Arithmetical Hedgehogs

Xavier Buff

Université de Toulouse
Toulouse, 18/06/2009

The quadratic family

- $R_{\alpha}(z)=\mathrm{e}^{i 2 \pi \alpha} z$
- $P_{\alpha}(z)=\mathrm{e}^{i 2 \pi \alpha} z(1+z)$.
- P_{α} fixes 0 and the linear part is the rotation R_{α}.
- P_{α} is linearizable if it is conjugate to R_{α} at the origin.
- When P_{α} is linearizable, the Siegel disk Δ_{α} is the largest rotation domain containing 0.

Motivation

Question

For which values of α is there a Siegel disk Δ_{α} whose boundary contains the critical point of P_{α} ?

Question

When there is a non-empty Siegel disk Δ_{α}, is its boundary a Jordan curve?

Question

Is it possible to describe the closure of the postcritical set \mathcal{P}_{α} up to a homeomorphism?

A toy model

Given $\varepsilon>0$ and $t>0$, consider the transformation

$$
\Phi_{\varepsilon, t}: Z \mapsto \frac{1}{t} \log \frac{1+\varepsilon \exp (Z)}{1+\varepsilon}
$$

which lifts $z=\exp (-Z) \mapsto\left(\frac{z(1+\varepsilon)}{z+\varepsilon}\right)^{1 / t}$.

A toy model

Given sequences $\left(\varepsilon_{n}\right)$ and $\left(t_{n}\right)$ set :

$$
K_{n}=\left\{Z \in \mathbb{H} ; \Phi_{\varepsilon_{n}, t_{n}} \circ \cdots \circ \Phi_{\varepsilon_{0}, t_{0}}(Z) \in \mathbb{H}\right\}
$$

and

$$
K=\bigcap_{n \geq 0} K_{n} .
$$

The construction

Examples of sets K_{3}

In all frames, $\varepsilon_{n}=2 t_{n}, t_{0} \approx 50, t_{1} \approx 10^{6}$.
Left : $t_{2} \approx e^{30} \approx 10^{13}$. Middle $: t_{2} \approx e^{10^{6}}$. Right $: t_{2} \approx e^{10^{8}}$.

Arithmetical hedgehogs

Given an irrational number α with approximants p_{n} / q_{n}, we will be particularly interested by the following choice of sequences:

$$
t_{n}=\frac{q_{n+1}}{q_{n}} \quad \text { and } \quad \varepsilon_{n}=2 \pi t_{n} .
$$

We denote by K_{α} the corresponding set.
K_{α} is invariant by translation by $2 i \pi$ and projects to \mathbb{C}^{*}.

Arithmetical conditions

- α is a Brjuno number if

$$
B(\alpha):=\sum \frac{\log q_{n+1}}{q_{n}}<+\infty .
$$

- α is Herman if for all $n_{0} \geq 0$ there is a $n>n_{0}$ such that

$$
\Phi_{t_{n-1}} \circ \cdots \circ \Phi_{t_{n_{0}}}(1)>B\left(\alpha_{n}\right) .
$$

Cantor bouquets and hairy disks

- A radial brush is a set of the form

$$
E=\left\{r e^{2 i \pi \theta} \in \mathbb{C} ; 0<r<R(\theta)\right\}
$$

where $R: \mathbb{R} / \mathbb{Z} \rightarrow[0,+\infty)$ is a function having the following properties

- both $R^{-1}(0)$ and its complement are dense subsets of \mathbb{R} / \mathbb{Z},
- $\lim \sup R(\theta)=\lim \sup R(\theta)=R\left(\theta_{0}\right)$ for every $\theta_{0} \in \mathbb{R}$.

$$
\theta \backslash \theta_{0}
$$

$$
\theta \nearrow \theta_{0}
$$

- A brush is a set homeomorphic to a radial brush.
- A Cantor bouquet is a set homeomorphic $E \cup\{0\}$.
- A hairy disk is a set homeomorphic to $F(E) \cup \overline{\mathbb{D}}$ with $F\left(r e^{i \theta}\right)=(1+r) e^{i \theta}$.

Topology of K_{α}

Proposition

Let $\alpha \in \mathbb{R}-\mathbb{Q}$:
(1) 0 is in the interior of K_{α} if and only if α is a Brjuno number. In that case, the interior U_{α} of K_{α} is connected and simply connected.
(2) If α satisfies the Herman condition, then $K_{\alpha}=\bar{U}_{\alpha}$ and is a closed topological disk.
(3) If α does not satisfy the Herman condition, then $K_{\alpha}-\bar{U}_{\alpha}$ is a brush, hence non empty. Moreover, K_{α} is a hairy disk if α is a Brjuno number or a Cantor bouquet otherwise.

