Limits of sub semigroups of \mathbb{C}^* and Siegel enrichments

Ismael Bachy

22 novembre 2010

Ismael Bachy Limits of sub semigroups of \mathbb{C}^* and Siegel enrichments

((日)) (日) (日)

æ

Limits of closed sub semigroups of \mathbb{C}^* Conformal Enrichments

Table of contents

Limits of closed sub semigroups of \mathbb{C}^*

Topology on the space of closed sub semigroups Topological model for $\overline{\{\Gamma_z \mid z \in \mathbb{C}^*\}}$

Conformal Enrichments

Conformal dynamic in the sens of Douady-Epstein Enrichments Siegel enrichments <u>A-LLC maps</u> The result

伺 と く き と く き と

 $\mathcal{SG}(\mathbb{C}^*) = \{ \mathsf{\Gamma} \cup \{0,\infty\} \mid \mathsf{\Gamma} \text{closed sub semigroup of } \mathbb{C}^* \} \subset Comp(\mathbb{P}^1)$

 $\mathcal{SG}(\mathbb{C}^*)$ has naturally the Hausdorff topology on compact subsets of $\mathbb{P}^1.$

Limits of closed semigroups are closed semigroups.

For $z \in \mathbb{C}^*$, $\Gamma_z = \{z, z^2, ..., z^k, ...\}$. $\mathcal{SG}_1(\mathbb{C}^*) = \overline{\{\Gamma_z \cup \{0, \infty\} \mid z \in \mathbb{C}^*\}}.$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Topology on the space of closed sub semigroups Topological model for $\{\Gamma_z \mid z \in \mathbb{C}^*\}$

Topological model for $\{\Gamma_z \mid z \in \mathbb{C}^*\} \subset \mathcal{SG}(\mathbb{C}^*)$

$$\begin{array}{l} \frac{r}{s} \in \mathbb{Q}/\mathbb{Z} \text{ with } \gcd(r,s) = 1 \text{ let }: \\ \mathcal{D}_{\frac{r}{s}} \subset \mathbb{C} \setminus \mathbb{D}: \text{ the open disc of radius } \frac{1}{s^2} \text{ and tangent to } \mathbb{S}^1 \text{ at } e^{2i\pi \frac{r}{s}} \\ \partial \tilde{\mathcal{D}}_{\frac{r}{s}} : p \mapsto z_{\frac{r}{s}}(p) \text{ the point intersection of } \partial \mathcal{D}_{\frac{r}{s}} \text{ and the half line} \\ \text{through } e^{2i\pi \frac{r}{s}} \text{ making slope } p \in [-\infty, +\infty] \text{ with the line } \theta = \frac{r}{s}. \end{array}$$

$$X_1 = \left(\mathbb{C} \setminus \bigcup_{\frac{r}{s}} \mathcal{D}_{\frac{r}{s}} \right) / \sim_1 , \ X_2 = \left(\mathbb{C} \setminus \bigcup_{\frac{r}{s}} S \cdot \mathcal{D}_{\frac{r}{s}} \right) / \sim_2$$

Limits of closed sub semigroups of \mathbb{C}^* Conformal Enrichments Topology on the space of closed sub semigroups Topological model for $\{\Gamma_z \mid z \in \mathbb{C}^*\}$

The model for $\{\Gamma_z \mid z \in \mathbb{C} \setminus \overline{\mathbb{D}}\}$

.

Ismael Bachy Limits of sub semigroups of \mathbb{C}^* and Siegel enrichments

Topology on the space of closed sub semigroups Topological model for $\{\Gamma_z \mid z \in \mathbb{C}^*\}$

Topological model for $\{\Gamma_z \mid z \in \mathbb{C}^*\} \subset \mathcal{SG}(\mathbb{C}^*)$

Let X be the disjoint union of X_1, X_2 and $\overline{\mathbb{N}} = \mathbb{N} \cup \{\infty\}$ endowed with the discrete topology on \mathbb{N} making ∞ its unique accumulation point. Then

Theorem

The topological space X is compact and homeomorphic to $SG_1(\mathbb{C}^*) = \overline{\{\Gamma_z \mid z \in \mathbb{C}^*\}} \subset SG(\mathbb{C}^*).$

Let $\pi_1 : \mathbb{C} \to X_1$, $\pi_2 : \mathbb{C} \to X_2$ be the canonical projections and denote $\overline{S} : X \to X$ the involution induced by S.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Differents notions of convergence to \mathbb{S}^1

