# Limits of quadratic rational maps with degenerate parabolic fixed points of multiplier $e^{2\pi\mathrm{i}/q} ightarrow 1$

#### Xavier Buff joint work with Jean Écalle and Adam Epstein

26 novembre 2010

・ 同 ト ・ ヨ ト ・ ヨ ト …

## Degenerate parabolic fixed points

- Let  $f : \mathbb{P}^1 \to \mathbb{P}^1$  be a rational map.
- A fixed point of *f* is *parabolic* if the multiplier is a root of unity.
- If the multiplier is e<sup>2πip/q</sup> and ζ is a coordinate vanishing at the fixed point, then

$$\zeta \circ f^{\circ q} = e^{2\pi i p/q} \zeta \cdot (1 + \zeta^{\nu q}) + \mathcal{O}(\zeta^{\nu q+2})$$

for some integer  $\nu \geq 1$ .

 The fixed point is a *degenerate* parabolic fixed point if ν ≥ 2.

く 同 と く ヨ と く ヨ と

## Families of quadratic rational maps

Consider the quadratic rational map

$$f_{a,p/q}: z \mapsto e^{2\pi \mathrm{i} p/q} rac{z}{1+az+z^2}$$

which fixes 0 with multiplier  $e^{2\pi i p/q}$ .

#### Question

What can we say regarding the set  $\mathcal{A}_{p/q}$  of points  $a \in \mathbb{C}$  for which  $f_{a,p/q}$  has a degenerate parabolic fixed point at 0?

・ロト ・四ト ・ヨト ・ヨト

 The bifurcation locus B<sub>p/q</sub> is the closure of the set of parameters a ∈ C for which f<sub>a,p/q</sub> has a parabolic cycle of period > 1.

• 
$$\mathcal{A}_{p/q} \subset \mathcal{B}_{p/q}.$$

ヘロト ヘアト ヘビト ヘビト



 $\mathcal{B}_{0/1}$ 

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●



< ロ > < 回 > < 臣 > < 臣 > 三 三 二



< ロ > < 四 > < 臣 > < 臣 > 三 正 -



<ロ> <四> <四> <三> <三> <三> <三> <三



・ロン ・四 ・ ・ ヨン ・ ヨン … ヨ



 $\mathcal{B}_{0/1}$ 

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

• as  $z \to \infty$ , we have

$$f^{\circ q}_{a,p/q}(z) = z \cdot \left(1 + \mathcal{C}_{p/q}(a)z^q\right) + \mathcal{O}(z^{q+1}).$$

• 
$$a \in \mathcal{A}_{p/q}$$
 if and only if  $\mathcal{C}_{p/q}(a) = 0$ .

#### Proposition

 $C_{p/q}$  is a polynomial of degree q - 2 having only simple roots.

The degree q - 2 is obtained by studying the behaviour as  $a \rightarrow \infty$ . The simplicity of roots is a transversality statement which we shall not study today.

イロン 不良 とくほう 不良 とうほ

# Limits as $1/q \rightarrow 0$

- It is tempting to conjecture that the sets B<sub>1/q</sub> have a Hausdorff limit in C ∪ {∞}. This is still unknown.
- It is tempting to conjecture that the sets A<sub>1/q</sub> have a Hausdorff limit in C ∪ {∞}. This is almost known.

#### Proposition

There exists an entire function C with the following properties.

• C has order of growth 1. More precisely, as  $b \to \infty$ 

 $\log |C(b)| \in \mathcal{O}(|b| \log |b|) \setminus \mathcal{O}(|b|).$ 

In particular C has infinitely many zeroes.

• the set  $\mathcal{A}$  of points  $a \in \mathbb{C}$  such that  $C(1/a^2) = 0$  satisfies

$$\mathcal{A}\cup\{0\}\subseteq \liminf_{q\to\infty}\mathcal{A}_{1/q}\quad \textit{and}\quad \limsup_{q\to\infty}\mathcal{A}_{1/q}\subseteq \mathcal{A}\cup\{0,\infty\}.$$

It is convenient to introduce the rational map

$$G_b: w \mapsto w + 1 + \frac{b}{w}.$$

• If  $b = 1/a^2$ , then  $F_{a,0}$  is conjugate to  $G_b$  via w = a/z.

