Arithmetical Hedgehogs

Xavier Buff

Université de Toulouse

Toulouse, 18/06/2009

・ロト ・聞 ト ・ 国 ト ・ 国 ト …

The quadratic family

- $R_{\alpha}(z) = e^{i2\pi\alpha} z$
- $P_{\alpha}(z) = e^{i2\pi\alpha} z(1+z).$
- P_{α} fixes 0 and the linear part is the rotation R_{α} .
- P_{α} is linearizable if it is conjugate to R_{α} at the origin.
- When P_α is linearizable, the Siegel disk Δ_α is the largest rotation domain containing 0.

▲ @ ▶ ▲ ■ ▶ ▲

Question

For which values of α is there a Siegel disk Δ_{α} whose boundary contains the critical point of P_{α} ?

Question

When there is a non-empty Siegel disk Δ_{α} , is its boundary a Jordan curve ?

Question

Is it possible to describe the closure of the postcritical set \mathcal{P}_{α} up to a homeomorphism?

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

э

A toy model

Given $\varepsilon > 0$ and t > 0, consider the transformation

$$\Phi_{\varepsilon,t}: Z \mapsto \frac{1}{t} \log \frac{1 + \varepsilon \exp(Z)}{1 + \varepsilon}$$

which lifts $z = \exp(-Z) \mapsto \left(\frac{z(1 + \varepsilon)}{z + \varepsilon}\right)^{1/t}$.

æ

Given sequences (ε_n) and (t_n) set :

$$\mathit{K}_{\mathit{n}} = \left\{ \mathit{Z} \in \mathbb{H} \; ; \; \Phi_{arepsilon_{\mathit{n}},\mathit{t}_{\mathit{n}}} \circ \cdots \circ \Phi_{arepsilon_{\mathit{0}},\mathit{t}_{\mathit{0}}}(\mathit{Z}) \in \mathbb{H}
ight\}$$

and

$$K=\bigcap_{n\geq 0}K_n.$$

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト

€ 990

The construction

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Examples of sets K_3

In all frames, $\varepsilon_n = 2t_n$, $t_0 \approx 50$, $t_1 \approx 10^6$. Left : $t_2 \approx e^{30} \approx 10^{13}$. Middle : $t_2 \approx e^{10^6}$. Right : $t_2 \approx e^{10^8}$.

Arithmetical hedgehogs

Given an irrational number α with approximants p_n/q_n , we will be particularly interested by the following choice of sequences :

$$t_n = \frac{q_{n+1}}{q_n}$$
 and $\varepsilon_n = 2\pi t_n$.

We denote by K_{α} the corresponding set.

 K_{α} is invariant by translation by $2i\pi$ and projects to \mathbb{C}^* .

• α is a Brjuno number if

$$B(\alpha) := \sum \frac{\log q_{n+1}}{q_n} < +\infty.$$

• α is Herman if for all $n_0 \ge 0$ there is a $n > n_0$ such that

$$\Phi_{t_{n-1}} \circ \cdots \circ \Phi_{t_{n_0}}(1) > B(\alpha_n).$$

・ロト ・聞 ト ・ 国 ト ・ 国 ト ・

3

Cantor bouquets and hairy disks

A radial brush is a set of the form

$$\textit{\textit{E}} = \left\{\textit{\textit{re}}^{2i\pi heta} \in \mathbb{C} \; ; \; \textit{0} < \textit{r} < \textit{\textit{R}}(heta)
ight\}$$

where $R : \mathbb{R}/\mathbb{Z} \to [0, +\infty)$ is a function having the following properties

- both $R^{-1}(0)$ and its complement are dense subsets of \mathbb{R}/\mathbb{Z} ,
- $\limsup_{\theta\searrow \theta_0} R(\theta) = \limsup_{\theta\nearrow \theta_0} R(\theta) = R(\theta_0) \text{ for every } \theta_0 \in \mathbb{R}.$
- A *brush* is a set homeomorphic to a radial brush.
- A *Cantor bouquet* is a set homeomorphic $E \cup \{0\}$.
- A hairy disk is a set homeomorphic to $F(E) \cup \overline{\mathbb{D}}$ with $F(re^{i\theta}) = (1+r)e^{i\theta}$.

ヘロト ヘ戸ト ヘヨト ヘヨト

Proposition

Let $\alpha \in \mathbb{R} - \mathbb{Q}$:

- 0 is in the interior of K_α if and only if α is a Brjuno number. In that case, the interior U_α of K_α is connected and simply connected.
- If α satisfies the Herman condition, then $K_{\alpha} = \overline{U}_{\alpha}$ and is a closed topological disk.
- If α does not satisfy the Herman condition, then K_α U_α is a brush, hence non empty. Moreover, K_α is a hairy disk if α is a Brjuno number or a Cantor bouquet otherwise.

ヘロト ヘ戸ト ヘヨト ヘヨト