Definition
Let
$$(z_j = \rho_j e^{2i\pi\theta_j}) \subset \mathbb{C} \setminus \mathbb{S}^1$$
 and $e^{2i\pi\theta} \in \mathbb{S}^1$, we say
1. $|z_j| \to 1$ with infinite slope w.r.t the rationals if $\forall r \in \mathbb{Q}/\mathbb{Z}$
 $\left(\frac{\theta_j - r}{\ln(\rho_j)}\right)$ is unbounded.
2. $z_j \to e^{2i\pi\theta}$ tangentially if $\left(\frac{\theta_j - \theta}{\ln(\rho_j)}\right)$ is unbounded.
3. $z_j \to e^{2i\pi\theta}$ non tangentially if $\left(\frac{\theta_j - \theta}{\ln(\rho_j)}\right)$ is bounded.
4. $z_j \to e^{2i\pi\theta}$ with slope $p \in \mathbb{R}$ if $\frac{\theta_j - \theta}{\ln(\rho_j)} \to p$.
Observation

Given any $|z_j| \to 1$ up to a subsequence (z_j) falls in one of the 3 above cases.

tangentially

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

Accumulation points of (Γ_{z_j})

$$\begin{array}{l} \mathcal{K}_{>1} = \{j \ | \ \rho_j > 1\}, \ \mathcal{K}_{<1} = \{j \ | \ \rho_j < 1\}, \ \mathcal{K}_{=1} = \{j \ | \ \rho_j = 1\}. \\ \mathcal{S}_p : \rho = \left(\frac{1}{p}\right)^{\theta} \mbox{(logarithmic spiral based at 1)}. \end{array}$$

Proposition (Possible accumulation points of (Γ_{z_i}))

- 1. Either $Acc(z_j) \cap \mathbb{S}^1 = \emptyset$ then $Acc(\Gamma_{z_j}) \subset \{\Gamma_z \mid z \in \mathbb{C} \setminus \mathbb{S}^1\}$.
- 2. Either $\exists e^{2i\pi\theta} \in Acc(z_j) \cap \mathbb{S}^1$ and
 - 2.1 either $|K_{<1} \cup K_{=1}| < \infty$ and then $\Gamma_{z_j} \to \mathbb{C} \setminus \mathbb{D}$ iff $|z_j| \to 1$ with infinite slope w.r.t the rationals or $\Gamma_{z_j} \to \left(\bigcup_{l=0}^{s-1} e^{2i\pi \frac{k}{s}} S_p\right) \cap \mathbb{C} \setminus \mathbb{D}$ iff $Acc(z_j) \subset \langle e^{\frac{2i\pi}{s}} \rangle$ and all

the limits accumulates with slope $p \in \mathbb{R}$,

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Limits of closed sub semigroups of C* Conformal Enrichments Topology on the space of closed sub semigroups Topological model for $\{\Gamma_z \mid z \in \mathbb{C}^*\}$

Accumulation points of (Γ_{z_j})

.

2.2 either
$$|K_{>1} \cup K_{=1}| < \infty$$
 and then
 $\Gamma_{z_j} \to \overline{\mathbb{D}} \text{ or } \Gamma_{z_j} \to \left(\bigcup_{k=0}^{q-1} e^{2i\pi \frac{k}{q}} S_p \right) \cap \overline{\mathbb{D}}$ (with symmetric cond.),
2.3 either $|K_{>1} \cup K_{<1}| < \infty$ and then $\Gamma_{z_j} \to \mathbb{S}^1$ iff $|z_j| \to 1$ with infinite slope w.r.t the rationals or $\Gamma_{z_j} \to < e^{\frac{2i\pi}{q}} > \text{ iff}$
 $|\{j \mid z_j \in < e^{2i\pi \frac{1}{q}} >\}| = \infty.$

In all other cases the sequence Γ_{z_j} does not converge! But all the possible accumulation points are precisely those describe above.

(ロ) (同) (E) (E) (E)

Limits of closed sub semigroups of \mathbb{C}^* Conformal Enrichments

Topology on the space of closed sub semigroups Topological model for $\{\Gamma_z \mid z \in \mathbb{C}^*\}$

Key Lemma

Lemma

If $(z_j) \subset \mathbb{C} \setminus \overline{\mathbb{D}}$ and $\exists \theta \in (\mathbb{R} \setminus \mathbb{Q}) / \mathbb{Z}$ s.t $e^{2i\pi\theta} \in \liminf \Gamma_{z_j}$, then $\Gamma_{z_j} \to \mathbb{C} \setminus \mathbb{D}$.

