_{a};
- To investigate the parameter space: regions of J-stability and their boundaries, capture components, semi-hyperbolic components,....
- To produce examples of bounded or unbounded Siegel disks with particular properties.

Possible scenarios

- At least one of the singular orbits (SO) must accumulate on $\partial \Delta_{a}$. We see different dynamical planes depending on which SO is accumulating.
- The other SO is free.

Possible scenarios

- At least one of the singular orbits (SO) must accumulate on $\partial \Delta_{a}$. We see different dynamical planes depending on which SO is accumulating.
- The other SO is free.
- If the free SO is attracted to an attracting periodic orbit, we say that a is a semihyperbolic parameter and $a \in H=H^{c} \cup H^{v}$.
- If the free SO escapes to infinity, we say that a is an escaping

Possible scenarios

- At least one of the singular orbits (SO) must accumulate on $\partial \Delta_{a}$. We see different dynamical planes depending on which SO is accumulating.
- The other SO is free.
- If the free SO is attracted to an attracting periodic orbit, we say that a is a semihyperbolic parameter and $a \in H=H^{c} \cup H^{v}$.
- If the free SO intersects the Siegel disc Δ_{a} we say that a is a capture parameter, and $a \in C=C^{c} \cup C^{v}$.
- If the free SO escapes to infinity, we say that a is an escaping

Possible scenarios

- At least one of the singular orbits (SO) must accumulate on $\partial \Delta_{a}$. We see different dynamical planes depending on which SO is accumulating.
- The other SO is free.
- If the free SO is attracted to an attracting periodic orbit, we say that a is a semihyperbolic parameter and $a \in H=H^{c} \cup H^{v}$.
- If the free SO intersects the Siegel disc Δ_{a} we say that a is a capture parameter, and $a \in C=C^{c} \cup C^{v}$.
- If the free SO escapes to infinity, we say that a is an escaping parameter and $a \in E^{c} \cup E^{\vee}$.

Possible scenarios

- At least one of the singular orbits (SO) must accumulate on $\partial \Delta_{a}$. We see different dynamical planes depending on which SO is accumulating.
- The other SO is free.
- If the free SO is attracted to an attracting periodic orbit, we say that a is a semihyperbolic parameter and $a \in H=H^{c} \cup H^{v}$.
- If the free SO intersects the Siegel disc Δ_{a} we say that a is a capture parameter, and $a \in C=C^{c} \cup C^{v}$.
- If the free SO escapes to infinity, we say that a is an escaping parameter and $a \in E^{c} \cup E^{\vee}$.
- The six sets $H^{c}, H^{\vee}, C^{c}, C^{\vee}, E^{c}$ and E^{\vee} are pairwise disjoint.

Parameter plane

Escape algorithm.

Main capture component C_{0}^{\vee}

$$
\lambda=e^{2 \pi i \theta}, \theta=\frac{1+\sqrt{5}}{2}
$$

Parameter plane

E^{c} (black) and E^{\vee} (grey)

Components of H^{c}

Parameter plane

Theorem
a) All components of $H \cup C$ are open and simply connected.
b) Every component of H^{v} is unbounded while every component of H^{c} is bounded.
c) If $a \in H \cup C$, then f_{a} is J-stable. Hence, in any component of $H \cup C$, the boundary $\partial \Delta_{a}$ moves holomorphically with the parameter.

This allows us to spread "properties" to whole components of \mathcal{J}-stability, as long as they are satisfied for one parameter value.

Parameter plane

Theorem
a) All components of $H \cup C$ are open and simply connected.
b) Every component of H^{\vee} is unbounded while every component of H^{c} is bounded.
> c) If $a \in H \cup C$, then f_{a} is J-stable. Hence, in any component of $H \cup C$, the boundary $\partial \Delta_{a}$ moves holomorphically with the parameter.

> This allows us to spread "properties" to whole components of \mathcal{J}-stability, as long as they are satisfied for one parameter value.

Parameter plane

Theorem

a) All components of $H \cup C$ are open and simply connected.
b) Every component of H^{\vee} is unbounded while every component of H^{c} is bounded.
c) If $a \in H \cup C$, then f_{a} is J-stable. Hence, in any component of $H \cup C$, the boundary $\partial \Delta_{a}$ moves holomorphically with the parameter.

This allows us to spread "properties" to whole components of \mathcal{J}-stability, as long as they are satisfied for one parameter value.

Parameter plane

Theorem

a) All components of $H \cup C$ are open and simply connected.
b) Every component of H^{\vee} is unbounded while every component of H^{c} is bounded.
c) If $a \in H \cup C$, then f_{a} is J-stable. Hence, in any component of $H \cup C$, the boundary $\partial \Delta_{a}$ moves holomorphically with the parameter.

