Limits of quadratic rational maps with degenerate parabolic fixed points of multiplier $e^{2 \pi i / q} \rightarrow 1$

Xavier Buff
joint work with Jean Écalle and Adam Epstein

26 novembre 2010

Degenerate parabolic fixed points

- Let $f: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ be a rational map.
- A fixed point of f is parabolic if the multiplier is a root of unity.
- If the multiplier is $e^{2 \pi i p / q}$ and ζ is a coordinate vanishing at the fixed point, then

$$
\zeta \circ f^{\circ q}=e^{2 \pi \mathrm{i} p / q} \zeta \cdot\left(1+\zeta^{\nu q}\right)+\mathcal{O}\left(\zeta^{\nu q+2}\right)
$$

for some integer $\nu \geq 1$.

- The fixed point is a degenerate parabolic fixed point if $\nu \geq 2$.

Families of quadratic rational maps

- Consider the quadratic rational map

$$
f_{a, p / q}: z \mapsto e^{2 \pi i p / q} \frac{z}{1+a z+z^{2}}
$$

which fixes 0 with multiplier $e^{2 \pi \mathrm{ip} / q}$.

Question

What can we say regarding the set $\mathcal{A}_{p / q}$ of points $a \in \mathbb{C}$ for which $f_{a, p / q}$ has a degenerate parabolic fixed point at 0 ?

- The bifurcation locus $\mathcal{B}_{p / q}$ is the closure of the set of parameters $a \in \mathbb{C}$ for which $f_{a, p / q}$ has a parabolic cycle of period >1.
- $\mathcal{A}_{p / q} \subset \mathcal{B}_{p / q}$.

Pictures

$$
\mathcal{B}_{0 / 1}
$$

Pictures

$$
\mathcal{B}_{0 / 1}
$$

The cardinality of $\mathcal{A}_{p / q}$

- as $z \rightarrow \infty$, we have

$$
f_{a, p / q}^{\circ q}(z)=z \cdot\left(1+C_{p / q}(a) z^{q}\right)+\mathcal{O}\left(z^{q+1}\right)
$$

- $a \in \mathcal{A}_{p / q}$ if and only if $C_{p / q}(a)=0$.

Proposition

$C_{p / q}$ is a polynomial of degree $q-2$ having only simple roots.
The degree $q-2$ is obtained by studying the behaviour as $a \rightarrow \infty$. The simplicity of roots is a transversality statement which we shall not study today.

Limits as $1 / q \rightarrow 0$

- It is tempting to conjecture that the sets $\mathcal{B}_{1 / q}$ have a Hausdorff limit in $\mathbb{C} \cup\{\infty\}$. This is still unknown.
- It is tempting to conjecture that the sets $\mathcal{A}_{1 / q}$ have a Hausdorff limit in $\mathbb{C} \cup\{\infty\}$. This is almost known.

Proposition

There exists an entire function C with the following properties.

- C has order of growth 1. More precisely, as $b \rightarrow \infty$

$$
\log |C(b)| \in \mathcal{O}(|b| \log |b|) \backslash \mathcal{O}(|b|)
$$

In particular C has infinitely many zeroes.

- the set \mathcal{A} of points $a \in \mathbb{C}$ such that $C\left(1 / a^{2}\right)=0$ satisfies

$$
\mathcal{A} \cup\{0\} \subseteq \liminf _{q \rightarrow \infty} \mathcal{A}_{1 / q} \quad \text { and } \quad \limsup _{q \rightarrow \infty} \mathcal{A}_{1 / q} \subseteq \mathcal{A} \cup\{0, \infty\}
$$

Changes of coordinates

- It is convenient to introduce the rational map

$$
G_{b}: w \mapsto w+1+\frac{b}{w}
$$

- If $b=1 / a^{2}$, then $F_{a, 0}$ is conjugate to G_{b} via $w=a / z$.