Démonstration.

1.
$$\limsup \Gamma_{z_j} \subset \mathbb{C} \setminus \mathbb{D}$$
,

2. $e^{2i\pi\theta} \in \liminf \Gamma_{z_j}$, thus $\mathbb{S}^1 \subset \liminf \Gamma_{z_j}$

3. Need to prove $[1, +\infty[\subset \liminf \Gamma_{z_i}]$.

Suppose
$$z_{j_k}^{n_k} = \left(\rho_{j_k} e^{2i\pi\theta_{j_k}}\right)^{n_k} \to e^{2i\pi\theta}$$
 and take $\rho \ge 1$.
Then $\left(\rho_{j_k}^{n_k}\right)^{\left[\frac{\ln(\rho)}{\ln\left(\rho_{j_k}^{n_k}\right)}\right]} \to \rho$.

<ロ> (四) (四) (三) (三) (三)

Limits of closed sub semigroups of \mathbb{C}^* Conformal Enrichments

Topology on the space of closed sub semigroups Topological model for $\{\Gamma_z \mid z \in \mathbb{C}^*\}$

Definition of $\Phi : \mathcal{SG}_1(\mathbb{C}^*) \to X$

1.
$$\mathbb{C} \setminus \left(\bigcup_{\frac{r}{s}} \partial \mathcal{D}_{\frac{r}{s}}\right) \simeq^{\pi_{1}} \pi_{1} \left(\mathbb{C} \setminus \left(\bigcup_{\frac{r}{s}} \partial \mathcal{D}_{\frac{r}{s}}\right)\right) =: \operatorname{int}(X_{1}).$$

 $\mathbb{C} \setminus \left(\bigcup_{\frac{r}{s}} \partial \mathcal{D}_{\frac{r}{s}}\right) \simeq^{\varphi_{1}} \mathbb{C} \setminus \overline{\mathbb{D}} \text{ because } \overline{\mathbb{D}} \cup \left(\bigcup \overline{\mathcal{D}}_{\frac{r}{s}}\right) \text{ is comp.},$
conn, loc conn and full (choose φ_{1} tangent to id at ∞).
 $\mathbb{C} \setminus \overline{\mathbb{D}} \simeq^{\iota_{1}} \{\Gamma_{z} \mid z \in \mathbb{C} \setminus \overline{\mathbb{D}}\} : \iota_{1} : z \mapsto \Gamma_{z} \text{ is cont. and}$
 $\iota_{1}^{-1}(z) = z_{\Gamma} \text{ where } |z_{\Gamma}| = \inf |\Gamma| \text{ is also cont.}$
 $\Phi(\Gamma) := \pi_{1} \circ \varphi_{1}^{-1} \circ \iota_{1}^{-1}(\Gamma).$
2. $\Phi\left(\left(\bigcup_{k=0}^{q-1} e^{2i\pi\frac{k}{q}} \mathcal{S}_{p}\right) \cap \mathbb{C} \setminus \mathbb{D}\right) := \pi_{1}(z_{\frac{r}{s}}(p)) \text{ for } p \in \mathbb{R}.$
3. $\Phi(\mathbb{C} \setminus \mathbb{D}) := p_{1} \text{ the point corresponding to the } \sim_{1}\text{-class of } \overline{\mathbb{D}}.$
4. $\Phi \circ \overline{S} = \overline{S} \circ \Phi,$
5. $\Phi(q) := \langle e^{\frac{2i\pi}{q}} \rangle \text{ and } \Phi(\infty) = \mathbb{S}^{1}.$

Topology on the space of closed sub semigroups Topological model for $\{\Gamma_z \mid z \in \mathbb{C}^*\}$

Φ is a homeomorphism

Theorem

 $\Phi:\mathcal{SG}_1(\mathbb{C}^*)\to X \text{ is a homeomorphism}.$

Démonstration.

