An application of Thurston's theorem on branched coverings

Mitsuhiro Shishikura

(Kyoto University)

Parabolic Implosion
Institut de Mathématiques de Toulouse
Université Paul Sabatier
Toulouse, November 22, 2010

Plan

Thuston's theorem on branched covering:
Characterization of rational maps in terms of growth condition on weighted pull-backs of simple closed curves.
(a branched covering not equivalent to a rational map if and only if it has a Thurston obstruction, which is a collection of s.c.c. with growth.)

Need to check for infinitely many collections of simple closed curves!

Levy cycle: a special type of obstruction which often can be detected by a finite combinatorial procedures.

Successful examples: Polynomials (Hubbard-Schleicher, Poirier), Matings of degree 2 (Tan Lei, Rees), Newton's method of degree 3 (Head, Tan Lei).

In this talk, we try to present an example which can be shown to have no Thurston obstruction without Levy cycle theorem.

Preparation for Thurston's theorem(1): Thurston equivalence

Definition. Suppose $f: S^{2} \rightarrow S^{2}$ is a branched covering. We always assume that branched coverings in this paper are orientation preserving and of degree grater than one. Let

$$
\Omega_{f}=\{\text { critical points of } f\} \text { and } P_{f}=\bigcup_{n \geq 1} f^{n}\left(\Omega_{f}\right)
$$

A branched covering f is called postcritically finite, if P_{f} is finite.
Two postcritically finite branched coverings f and g are equivalent, $f \sim g$, if there exist two orientation preserving homeomorphisms $\theta_{1}, \theta_{2}: S^{2} \rightarrow S^{2}$ such that
$\theta_{i}\left(P_{f}\right)=P_{g}(i=1,2), \theta_{1}=\theta_{2}$ on P_{f}, θ_{1} and θ_{2} are isotopic relative to P_{f}, and the following diagram commutes:

$$
\begin{array}{ccc}
S^{2} \xrightarrow{\theta_{1}} & S^{2} \\
f \downarrow & & \downarrow^{g} \\
{ }^{2} & & \\
S^{2} \xrightarrow{\theta_{2}} & S^{2} .
\end{array}
$$

Preparation for Thurston's theorem (2): Thurston matrix

Definition. Let $f: S^{2} \rightarrow S^{2}$ be a postcritically finite branched covering. A simple closed curve in $S^{2}-P_{f}$ is called peripheral if it bounds a disc containing at most one point of P_{f}. A multicurve Γ is a collection of disjoint simple closed curves in $S^{2}-P_{f}$, such that none of them is peripheral and no two curves are homotopic to each other in $S^{2}-P_{f}$. A multicurve Γ is f-invariant, if

$$
f^{-1}(\Gamma)=\left\{\text { connected components of } f^{-1}(\gamma) \mid \gamma \in \Gamma\right\}
$$

consists of peripheral curves and curves which are homotopic to curves in Γ.

For an f-invariant multicurve Γ, the Thurston's linear transformation f_{Γ} is a linear map from $\mathbb{R}^{\Gamma}=\left\{\sum_{\gamma \in \Gamma} c_{\gamma} \gamma \mid c_{\gamma} \in \mathbb{R}\right\}$ to itself defined by

$$
f_{\Gamma}(\gamma)=\sum_{\gamma^{\prime} \subset f^{-1}(\gamma)} \frac{1}{\operatorname{deg}\left(f: \gamma^{\prime} \rightarrow \gamma\right)}\left[\gamma^{\prime}\right]_{\Gamma} \quad \text { for } \gamma \in \Gamma
$$

weighted pull-back of s.c.c
where the sum is over all non-peripheral components γ^{\prime} of $f^{-1}(\gamma)$ and $\left[\gamma^{\prime}\right]_{\Gamma}$ denotes the curve in Γ homotopic to γ^{\prime}, if there is one, otherwise $\left[\gamma^{\prime}\right]_{\Gamma}=0$. We denote by λ_{Γ} the leading eigenvalue of f_{Γ}.

Thurston's theorem

Theorem (Thurston). Suppose $f: S^{2} \rightarrow S^{2}$ is a postcritically finite branched covering with a hyperbolic orbifold. Then f is equivalent to a rational map, if and only if there is no f-invariant multicurve Γ with $\lambda_{\Gamma} \geq 1$.

Remark. The definition of hyperbolic orbifold is omitted. If the orbifold is not hyperbolic, then $f^{-1}\left(P_{f}\right) \subset \Omega_{f} \cup P_{f}$ and $\# P_{f} \leq 4$. Therefore brached coverings with non-hyperbolic orbifolds are considered to be exceptional.

