# Siegel Disks in a Family of Entire Maps

Saeed Zakeri

June 19, 2009

#### Introduction

- f a non-linear entire or rational map of degree  $\geq 2$
- f(0) = 0 and  $f'(0) = \lambda = e^{2\pi i \theta}$ , where  $\theta$  is an irrational number
- f linearizable near 0, with the Siegel disk  $\Delta$

The unique conformal isomorphism  $\zeta : \mathbb{D} \xrightarrow{\cong} \Delta$  which satisfies  $\zeta(0) = 0$ and  $\zeta'(0) > 0$  linearizes f in  $\Delta$ :



#### Introduction

- f a non-linear entire or rational map of degree  $\geq 2$
- f(0) = 0 and  $f'(0) = \lambda = e^{2\pi i \theta}$ , where  $\theta$  is an irrational number
- f linearizable near 0, with the Siegel disk  $\Delta$

The unique conformal isomorphism  $\zeta : \mathbb{D} \xrightarrow{\cong} \Delta$  which satisfies  $\zeta(0) = 0$ and  $\zeta'(0) > 0$  linearizes f in  $\Delta$ :



#### **Question 1.** Is $\partial \Delta$ always a Jordan curve?

**Question 2.** What can be said about the metric properties of  $\partial \Delta$  when it is a Jordan curve?

**Question 3.** What are the possible obstructions to enlarging the linearization domain  $\Delta$ ?

**Question 1.** Is  $\partial \Delta$  always a Jordan curve?

**Question 2.** What can be said about the metric properties of  $\partial \Delta$  when it is a Jordan curve?

**Question 3.** What are the possible obstructions to enlarging the linearization domain  $\Delta$ ?

**Question 1.** Is  $\partial \Delta$  always a Jordan curve?

**Question 2.** What can be said about the metric properties of  $\partial \Delta$  when it is a Jordan curve?

Question 3. What are the possible obstructions to enlarging the linearization domain  $\Delta$ ?

- (Douady-Herman-Swiatek, 1986) f is a quadratic polynomial
- (Z., 1998) f is a cubic polynomial
- (Shishikura, unpublished) f is a polynomial of arbitrary degree  $\geq 2$
- (Geyer, 2001)  $f(z) = \lambda \ z \ e^z$
- (Keen-Zhang, 2007)  $f(z) = (\lambda z + az^2) e^z$

- (Douady-Herman-Swiatek, 1986) f is a quadratic polynomial
- (Z., 1998) f is a cubic polynomial
- (Shishikura, unpublished) f is a polynomial of arbitrary degree  $\geq 2$
- (Geyer, 2001)  $f(z) = \lambda \ z \ e^z$
- (Keen-Zhang, 2007)  $f(z) = (\lambda z + az^2) e^z$

- (Douady-Herman-Swiatek, 1986) f is a quadratic polynomial
- (Z., 1998) f is a cubic polynomial
- (Shishikura, unpublished) f is a polynomial of arbitrary degree  $\geq 2$
- (Geyer, 2001)  $f(z) = \lambda \ z \ e^z$
- (Keen-Zhang, 2007)  $f(z) = (\lambda z + az^2) e^z$

- (Douady-Herman-Swiatek, 1986) f is a quadratic polynomial
- (Z., 1998) f is a cubic polynomial
- (Shishikura, unpublished) f is a polynomial of arbitrary degree  $\geq 2$
- (Geyer, 2001)  $f(z) = \lambda \ z \ e^z$
- (Keen-Zhang, 2007)  $f(z) = (\lambda z + az^2) e^z$

- (Douady-Herman-Swiatek, 1986) f is a quadratic polynomial
- (Z., 1998) f is a cubic polynomial
- (Shishikura, unpublished) f is a polynomial of arbitrary degree  $\geq 2$
- (Geyer, 2001)  $f(z) = \lambda \ z \ e^z$
- (Keen-Zhang, 2007)  $f(z) = (\lambda z + az^2) e^z$