1.
$$\Phi_{|}: \{\Gamma_{z} \mid z \in \mathbb{C} \setminus \overline{\mathbb{D}}\} \to \operatorname{int}(X_{1}) \text{ homeo ok}$$

2. at $\begin{pmatrix} q^{-1} \\ \bigcup_{k=0} e^{2i\pi \frac{k}{q}} S_{p} \end{pmatrix} \cap \mathbb{C} \setminus \mathbb{D} \text{ or } \begin{pmatrix} q^{-1} \\ \bigcup_{k=0} e^{2i\pi \frac{k}{q}} S_{p} \end{pmatrix} \cap \overline{\mathbb{D}} :$
2.1 on ∂X : slope moves continuously => spirals moves continuously in Hausdorff topology ok
2.2 $\Gamma_{z_{j}}$ cv to the spiral <=> $z_{j} \to e^{2i\pi \frac{k}{s}}$ with slope $p \in \mathbb{R}$ => ok
3. $\Gamma_{z_{j}} \to p_{i} \in X_{i} \ i = 1, 2 <=> |z_{j}| \to 1$ with infinite slope w.r.t rationals => $\varphi_{1}^{-1}(z_{j})$ enters all the neighbourhoods of \mathbb{S}^{1} => $\Phi(\Gamma_{z_{j}}) \to p_{i}$.

Conformal dynamic in the sens of Douady-Epstein

Definition

A conformal dynamic on \mathbb{C} is a set

 $\mathcal{G} = \{(g, U) \mid U \subset \mathbb{C} \text{ open and } g : U \to \mathbb{C} \text{ holomorphic}\}$ which is closed under restrictions and compositions.

Let $\mathcal{P}oly_d$ be the space of monic centered polynomials of degre d > 1.

Conformal dynamic generated by a polynomial $f \in \mathcal{P}oly_d$

$$[f] = \{ (f^n, U) \mid U \subset \mathbb{C} , n > 0 \}.$$

(ロ) (同) (E) (E) (E)

Enrichments

Conformal dynamic in the sens of Douady-Epstein Enrichments Siegel enrichments

Definition

Let $g : U \to \mathbb{C}$ be holomorphic with $U \subset \mathbb{C}$ open. We say that (g, U) is an enrichment of the dynamic [f] if for every connected component W of U there exists a sequence $((f_i^{n_i}, W_i)) \subset \prod [f_i]$, s.t.

- 1. $f_i \rightarrow f$ uniformly on compacts sets,
- 2. $(f_i^{n_i}, W_i) \rightarrow (g, W)$ in the sens of Carathéodory.

Observation If $int(K(f)) = \emptyset$ then there are no enrichment of [f].

Enrichments

Proposition

- 1. For any enrichment (g, U) of [f] there exists a unique enrichment of [f] defined on an f-stable open subset of int(K(f)) extending (g, U).
- 2. Any enrichment of [f] defined on an f-stable open subset of int(K(f)) commutes with f.

Démonstration.

 $f_i \circ f_i^{n_i} = f_i^{n_i} \circ f_i \text{ cv unif on some compact sets } => f \circ g = g \circ f.$

Limits of closed sub semigroups of \mathbb{C}^* Conformal Enrichments Conformal dynamic in the sens of Douady-Epstein Enrichments Siegel enrichments

Siegel Enrichments

Let $f \in \mathcal{P}oly_d$ with a irrationnally indifferent periodic point a of period m and multiplier $e^{2i\pi\theta}$, where $\theta \in \mathbb{R} \setminus \mathbb{Q}$ is a Brujno number. Let \triangle be the Siegel disc with center a and $< \triangle >= \triangle \cup f(\triangle) \cup ... \cup f^{m-1}(\triangle)$ the cycle of Siegel discs. Let $\phi :< \triangle > \rightarrow \mathbb{D}$ be the linearising coordinate and denote $\mathcal{U} = \bigcup_{n>0} f^{-n} (< \triangle >).$

Δ -LLC maps

Definition

Let $U \subset U$ open and $g : U \to < \triangle >$ be a holomorphic map. We say (g, U) is LLC (with respect to f and $< \triangle >$) if for any c.c. W of U and for (any!) $n \in \mathbb{N}$ s.t. $f^n(W) \subset < \triangle >$, the map $\phi \circ g \circ (\phi \circ f_{|W}^n)^{-1}$ is linear.

Observation

(g, U) is LLC iff it is the restriction of some map defined in an f-stable domain of int(K(f)) that commutes with f (power series argument).