This allows us to spread "properties" to whole components of \mathcal{J}-stability, as long as they are satisfied for one parameter value.

Parameter plane

Theorem

a) All components of $H \cup C$ are open and simply connected.
b) Every component of H^{\vee} is unbounded while every component of H^{c} is bounded.
c) If $a \in H \cup C$, then f_{a} is J-stable. Hence, in any component of $H \cup C$, the boundary $\partial \Delta_{a}$ moves holomorphically with the parameter.

This allows us to spread "properties" to whole components of \mathcal{J}-stability, as long as they are satisfied for one parameter value.

proof

Most arguments for this proof are standard but it needs the following fact.

Proposition

The set E^{c} (escaping parameters for the critical orbit) contains curves $a(t) \rightarrow 0$ as $t \rightarrow \infty$. As a consequence, no component of $H \cup C$ can suround $a=0$.

Dynamical planes

$a \in H^{\vee}$

$$
a=1 \in C_{0}^{\vee}(S S \text { Map })
$$

Dynamical plane: $a \in H^{c}$

Unbounded Siegel disk and attracting basin for $a \in H^{c}$

Large values of $|a|$ (for any λ)

Theorem
There exists $M>0$, such that $f_{a}(z)$ is polynomial-like of degree two for $|a|>M$. Moreover the small filled Julia set (and in particular Δ_{a}) is contained in $D(0, R)$ with R independent of a.

- The main capture component $C_{0}^{v}=\left\{a \in \mathbb{C} \mid v_{a} \in \Delta_{a}\right\}$ is bounded
- The set $H^{c} \cup C^{c} \cup E^{c}$ is bounded.
- For $|a|>M$ and $\theta \in C T$, the boundary of Δ_{a} is a quasicircle containing the critical point. By J-stability, this is true for all $a \in H^{v}$, for example.
- In fact, for $|a|>M$, the map $f_{a, \theta}$ is linearizable iff Q_{θ} is linearizable and, moreover, the two Siegel disks are "quasiconformally related".

Large values of $|a|$ (for any λ)

Theorem

There exists $M>0$, such that $f_{a}(z)$ is polynomial-like of degree two for $|a|>M$. Moreover the small filled Julia set (and in particular Δ_{a}) is contained in $D(0, R)$ with R independent of a.

Corollary

- The main capture component $C_{0}^{v}=\left\{a \in \mathbb{C} \mid v_{a} \in \Delta_{a}\right\}$ is bounded
- The set $H^{c} \cup C^{c} \cup E^{c}$ is bounded.
- For $|a|>M$ and $\theta \in C T$, the boundary of Δ_{a} is a quasicircle containing the critical point. By J-stability, this is true for all $a \in H^{\vee}$, for example.
- In fact, for $|a|>M$, the map $f_{a, \theta}$ is linearizable iff Q_{θ} is linearizable and, moreover, the two Siegel disks are "quasiconformally related"

Large values of $|a|$ (for any λ)

Theorem

There exists $M>0$, such that $f_{a}(z)$ is polynomial-like of degree two for $|a|>M$. Moreover the small filled Julia set (and in particular Δ_{a}) is contained in $D(0, R)$ with R independent of a.

Corollary

- The main capture component $C_{0}^{v}=\left\{a \in \mathbb{C} \mid v_{a} \in \Delta_{a}\right\}$ is bounded
- The set $H^{c} \cup C^{c} \cup E^{c}$ is bounded.
- For $|a|>M$ and $\theta \in C T$, the boundary of Δ_{a} is a quasicircle containing the critical point. By J-stability, this is true for all $a \in H^{\vee}$, for example.
- In fact, for $|a|>M$, the map $f_{a, \theta}$ is linearizable iff Q_{θ} is linearizable and, moreover, the two Siegel disks are "quasiconformally related"

Large values of $|a|$ (for any λ)

Theorem

There exists $M>0$, such that $f_{a}(z)$ is polynomial-like of degree two for $|a|>M$. Moreover the small filled Julia set (and in particular Δ_{a}) is contained in $D(0, R)$ with R independent of a.