- (Douady-Herman-Swiatek, 1986) f is a quadratic polynomial
- (Z., 1998) f is a cubic polynomial
- (Shishikura, unpublished) f is a polynomial of arbitrary degree  $\geq 2$
- (Geyer, 2001)  $f(z) = \lambda \ z \ e^z$
- (Keen-Zhang, 2007)  $f(z) = (\lambda z + az^2) e^z$

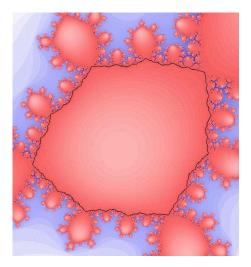


Figure:  $z \mapsto \lambda z + z^2$ 

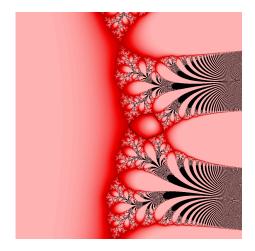


Figure:  $z \mapsto \lambda z e^z$ 

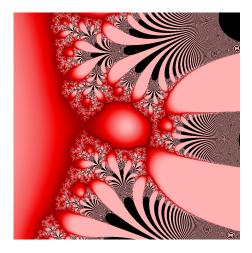


Figure:  $z \mapsto \lambda z (1 - 2z/3) e^{z}$ 

Let  $\mathcal{E}^{p,q}(\theta)$  be the family of all non-linear entire maps of the form

$$f(z) = P(z) e^{Q(z)}$$

where P, Q are polynomials with

• deg 
$$P=p\geq 1$$
, deg  $Q=q\geq 0$ 

• 
$$P(0) = Q(0) = 0$$

• 
$$P'(0) = f'(0) = e^{2\pi i \theta}$$
.

These maps have finitely many zeros and critical points. In the transcendental case q > 0, they have a single asymptotic value at 0.

Let  $\mathcal{E}^{p,q}(\theta)$  be the family of all non-linear entire maps of the form

$$f(z) = P(z) e^{Q(z)}$$

where P, Q are polynomials with

• deg 
$$P = p \ge 1$$
, deg  $Q = q \ge 0$ 

• 
$$P(0) = Q(0) = 0$$

• 
$$P'(0) = f'(0) = e^{2\pi i \theta}$$

These maps have finitely many zeros and critical points. In the transcendental case q > 0, they have a single asymptotic value at 0.

**Main Theorem.** Suppose  $f \in \mathcal{E}^{p,q}(\theta)$  where  $\theta$  is of bounded type. Then  $\partial \Delta$  is a quasicircle in  $\mathbb{C}$  and contains at least one critical point of f.

Strategy of the proof (following Shishikura): show that the invariant curves

 $\gamma_r := \zeta(\{z : |z| = r\}) \qquad 0 < r < 1$ 

are K-quasicircles for a K > 1 independent of r.

**Main Theorem.** Suppose  $f \in \mathcal{E}^{p,q}(\theta)$  where  $\theta$  is of bounded type. Then  $\partial \Delta$  is a quasicircle in  $\mathbb{C}$  and contains at least one critical point of f.

Strategy of the proof (following Shishikura): show that the invariant curves

$$\gamma_r := \zeta(\{z : |z| = r\}) \qquad 0 < r < 1$$

are K-quasicircles for a K > 1 independent of r.