イロン イボン イヨン イヨン 三日

Siegel enrichments

Theorem

The enrichments of [f] with domain of definition in U are exactly the Δ -LLC maps.

PROOF :

First enrichment implies (eventually) commutes with f implies LLC.

Conversiy Suppose $U \subset U$ and (g, U) is LLC and let us work with a c.c W of U. Define $n_W := \min\{n > 0 \mid f^n(W) \subset <\Delta >\}$ and $\lambda_{g,W} := \widetilde{g}'(0)$ the derivative at 0 of the linear map induces by $g \circ (f_{|W}^{n_W})^{-1}$.

イロン イ部ン イヨン イヨン 三日

Siegel enrichments

Lemma (cf accumulation points of (Γ_{z_j})) $\exists (\lambda_i) \subset \mathbb{C} \text{ and } \exists (n_i) \subset \mathbb{N} \text{ s.t}$ 1. $\lambda_i \to e^{2i\pi\theta}$, 2. $\lambda_i^{n_i} \to \lambda_{g,W}$.

Furthermore according to whether $|\lambda_g| \leq 1$ or ≥ 1 , we can choose $(\lambda_i) \subset \mathbb{D}$ or $\mathbb{C} - \mathbb{D}$. Let us suppose $(\lambda_i) \subset \mathbb{D}$. By a standard Implicit Function Theorem argument, we can follow the Siegel cycle of f holomorphically.

i.e : $\exists W_f \in \mathcal{N}(f) \subset \mathcal{P}oly_d \text{ and } \xi_f : W_f \to \mathbb{C} \text{ s.t.}$

1. $h \mapsto (h^m)'(\xi_f(h))$ is holomorphic, non-constant (thus open !)

2. $\forall h \in \mathcal{W}_f \ \xi_f(h)$ is a periodic point of period m for h,

3.
$$\xi_f(f) = a$$
.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

So we can choose $f_i \in W_f$ in order to have $f_i \to f$ and $\xi_f(f_i) = \lambda_i$. Let $(\phi_i, \mathcal{D}om(\phi_i))$ be the linearizing coordinates of the attracting cycle $\langle \xi_f(f_i) \rangle$ and its domain of definition.

Proposition

The linear coordinates $\phi_i : \mathcal{D}om(\phi_i) \to \mathbb{D}$ converge in the sens of Carathéodory to the linearizing map $\phi :< \Delta > \to \mathbb{D}$.

This implies that one can reduces the bifurcation $f_i \to f$ to $\Gamma_{\lambda_i} \to \mathbb{C} \setminus \mathbb{D}$. $\lambda_i^{n_i} \to \lambda_{g,W} => \exists W_i \subset W \text{ open s.t } (f_i^{n_i} \circ f^{n_w}, W_i) \to (g, W) \text{ in the sens of Carathéodory. QED.}$

Let $f = e^{2i\pi\theta}z + z^2$ with $\theta \in (\mathbb{R} \setminus \mathbb{Q})/\mathbb{Z}$ a Brunjo number, Δ the Siegel disc of 0 and denote

- 1. $[f]_{\mathbb{C}\setminus\mathbb{D}} := [f] \cup \{(g, U) \ \Delta\text{-LLC maps with } \lambda_{g,W} \in \mathbb{C} \setminus \mathbb{D}\},\$
- 2. $[f]_{\overline{\mathbb{D}}} := [f] \cup \{(g, U) \Delta$ -LLC maps with $\lambda_{g, W} \in \overline{\mathbb{D}} \}$,
- 3. $[f]_{\mathbb{S}^1} := [f] \cup \{(g, U) \Delta$ -LLC maps with $\lambda_{g, W} \in \mathbb{S}^1 \}$.

Corollary

Let $(\lambda_n) \subset \mathbb{C}$ s.t. $\lambda_n \to e^{2i\pi\theta}$. Then for the geometric convergence topology on degree 2 polynomial dynamics the possible accumulation points of $[\lambda_n z + z^2]$ are :

$$[f]_{\mathbb{C}\setminus\mathbb{D}}, [f]_{\overline{\mathbb{D}}} \text{ or } [f]_{\mathbb{S}^1}.$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Limits of closed sub semigroups of \mathbb{C}^* Conformal Enrichments	Conformal dynamic in the sens of Douady-Epstein
	Enrichments
	Siegel enrichments

THANKS!

・ロト・(四ト・(川下・(日下・(日下)