#### **Ecalle-Voronin invariants**

Attracting Fatou coordinates :

$$\Phi_{b,\text{att}}(w) = \lim_{n \to +\infty} G_b^{\circ n}(w) - n - b \cdot \sum_{k=1}^n \frac{1}{k}.$$

• Repelling Fatou parameterization :

$$\Psi_{b,\mathrm{rep}}(w) = \lim_{n \to +\infty} G_b^{\circ n}\left(w - n + b \cdot \sum_{k=1}^n \frac{1}{k}\right).$$

Voronin invariants :

$$\widetilde{\mathcal{E}}_{b}^{\pm}(w) = \Phi_{b,\mathrm{att}} \circ \Psi_{b,\mathrm{rep}}(w).$$

▲圖 ▶ ▲ 理 ▶ ▲ 理 ▶ …

# The function C

 $\widetilde{\mathcal{E}}_b^+ = \mathrm{Id} + \sum_{k \geq 0} c_k(b) e^{2\pi \mathrm{i} k w}$ 

and

۲

$$\widetilde{\mathcal{E}}_b^- = \mathrm{Id} + \sum_{k \leq 0} c_k(b) e^{2\pi \mathrm{i} k w}$$

with  $c_k$  entire functions of b.

• The entire function *C* is the Fourier coefficient :  $C = c_1$ .

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

## Hypertangents and multizetas

• Hypertangents :

$$\operatorname{Pe}^{1} = \pi \operatorname{cot}(\pi w) = \sum_{k \in \mathbb{Z}} \frac{1}{k + w}$$

and

$$\operatorname{Pe}^n = \sum_{k\in\mathbb{Z}} \frac{1}{(k+w)^n}.$$

• Multizetas :

$$\zeta(s_1,\ldots,s_r) = \sum_{0 < n_r < \ldots < n_2 < n_1 < \infty} \frac{1}{n_r^{s_r}} \cdots \frac{1}{n_2^{s_2}} \cdot \frac{1}{n_1^{s_1}}.$$

ヘロン 人間 とくほど くほとう

# Expansion with respect to b

$$\widetilde{\mathcal{E}}_b^{\pm} = \mathrm{id} + b\mathrm{e}_1 + b^2\mathrm{e}_2 + b^3\mathrm{e}_3 + \dots$$

with

$$\begin{array}{l} e_1 = Pe^1 \\ e_2 = 0 \\ e_3 = 3\zeta(3)Pe^2 \\ e_4 = -\zeta(4)Pe^3 + 10\zeta(5)Pe^2 \end{array}$$

・ロン ・四 と ・ ヨ と ・ ヨ と …

æ

# Order of growth

- *E*<sup>+</sup><sub>b</sub> in the upper half-plane ℑ(w) > h<sup>+</sup><sub>b</sub> with h<sup>+</sup><sub>b</sub> comparable to ℑ(b) log |b|.
- *Ẽ<sub>b</sub><sup>-</sup>* in the lower half-plane ℑ(w) < h<sub>b</sub><sup>-</sup> with h<sub>b</sub><sup>-</sup> comparable to ℑ(b) log |b|.
- This is obtained by comparing the dynamics of *G<sub>b</sub>* to the real flow of the vector field

$$\left(1+\frac{b}{w}\right) \frac{d}{dw}$$

• The Koebe 1/4-Theorem implies that

$$\log |\mathcal{C}(b)| \leq rac{1}{4} \cdot rac{h_b^+}{2\pi} = \mathcal{O}(|b| \log |b|).$$

・ロン ・厚 と ・ ヨ と ・ ヨ と …

# Order of growth

Assume  $\Re(b) = 1/2$ .

- G<sub>b</sub> has a indifferent fixed point at −b and so, the basin of ∞ only contains 1 critical point.
- There is a univalent map  $\chi : \{\Im(w) > 0\} \rightarrow \{\Im(w) > h_b^-\}$ satisfying  $\chi(w+1) = \chi(w) + 1$  and a translation *T* such that

$$\widetilde{\mathcal{E}}_{1/4} = T \circ \widetilde{\mathcal{E}}_b^+ \circ \chi.$$

 According to the Fatou-Shishikura Inequality for Finite Type Maps, c<sub>1</sub>(1/4) ≠ 0.

$$\log |C(b)| \ge 2\pi h_b^- + \log |c_1(1/4)|.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの



 $\widetilde{\mathcal{E}}_{1/4}^{\pm}$  sends each red tile univalently to a upper half-plane and each yellow tile univalently to a lower half-plane.

< 🗇 🕨



 $\widetilde{\mathcal{E}}_{1/2+10i}^{\pm}$  sends each red tile univalently to a upper half-plane and each yellow tile univalently to a lower half-plane.