Definition. An f-invariant curve Γ with $\lambda_{\Gamma} \geq 1$ is called a Thurston obstruction.

a collection of s.c.c. which grows under weighted pull-backs

The proof of Thurston's theorem is given by looking at the action of f on the Teichmüller space of $S^{2} \backslash P_{f}$:

Teich $\left(S^{2} \backslash P_{f}\right)=\left\{\right.$ conformal structures on $S^{2} \backslash P_{f}$ with marking $\} / \sim$ $=\left\{\varphi: S^{2} \rightarrow \widehat{\mathbb{C}}\right\} / \sim_{\text {Möbius+isotopy rel } P_{f}}$

The pull-back f^{*} acts on Teich $\left(S^{2} \backslash P_{f}\right) . f$ is Thurston equivalent to a rational map if and only if f^{*} has a fixed point in $\operatorname{Teich}\left(S^{2} \backslash P_{f}\right)$.

Applications of Thurston's Theorem

From a given dynamical information, branched coverings are easier to construct than rational maps.
On the other hand, in order to use Thurston's theorem to obtain a rational map, one has to check the condition for eigenvalues for infinitely many multicurves.

So it will be nice to reduce the criterion to a finitely checkable conditions.
Definition. A multicurve $\gamma_{1}, \ldots, \gamma_{n}$ is called a Levy cycle, if each $f^{-1}\left(\gamma_{i+1}\right)$ contains a component γ_{i}^{\prime} homotopic to γ_{i} and $f: \gamma_{i}^{\prime} \rightarrow \gamma_{i+1}$ is of degree one $(i=0, \ldots, n-1)$, where $\gamma_{0}=\gamma_{n}$. Any Levy cycle is contained in a Thurston obstruction.

Theorem (Levy, Rees?). For a topological polynomial f (i.e. $f^{-1}(\infty)=$ $\{\infty\}$) or a branched covering f of degree 2, f has a Thurston obstruction if and only if it has a Levy cycle.

Levy cycles are much easier to detect combinatorially.
Successful examples: Polynomials (Hubbard-Schleicher, Poirier), Matings of degree 2 (Tan Lei, Rees), Newton's method of degree 3 (Head, Tan Lei).

More general cases?

However this Levy cycle theorem does not hold for branched coverings in general.
Theorem (S.-Tan). There exists a mating of cubic polynomials such that it has a Thurston obstruction, but has no Levy cycle.

In this talk, we try to present an example which can be shown to have no Thurston obstruction (hence equivalent to a rational map) without using Levy cycle theorem.

The example will be constructed by a plumbing construction from a tree and a piecewise linear map on it. So it has a stable multicurve which is not a Thurston obstruction.

This non-obstruction actually helps up to conclude that there is no Thurston obstruction.

Key tools are geometric intersection number of curves and unweighted and effective Thurston matrices (or operators).

Geometric intersection number

Definition. Let α and β be non-peripheral simple closed curves in $S^{2} \backslash P_{f}$. Define the geometric intersection number to be

$$
\alpha \cdot \beta=\min \left\{\#\left(\alpha^{\prime} \cap \beta^{\prime}\right) \mid \alpha^{\prime} \sim \alpha, \beta^{\prime} \sim \beta\right\}
$$

where the minimum is always attained (for example by hyperbolic geodesics in the homotopy classes). Obviously this number can also be defined for the homotopy classes of simple closed curves, and naturally extends bilinearly to $\mathbb{R}^{\underline{\alpha}} \times \mathbb{R}^{\underline{\beta}}$ for multicurves. $\underline{\alpha}, \beta$ Instead of simple closed curves, one can take one of α and β to be simple arcs in $S^{2} \backslash P_{f}$ joining points of P_{f}.

Lemma. Let α and β be non-peripheral simple closed curves in $S^{2} \backslash$ P_{f}. Let α^{\prime} be a connected component of $f^{-1}(\alpha)$ such that $f: \alpha^{\prime} \rightarrow \alpha$ is a covering of degree k. Then we have

$$
\alpha^{\prime} \cdot f^{-1}(\beta) \leq k \alpha \cdot \beta .
$$

Definition (Unweighted Thurston matrix and μ_{Γ}). Let us define the unweighted Thurston operator $f_{\Gamma}^{\#}$ by

$$
f_{\Gamma}^{\#}(\gamma)=\sum_{\gamma^{\prime} \subset f^{-1}(\gamma)}\left[\gamma^{\prime}\right]_{\Gamma} \quad \text { for } \gamma \in \Gamma \text {. }
$$