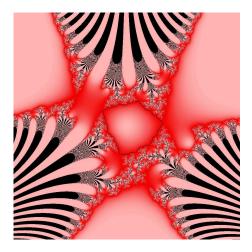
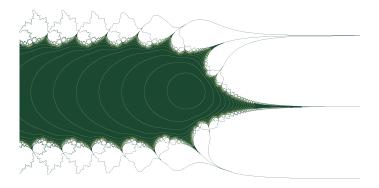


Figure:  $z \mapsto \lambda z (1 - (11 + 3i)z/13) e^{iz^3}$ 



## Figure: (Courtesy of A. Cheritat) $z \mapsto \lambda e^{z-\lambda}$

#### Symmetrizing f

Let  $I:\widehat{\mathbb{C}}\rightarrow\widehat{\mathbb{C}}$  be a quasiconformal reflection such that

- I fixes  $\gamma_r$  pointwise.
- $I(0) = \infty$ .
- I is anti-holomorphic off a small neighborhood of  $\gamma_r$ .

Define

$$F := \begin{cases} f & \text{in } \operatorname{ext}(\gamma_r) \\ I \circ f \circ I & \text{in } \operatorname{int}(\gamma_r) \smallsetminus \{0\} \end{cases}$$

The quasiregular map  $F : \mathbb{C}^* \to \widehat{\mathbb{C}}$  commutes with *I*. It has a "quasiconformal Herman ring" with  $\gamma_r$  as an invariant curve.

#### Symmetrizing f

Let  $I:\widehat{\mathbb{C}}\rightarrow\widehat{\mathbb{C}}$  be a quasiconformal reflection such that

- I fixes  $\gamma_r$  pointwise.
- $I(0) = \infty$ .
- I is anti-holomorphic off a small neighborhood of  $\gamma_r$ .

#### Define

$$F := \begin{cases} f & \text{in } \operatorname{ext}(\gamma_r) \\ I \circ f \circ I & \text{in } \operatorname{int}(\gamma_r) \smallsetminus \{0\} \end{cases}$$

The quasiregular map  $F : \mathbb{C}^* \to \widehat{\mathbb{C}}$  commutes with *I*. It has a "quasiconformal Herman ring" with  $\gamma_r$  as an invariant curve.

## Straightening F

There is a conformal structure  $\mu$  of bounded dilatation on  $\widehat{\mathbb{C}}$  which is invariant under both F and I.

Let  $\xi : \mathbb{C} \to \mathbb{C}$  be the unique quasiconformal solution of  $\xi^* \mu_0 = \mu$ , normalized so that  $\xi(0) = 0, \xi(\zeta(r)) = 1$ .

The map  $G: \mathbb{C}^* \to \widehat{\mathbb{C}}$  defined by

$$G:=\xi\circ F\circ\xi^{-1}$$

is holomorphic and commutes with  $z \mapsto 1/\overline{z}$ . It has a Herman ring of rotation number  $\theta$  with the unit circle  $\mathbb{T}$  as an invariant curve.

#### Straightening F

There is a conformal structure  $\mu$  of bounded dilatation on  $\widehat{\mathbb{C}}$  which is invariant under both F and I.

Let  $\xi : \mathbb{C} \to \mathbb{C}$  be the unique quasiconformal solution of  $\xi^* \mu_0 = \mu$ , normalized so that  $\xi(0) = 0, \xi(\zeta(r)) = 1$ .

The map  $G: \mathbb{C}^* \to \widehat{\mathbb{C}}$  defined by

$$G:=\xi\circ F\circ\xi^{-1}$$

is holomorphic and commutes with  $z \mapsto 1/\overline{z}$ . It has a Herman ring of rotation number  $\theta$  with the unit circle  $\mathbb{T}$  as an invariant curve.

#### Straightening F

There is a conformal structure  $\mu$  of bounded dilatation on  $\widehat{\mathbb{C}}$  which is invariant under both F and I.

Let  $\xi : \mathbb{C} \to \mathbb{C}$  be the unique quasiconformal solution of  $\xi^* \mu_0 = \mu$ , normalized so that  $\xi(0) = 0, \xi(\zeta(r)) = 1$ .

The map  $G: \mathbb{C}^* \to \widehat{\mathbb{C}}$  defined by

$$G:=\xi\circ F\circ\xi^{-1}$$

is holomorphic and commutes with  $z \mapsto 1/\overline{z}$ . It has a Herman ring of rotation number  $\theta$  with the unit circle  $\mathbb{T}$  as an invariant curve.