Corollary

- The main capture component $C_{0}^{v}=\left\{a \in \mathbb{C} \mid v_{a} \in \Delta_{a}\right\}$ is bounded
- The set $H^{c} \cup C^{c} \cup E^{c}$ is bounded.
- For $|a|>M$ and $\theta \in C T$, the boundary of Δ_{a} is a quasicircle containing the critical point. By J-stability, this is true for all $a \in H^{\vee}$, for example.
and, moreover, the two Siegel disks are "quasiconformally related"

Large values of $|a|$ (for any λ)

Theorem

There exists $M>0$, such that $f_{a}(z)$ is polynomial-like of degree two for $|a|>M$. Moreover the small filled Julia set (and in particular Δ_{a}) is contained in $D(0, R)$ with R independent of a.

Corollary

- The main capture component $C_{0}^{v}=\left\{a \in \mathbb{C} \mid v_{a} \in \Delta_{a}\right\}$ is bounded
- The set $H^{c} \cup C^{c} \cup E^{c}$ is bounded.
- For $|a|>M$ and $\theta \in C T$, the boundary of Δ_{a} is a quasicircle containing the critical point. By J-stability, this is true for all $a \in H^{\nu}$, for example.
- In fact, for $|a|>M$, the map $f_{a, \theta}$ is linearizable iff Q_{θ} is linearizable and, moreover, the two Siegel disks are "quasiconformally related".

Unbounded Siegel disks

This situation is in contrast with what happens for $|a|<M$, where we find unbounded Siegel disks, and hence with non-locally connected boundary [Baker+Dominguez]. Recall $C T \subset \mathcal{D} \subset \mathcal{H} \subset B$.

- Part (a) is an adaptation of Herman's proof of the fact that the exponential map has unbounded Siegel disks for these rotation numbers. Part (b) uses additionally results of Rogers, generalized to ETF of bounded type.

Unbounded Siegel disks

This situation is in contrast with what happens for $|a|<M$, where we find unbounded Siegel disks, and hence with non-locally connected boundary [Baker+Dominguez]. Recall $C T \subset \mathcal{D} \subset \mathcal{H} \subset \mathcal{B}$.

Proposition

Let $\theta \in \mathcal{H}$.
(a) If $a \in E^{c}$. Then Δ_{a} is unbounded and $v_{a} \in \partial \Delta_{a}$.
(b) If $a \in H^{c} \cup C^{c}$, then Δ_{a} is unbounded or $\partial \Delta_{a}$ is an indecomposable continuum.

- Part (a) is an adaptation of Herman's proof of the fact that the
exponential map has unbounded Siegel disks for these rotation
numbers. Part (b) uses additionally results of Rogers, generalized to
ETF of bounded type.

Unbounded Siegel disks

This situation is in contrast with what happens for $|a|<M$, where we find unbounded Siegel disks, and hence with non-locally connected boundary [Baker+Dominguez]. Recall $C T \subset \mathcal{D} \subset \mathcal{H} \subset \mathcal{B}$.

Proposition

Let $\theta \in \mathcal{H}$.
(a) If $a \in E^{c}$. Then Δ_{a} is unbounded and $v_{a} \in \partial \Delta_{a}$.
(b) If $a \in H^{c} \cup C^{c}$, then Δ_{a} is unbounded or $\partial \Delta_{a}$ is an indecomposable continuum.

- Part (a) is an adaptation of Herman's proof of the fact that the exponential map has unbounded Siegel disks for these rotation numbers. Part (b) uses additionally results of Rogers, generalized to ETF of bounded type.

Proof ingredients

Theorem (Herman 85)

Suppose $\theta \in \mathcal{H}$ and Δ bounded. If $\left.f\right|_{\partial \Delta}$ is a homeomorphism, then $\partial \Delta$ contains a critical point.

Theorem (Rogers 92, generalized)
Let $f \in \mathcal{B}$ and Δ be a bounded Siegel disk of f. If $\partial \Delta$ is a decomposable continum, then $\partial \Delta$ separates \mathbb{C} into exactly two complementary domains.

Theorem (Rottenfusser 08?)
If $f \in \mathcal{B}$, then $I(f) \cup\{\infty\}$ is arc-connected.

Two questions

Question 1: Is the boundary of C_{0}^{v} a Jordan curve? (curve where both singular orbits are on the boundary of Δ_{a}) - Yes for cubics [Zakeri'99].

Question 2: What is the nature of $\partial \Delta_{a}$ when $a \in \partial C_{0}^{v}$?

Two questions

Question 1: Is the boundary of C_{0}^{v} a Jordan curve? (curve where both singular orbits are on the boundary of Δ_{a}) - Yes for cubics [Zakeri'99].

Question 2: What is the nature of $\partial \Delta_{a}$ when $a \in \partial C_{0}^{\nu}$?

Two examples

$a_{1}, a_{2} \in \partial C_{0}^{\nu}$. Both singular values are conjectured to be on the boundary.

Thank you for your attention!!