Denote the leading eigenvalue of $f_{\Gamma}^{\#}$ by μ_{Γ}.
Remark. It is obvious from the definition that $\lambda_{\Gamma} \leq \mu_{\Gamma}$.
Definition (Reduced multicurve). An invariant multicurve Γ is called reduced if all the coefficients of the eigenvector of Thurston operator are positive. From any invariant multicurve, one can extract a reduced with the same eigenvalue.
Theorem. Let $\underline{\alpha}$ and $\underline{\beta}$ be reduced invariant multicurves for f such that $\underline{\alpha} \cdot \underline{\beta}>0$. Then we have

$$
\lambda_{\underline{\alpha}} \mu_{\underline{\beta}} \leq \mu_{\underline{\alpha}} .
$$

Theorem. Let β be reduced invariant multicurve and $\underline{\alpha}$ a Levy cycle (or a simple cycle or arcs joining points in P_{f}) for f such that $\underline{\alpha} \cdot \underline{\beta}>0$. Then we have

$$
\mu_{\underline{\beta}} \leq 1 .
$$

In particular, either β is not a Thurston obstruction, or it contains a Levy cycle. (Head, S.-Tan, Pilgrim-Tan)

Proof. Let $u_{\underline{\alpha}}, v_{\underline{\beta}}$ be positive eigenvectors for $f_{\underline{\alpha}}$ and $f_{\underline{\beta}}^{\#}$, hence $f_{\underline{\alpha}}\left(u_{\underline{\alpha}}\right)=$ $\lambda_{\underline{\alpha}} u_{\underline{\alpha}}$ and $f_{\underline{\beta}}^{\#}\left(v_{\underline{\beta}}\right)=\mu_{\underline{\beta}} v_{\underline{\beta}}$ Lemma 5 applied to f^{n} implies that (note that $P_{f^{n}}=\bar{P}_{f}$) for each component $\alpha^{\prime} \subset f^{-n}(\alpha)$, we have

$$
\alpha^{\prime} \cdot f^{-n}(\beta) \leq \operatorname{deg}\left(f^{n}: \alpha^{\prime} \rightarrow \alpha\right) \alpha \cdot \beta .
$$

Hence

$$
\mu_{\underline{\beta}}^{n} \frac{1}{\operatorname{deg}\left(f^{n}: \alpha^{\prime} \rightarrow \alpha\right)} \alpha^{\prime} \cdot v_{\underline{\beta}} \leq \alpha \cdot v_{\underline{\beta}} .
$$

Now denote N_{n} be the maximum number of non-peripheral components of $f^{-n}(\alpha)$ for $\alpha \in \underline{\alpha}$. By multiplying the coefficients of $u_{\underline{\alpha}}$ and adding (??) for all components $\alpha^{\prime} \subset f^{-n}(\alpha)$ and $\alpha \in \underline{\alpha}$, we obtain

$$
\lambda_{\underline{\alpha}}^{n} \mu_{\underline{\beta}}^{n} u_{\underline{\alpha}} \cdot v_{\underline{\beta}} \leq N_{n} u_{\underline{\alpha}} \cdot v_{\underline{\beta}} .
$$

By Perron-Frobenius Theorem, we have $N_{n} \leq C \mu_{\alpha}^{n}$ for some $C>0$. Hence $\lambda_{\underline{\alpha}}^{n} \mu_{\underline{\beta}}^{n} \leq N_{n} \leq C \mu_{\underline{\alpha}}^{n}$. Taking n-th root and the limit, we conclude that

$$
\lambda_{\underline{\alpha}} \mu_{\underline{\beta}} \leq \mu_{\underline{\alpha}} .
$$

Decomposition/Construction of branched coverings to/from tree maps

Theorem. For a reduced invariant multicurve Γ, there exist a finite
\mathbb{R}-tree $T=T_{\Gamma}$ and a piecewise linear map $F=F_{\Gamma}: T \rightarrow T$ such that

- each edge of T corresponds to a curve in Γ;
- each vertex if T corresponds to a connected component of $S^{2} \backslash \Gamma$;
- each edge decomposes to sub-edges corresponding to non-peripheral component γ^{\prime} of $f^{-1}(\Gamma)$, F maps this sub-edge to the edge corresponding to $f\left(\gamma^{\prime}\right)$ with linear factor $\lambda_{\Gamma} \operatorname{deg} F$, where $\operatorname{deg} F$ is integer $=$ values function whose value on this sub-edge is the degree of f on γ^{\prime}.

Theorem. To the vertices (and sub-vertices) x of T, one can associate a copy S_{x}^{2} of 2-sphere, and a branched covering $g_{x}: S_{x}^{2} \rightarrow S_{F(x)}^{2}$ such that

- each S_{x}^{2} has marked points corresponding to edges emanating from x;
- the local degree of g_{x} at a marked point is equal to $\operatorname{deg} F$ on the corresponding edge;
- The collection $\left\{g_{x}\right\}$ is postcritically finite.