Explicit form of *G*:

$$G(z) = \tau \ z^p \ B(z) \ e^{\alpha(z) - \overline{\alpha(1/\overline{z})}},$$

where

- $|\tau| = 1.$
- B is a degree p-1 Blaschke product with the same zeros as G.
- $\alpha$  is a polynomial of degree q with  $\alpha(0) = 0$ .

**Theorem.** There are constants  $\delta = \delta(p,q) > 1$  and M = M(p,q) > 0 such that

$$\left|\frac{zG'(z)}{G(z)}\right| \le M$$

in the annulus  $\delta^{-1} < |z| < \delta$ .

**Corollary.**  $G : \mathbb{T} \to \mathbb{T}$  is conjugate to  $R_{\theta}$  by a k-quasisymmetric map, where  $k = k(p, q, \theta)$ .

**Theorem.** There are constants  $\delta = \delta(p,q) > 1$  and M = M(p,q) > 0 such that

$$\left|\frac{zG'(z)}{G(z)}\right| \le M$$

in the annulus  $\delta^{-1} < |z| < \delta$ .

**Corollary.**  $G : \mathbb{T} \to \mathbb{T}$  is conjugate to  $R_{\theta}$  by a k-quasisymmetric map, where  $k = k(p, q, \theta)$ .

# **Modifying** G

## Let $h: \mathbb{T} \to \mathbb{T}$ be the normalized linearizing map of $G: \mathbb{T} \to \mathbb{T}$ .

Let  $H : \mathbb{D} \to \mathbb{D}$  be a K-quasiconformal extension of h fixing 0 and 1. We can take  $K = K(p, q, \theta)$ .

Define  $\hat{G} : \mathbb{C} \to \mathbb{C}$  by

$$\hat{G} := \begin{cases} G & \text{outside } \mathbb{D} \\ H^{-1} \circ R_{\theta} \circ H & \text{inside } \mathbb{D} \end{cases}$$

Thus  $\hat{G}$  has a "quasiconformal Siegel disk" on  $\mathbb{D}$ .

## **Modifying** G

Let  $h : \mathbb{T} \to \mathbb{T}$  be the normalized linearizing map of  $G : \mathbb{T} \to \mathbb{T}$ .

Let  $H : \mathbb{D} \to \mathbb{D}$  be a K-quasiconformal extension of h fixing 0 and 1. We can take  $K = K(p, q, \theta)$ .

Define  $\hat{G} : \mathbb{C} \to \mathbb{C}$  by

$$\hat{G} := \begin{cases} G & \text{outside } \mathbb{D} \\ H^{-1} \circ R_{\theta} \circ H & \text{inside } \mathbb{D} \end{cases}$$

Thus  $\hat{G}$  has a "quasiconformal Siegel disk" on  $\mathbb{D}$ .

## **Modifying** G

Let  $h : \mathbb{T} \to \mathbb{T}$  be the normalized linearizing map of  $G : \mathbb{T} \to \mathbb{T}$ .

Let  $H : \mathbb{D} \to \mathbb{D}$  be a K-quasiconformal extension of h fixing 0 and 1. We can take  $K = K(p, q, \theta)$ .

Define  $\hat{G}: \mathbb{C} \to \mathbb{C}$  by

$$\hat{G} := egin{cases} G & ext{outside } \mathbb{D} \ H^{-1} \circ R_{ heta} \circ H & ext{inside } \mathbb{D} \end{cases}$$

Thus  $\hat{G}$  has a "quasiconformal Siegel disk" on  $\mathbb{D}$ .