Ecalle-Voronin invariants

- Attracting Fatou coordinates:

$$
\Phi_{b, \mathrm{att}}(w)=\lim _{n \rightarrow+\infty} G_{b}^{\circ n}(w)-n-b \cdot \sum_{k=1}^{n} \frac{1}{k} .
$$

- Repelling Fatou parameterization :

$$
\Psi_{b, \text { rep }}(w)=\lim _{n \rightarrow+\infty} G_{b}^{\circ n}\left(w-n+b \cdot \sum_{k=1}^{n} \frac{1}{k}\right) .
$$

- Voronin invariants :

$$
\widetilde{\mathcal{E}}_{b}^{ \pm}(w)=\Phi_{b, \text { att }} \circ \Psi_{b, \text { rep }}(w)
$$

$$
\widetilde{\mathcal{E}}_{b}^{+}=\operatorname{Id}+\sum_{k \geq 0} c_{k}(b) e^{2 \pi i k w}
$$

and

$$
\widetilde{\mathcal{E}}_{b}^{-}=\operatorname{Id}+\sum_{k \leq 0} c_{k}(b) e^{2 \pi \mathrm{i} k w}
$$

with c_{k} entire functions of b.

- The entire function C is the Fourier coefficient : $C=c_{1}$.

Hypertangents and multizetas

- Hypertangents:

$$
\mathrm{Pe}^{1}=\pi \cot (\pi w)=\sum_{k \in \mathbb{Z}} \frac{1}{k+w}
$$

and

$$
\mathrm{Pe}^{n}=\sum_{k \in \mathbb{Z}} \frac{1}{(k+w)^{n}} .
$$

- Multizetas :

$$
\zeta\left(s_{1}, \ldots, s_{r}\right)=\sum_{0<n_{r}<\ldots<n_{2}<n_{1}<\infty} \frac{1}{n_{r}^{s_{r}}} \cdots \frac{1}{n_{2}^{s_{2}}} \cdot \frac{1}{n_{1}^{s_{1}}} .
$$

Expansion with respect to b

$$
\widetilde{\mathcal{E}}_{b}^{ \pm}=\mathrm{id}+b \mathrm{e}_{1}+b^{2} \mathrm{e}_{2}+b^{3} \mathrm{e}_{3}+\ldots
$$

with

$$
\begin{aligned}
& \mathrm{e}_{1}=\mathrm{Pe}^{1} \\
& \mathrm{e}_{2}=0 \\
& \mathrm{e}_{3}=3 \zeta(3) \mathrm{Pe}^{2} \\
& \mathrm{e}_{4}=-\zeta(4) \mathrm{Pe}^{3}+10 \zeta(5) \mathrm{Pe}^{2}
\end{aligned}
$$

Order of growth

- $\widetilde{\mathcal{E}}_{b}^{+}$in the upper half-plane $\Im(w)>h_{b}^{+}$with h_{b}^{+}comparable to $\Im(b) \log |b|$.
- $\widetilde{\mathcal{E}}_{b}^{-}$in the lower half-plane $\Im(w)<h_{b}^{-}$with h_{b}^{-}comparable to $\Im(b) \log |b|$.
- This is obtained by comparing the dynamics of G_{b} to the real flow of the vector field

$$
\left(1+\frac{b}{w}\right) \frac{d}{d w}
$$

- The Koebe $1 / 4$-Theorem implies that

$$
\log |C(b)| \leq \frac{1}{4} \cdot \frac{h_{b}^{+}}{2 \pi}=\mathcal{O}(|b| \log |b|)
$$

Order of growth

Assume $\Re(b)=1 / 2$.

- G_{b} has a indifferent fixed point at $-b$ and so, the basin of ∞ only contains 1 critical point.
- There is a univalent map $\chi:\{\Im(w)>0\} \rightarrow\left\{\Im(w)>h_{b}^{-}\right\}$ satisfying $\chi(w+1)=\chi(w)+1$ and a translation T such that

$$
\widetilde{\mathcal{E}}_{1 / 4}=T \circ \widetilde{\mathcal{E}}_{b}^{+} \circ \chi .
$$

- According to the Fatou-Shishikura Inequality for Finite Type Maps, $c_{1}(1 / 4) \neq 0$.
-

$$
\log |C(b)| \geq 2 \pi h_{b}^{-}+\log \left|c_{1}(1 / 4)\right|
$$

Pictures again

$\widetilde{\mathcal{E}}_{1 / 4}^{ \pm}$sends each red tile univalently to a upper half-plane and each yellow tile univalently to a lower half-plane.

Pictures again

$\widetilde{\mathcal{E}}_{1 / 2+10 \mathrm{i}}^{ \pm}$sends each red tile univalently to a upper half-plane and each yellow tile univalently to a lower half-plane.