Definition. A reduced Thurston obstruction is called intersecting if it intersects with another Thurston obstruction. Otherwise it is called non-intersecting.

With a little more work in the proof of Thurston's theorem, one can show that whenever there is a Thurston obstruction, there exists a non-intersecting Thurston obstruction.

Theorem. A branched covering decomposes into a tree map with $\lambda \geq$ 1 corresponding to all non-intersecting Thurston obstructions and local models $g_{x}: S_{x}^{2} \rightarrow S_{F(x)}^{2}$ such that periodic part of local models are equivalent to rational maps, homeomorphisms, or branched coverings with non-hyperbolic orbifolds. The intersecting obstructions should come from pseudo-Anosov homeomorphisims or Lattès maps. (cf. Pilgrim's canonical decomposition)

Conversely, from a tree map and a collection of local models one can construct a branched covering. There are some ambiguities on Dehn twists along associated curves and some of postcritical orbits. In fact, the first non-Levy cycle obstruction in S.-Tan was constructed this way.

Definition. Let α be a non-peripheral simple closed curve in $S^{2} \backslash P_{f}$. Let α^{\prime} be a connected component of $f^{-1}(\alpha)$. The effective degree $\operatorname{eff}-\operatorname{deg}\left(f: \alpha^{\prime} \rightarrow \alpha\right)$ is the smallest $k \geq 1$ such that for any nonperipheral simple closed curve β in $S^{2} \backslash P_{f}$, the following holds:

$$
\alpha^{\prime} \cdot f^{-1}(\beta) \leq k \alpha \cdot \beta
$$

Example. Suppose α and $\alpha^{\prime}\left(\subset f^{-1}(\alpha)\right)$ bound disks D_{1} and D_{0} such that $f\left(D_{0}\right)=D_{1}$ and f has only one critical point ω in D_{0}. If $P_{f} \cap D_{1}=$ $\{f(\omega), y\}$ and $\#\left(P_{f} \cap f^{-1}(y)\right)=k$, then

$$
\operatorname{eff}-\operatorname{deg}\left(f: \alpha^{\prime} \rightarrow \alpha\right) \leq k
$$

Definition (Effective Thurston matrix and μ_{Γ}). Let us define the effective Thurston operator f_{Γ}^{\S} by

$$
f_{\Gamma}^{\S}(\gamma)=\sum_{\gamma^{\prime} \subset f^{-1}(\gamma)} \frac{1}{\operatorname{eff}-\operatorname{deg}\left(f: \gamma^{\prime} \rightarrow \gamma\right)}\left[\gamma^{\prime}\right]_{\Gamma} \quad \text { for } \gamma \in \Gamma
$$

Denote the leading eigenvalue of $f_{\Gamma}^{\&}$ by ν_{Γ}.
Remark. It is obvious from the definition that

$$
1 \leq \operatorname{eff}-\operatorname{deg}\left(f: \gamma^{\prime} \rightarrow \gamma\right) \leq \operatorname{deg}\left(f: \gamma^{\prime} \rightarrow \gamma\right) \text { and } \lambda_{\Gamma} \leq \nu_{\Gamma} \leq \mu_{\Gamma}
$$

As before one can prove:

Theorem. Let $\underline{\alpha}$ and $\underline{\beta}$ be reduced invariant multicurves for f such that $\underline{\alpha} \cdot \underline{\beta}>0$. Then we have

$$
\nu_{\underline{\alpha}} \mu_{\underline{\beta}} \leq \mu_{\underline{\alpha}} .
$$

Corollary. Let $\underline{\alpha}$ and $\underline{\beta}$ be reduced invariant multicurves for f such that $\underline{\alpha} \cdot \underline{\beta}>0$. Then we have

$$
\nu_{\underline{\alpha}} \nu_{\underline{\beta}} \leq 1
$$

Since $\lambda_{\underline{\beta}} \leq \nu_{\underline{\beta}}$, we have
Theorem. Let $\underline{\alpha}$ be a reduced invariant multicurve for f such that $\left(\lambda_{\underline{\alpha}}<\right) 1<\nu_{\underline{\alpha}}$. Then f has no Thurston obstruction intersecting $\underline{\alpha}$.

If a branched covering is constructed from a tree map $F: T \rightarrow T$ with $\lambda<1$ but with the effective eigenvalue $\nu_{F}>1$ and the local models are rational maps, then it has no Thurston obstruction, hence is equivalent to a rational map.

Merci!