# **Straightening** $\hat{G}$

There is a  $\hat{G}$ -invariant conformal structure  $\nu$  of bounded dilatation on  $\mathbb{C}$ . Let  $\psi : \mathbb{C} \to \mathbb{C}$  be the unique quasiconformal solution of  $\psi^* \mu_0 = \nu$ , normalized so that  $\psi(0) = 0, (\psi \circ H^{-1})'(0) > 0$ .

The conjugate map

$$g := \psi \circ \hat{G} \circ \psi^{-1} : \mathbb{C} \to \mathbb{C}.$$

belongs to  $\mathcal{E}^{p,q}(\theta)$ .

# **Straightening** $\hat{G}$

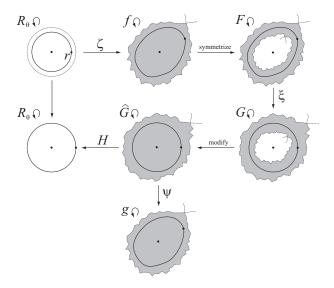
There is a  $\hat{G}$ -invariant conformal structure  $\nu$  of bounded dilatation on  $\mathbb{C}$ . Let  $\psi : \mathbb{C} \to \mathbb{C}$  be the unique quasiconformal solution of  $\psi^* \mu_0 = \nu$ , normalized so that  $\psi(0) = 0, (\psi \circ H^{-1})'(0) > 0$ .

The conjugate map

$$g := \psi \circ \hat{G} \circ \psi^{-1} : \mathbb{C} \to \mathbb{C}.$$

belongs to  $\mathcal{E}^{p,q}(\theta)$ .

This defines a surgery map  $S_r : f \mapsto g$ .



The invariant curve  $\gamma_{g,r} \subset \Delta_g$  is a *K*-quasicircle for a constant  $K = K(p, q, \theta)$ . The Main Theorem would follow if we knew g is the map f that we started with.

**Question.** Does the surgery map  $S_r$  act as the identity?

Answer. No!

The problem arises when *f* has critical points which are **captured** by its Siegel disk.

The invariant curve  $\gamma_{g,r} \subset \Delta_g$  is a *K*-quasicircle for a constant  $K = K(p, q, \theta)$ . The Main Theorem would follow if we knew *g* is the map *f* that we started with.

**Question.** Does the surgery map  $S_r$  act as the identity?

Answer. No!

The problem arises when *f* has critical points which are **captured** by its Siegel disk.

The invariant curve  $\gamma_{g,r} \subset \Delta_g$  is a *K*-quasicircle for a constant  $K = K(p, q, \theta)$ . The Main Theorem would follow if we knew g is the map f that we started with.

**Question.** Does the surgery map  $S_r$  act as the identity?

Answer. No!

The problem arises when f has critical points which are **captured** by its Siegel disk.

**Rigidity Theorem.** If every captured critical point of f eventually lands at 0, then  $S_r(f) = f$ .

Thus, the Main Theorem holds for such f.

**Rigidity Theorem.** If every captured critical point of f eventually lands at 0, then  $S_r(f) = f$ .

Thus, the Main Theorem holds for such f.

- Embed f in a holomorphic family {f<sub>t</sub> : t ∈ D\*} of quasiconformally conjugate maps in ε<sup>p,q</sup>(θ) by changing the conformal position of ω.
- Show that there is a K = K(p, q, θ) such that γ<sub>t,r</sub> is a K-quasicircle when |t| < 1/2 or |t| > r.
- Apply the maximum principle to a suitable cross-ratio function  $\mathbb{D}^* \to \mathbb{C}$  to conclude that  $\gamma_{t,r}$  is a *K*-quasicircle for all  $t \in \mathbb{D}^*$ .

- Embed f in a holomorphic family {f<sub>t</sub> : t ∈ D\*} of quasiconformally conjugate maps in ε<sup>p,q</sup>(θ) by changing the conformal position of ω.
- Show that there is a K = K(p, q, θ) such that γ<sub>t,r</sub> is a K-quasicircle when |t| < 1/2 or |t| > r.
- Apply the maximum principle to a suitable cross-ratio function  $\mathbb{D}^* \to \mathbb{C}$  to conclude that  $\gamma_{t,r}$  is a *K*-quasicircle for all  $t \in \mathbb{D}^*$ .

- Embed f in a holomorphic family {f<sub>t</sub> : t ∈ D\*} of quasiconformally conjugate maps in ε<sup>p,q</sup>(θ) by changing the conformal position of ω.
- Show that there is a K = K(p, q, θ) such that γ<sub>t,r</sub> is a K-quasicircle when |t| < 1/2 or |t| > r.
- Apply the maximum principle to a suitable cross-ratio function  $\mathbb{D}^* \to \mathbb{C}$  to conclude that  $\gamma_{t,r}$  is a *K*-quasicircle for all  $t \in \mathbb{D}^*$ .

- Embed f in a holomorphic family {f<sub>t</sub> : t ∈ D\*} of quasiconformally conjugate maps in ε<sup>p,q</sup>(θ) by changing the conformal position of ω.
- Show that there is a K = K(p, q, θ) such that γ<sub>t,r</sub> is a K-quasicircle when |t| < 1/2 or |t| > r.
- Apply the maximum principle to a suitable cross-ratio function
  D<sup>\*</sup> → C to conclude that γ<sub>t,r</sub> is a K-quasicircle for all t ∈ D<sup>\*</sup>.

- For every component U of  $f^{-n}(\Delta)$  which contains postcritical points, choose a **center**  $c_U$  such that
  - f<sup>on</sup>(c<sub>U</sub>) is 0 if U is bounded and is some ω ∈ Δ \ {0} if U is unbounded.
  - $f(c_U) = c_{f(U)}$ .
- Modify dynamics on U so that the new map  $U \to f(U)$  is branched at  $c_U$  and ramified over  $c_{f(U)}$  only.
- Straighten the resulting quasiregular dynamics to obtain a map  $g \in \mathcal{E}^{p,q}(\theta)$  with at most one free capture spot.

- For every component U of f<sup>-n</sup>(Δ) which contains postcritical points, choose a center c<sub>U</sub> such that
  - f<sup>on</sup>(c<sub>U</sub>) is 0 if U is bounded and is some ω ∈ Δ \ {0} if U is unbounded.
  - $f(c_U) = c_{f(U)}$ .
- Modify dynamics on U so that the new map  $U \to f(U)$  is branched at  $c_U$  and ramified over  $c_{f(U)}$  only.
- Straighten the resulting quasiregular dynamics to obtain a map  $g \in \mathcal{E}^{p,q}(\theta)$  with at most one free capture spot.

- For every component U of f<sup>-n</sup>(Δ) which contains postcritical points, choose a center c<sub>U</sub> such that
  - f<sup>on</sup>(c<sub>U</sub>) is 0 if U is bounded and is some ω ∈ Δ \ {0} if U is unbounded.
  - $f(c_U) = c_{f(U)}$ .
- Modify dynamics on U so that the new map  $U \rightarrow f(U)$  is branched at  $c_U$  and ramified over  $c_{f(U)}$  only.
- Straighten the resulting quasiregular dynamics to obtain a map  $g \in \mathcal{E}^{p,q}(\theta)$  with at most one free capture spot.

- For every component U of f<sup>-n</sup>(Δ) which contains postcritical points, choose a center c<sub>U</sub> such that
  - f<sup>on</sup>(c<sub>U</sub>) is 0 if U is bounded and is some ω ∈ Δ \ {0} if U is unbounded.
  - $f(c_U) = c_{f(U)}$ .
- Modify dynamics on U so that the new map  $U \rightarrow f(U)$  is branched at  $c_U$  and ramified over  $c_{f(U)}$  only.
- Straighten the resulting quasiregular dynamics to obtain a map  $g \in \mathcal{E}^{p,q}(\theta)$  with at most one free capture spot.

