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Lecture I : Geometric Convergence

Overview

Various interesting discussions in holomorphic dynamics involve
notions which do not depend continuously on parameters :

Julia sets
Quasiconformal deformations

This parabolic implosion phenomenon has important applications
in connection with the geography of parameter space :

Hausdorff dimension 2, for the boundary of the Mandelbrot set
Failure of local connectivity, for higher degree Connectedness loci

Such considerations are often said to concern geometric limits,
especially in connection with analogous issues for Kleinian
groups. This terminology represents informal usage. Our
objective is to formalize the notion.

Adam Epstein ( Warwick University ) Geometric Limits in Holomorphic Dynamics Toulouse, November 2010 2 / 35



Lecture I : Geometric Convergence

Overview

Such formalization entails a certain investment in abstraction, with
foundations in :

General topology - hyperspaces of subsets of given spaces
Complex analysis - dynamics and deformations of finite type
maps, and of finite type towers

The reward for this investment is a precise language, which may be
used to classify the underlying “limit dynamics” which is ultimately
responsible. This furnishes a precise description of the existing
applications, and serves as a guide to generating new ones.
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Lecture I : Geometric Convergence

Overview

Analogous considerations in the theory of Kleinian groups (and their
quotient hyperbolic 3-manifolds) are explained, and exploited, via
disambiguation of “convergence” notions :

Algebraic convergence : convergence of generators, for
representations of a fixed (finitely generated) abstract group
Geometric convergence : convergence of dynamical systems and
their quotients, as subgroups of PSL2C

There is a body of theory concerning the relation between algebraic
and geometric convergence, and there is a corresponding body of
applications. For safety and comfort, these convergence notions may
be presented in terms of associated topologies.
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Lecture I : Geometric Convergence

Overview

For rational maps (of fixed degree D) the “algebraic” topology is
the usual one given by coefficients : RatD is a Zariski open subset
of P2D+1.
The corresponding “geometric” topology is more problematic. One
needs to specify, and suitably topologize, an appropriate
underlying set (which will be strictly larger than the original set of
rational maps). We introduce a space CDS whose underlying set
consists of all (closed) conformal dynamical systems on P1.
The iterates of a rational map f constitute a conformal dynamical
system 〈f 〉. This yields a map of sets

Rat ↪→ CDS

which is injective on
∞⋃

D=2
RatD.
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Lecture I : Geometric Convergence

Overview

We endow the space CDS with a topology which is compatible with the
heuristic definition of geometric convergence.

A priori there can be at most one such topology, and its existence
has concrete consequences, e.g. iterated limits.
The space CDS is compact and metrizable.
For D ≥ 1, the canonical injection RatD ↪→ CDS is not continuous,
and its image is not closed.

Thus, any algebraically convergent sequence fn → f in RatD admits a
geometrically convergent subsequence 〈fnk 〉 → F in CDS.

What is the relation between 〈f 〉 and F ?
Does F admit a “synthetic” description in terms of constructions
on f itself ?
What is the behavior of Julia sets, quasiconformal deformations
etc. under geometric convergence ?
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Lecture I : Geometric Convergence

Overview

Even to sketch the answer will require the careful formulation of further
definitions and the development of various intermediate results. The
subsequent lectures will survey this background material (finite type
maps and towers) and outline its application to the formulation and
proof of a Structure Theorem for these geometric limit systems.
Grosso modo the argument is as follows :

The geometric limit has an initial segment which is a tower
obtained by countably iterated parabolic enrichment of the
algebraic limit.
The tower so obtained is (up to minor augmentation on rotation
domains) the entire geometric limit.

The remainder of this lecture is devoted to the precise formulation of
the motivating question. This task entails a discussion of what is meant
by geometric convergence of conformal dynamical systems.

Adam Epstein ( Warwick University ) Geometric Limits in Holomorphic Dynamics Toulouse, November 2010 7 / 35



Lecture I : Geometric Convergence

Conformal dynamical systems

Let X be a complex 1-manifold. A conformal dynamical system F on X
consists of the assignment to each nonempty open U ⊆ X a collection
F [U] of open analytic maps U → X such that :

If f ∈ F [U] and V ⊆ U then f|V ∈ F [V ].
If f ∈ F [U] and g ∈ F [f (U)] then g ◦ f ∈ F [U].
IU ∈ F [U].

Examples :

Any subgroup Γ ⊆ PSL2C determines a system 〈Γ〉 on P1 :

〈Γ〉[U] = {γ|U : γ ∈ Γ}.

Any analytic map f : W → P1, in particular any rational map of P1,
determines a system 〈f 〉 on P1 :

〈f 〉[U] = {f n
|U : n ∈ N and U ⊆ dom f n}.
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Lecture I : Geometric Convergence

Geometric convergence

The definition originates in the classical construction of Hausdorff.
Let (X,d) be a compact metric space.

For F ,G ⊆ X, the quantity

δ(F ,G) = max

(
sup
f∈F

inf
g∈G

d(f ,g), sup
g∈G

inf
f∈F

d(f ,g)

)
is a nonnegative real number, and zero precisely when F = G.
δ is a pseudometric on

P(X) = {F : F ⊆ X}

and a metric on

P(X) = {F ∈ P(X) : F is closed in X}.

(P(X), δ) is a compact metric space.
There is a canonical isometric embedding (X,d) ↪→ (P(X), δ)
given by x 7→ {x}.
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Lecture I : Geometric Convergence

Geometric convergence

More generally, let (X,d) be a locally compact second countable
metric space.

Application of the above construction to suitable exhaustions
yields a countable collection of pseudometrics on P(X).
One obtains a metric which depends on the various choices
made, and an underlying compact topology which does not.
For this topology,

Fn → F ⇐⇒ lim inf Fn = F = lim sup Fn

where

lim inf Fn = {f : fn → f for some fn ∈ Fn},
lim sup Fn =

⋃
subsequences Fnk

lim inf Fnk .
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Lecture I : Geometric Convergence

Geometric convergence

Chabauty exploited this idea to topologize the collection of closed
subgroups of a locally compact group G :

The set of all subgroups is closed in the space of all subsets of G.
The space of closed subgroups of G is compact and metrizable.

This discussion applies in particular to Lie groups, e.g. PSL2C.

Consider representations ρ : Γ→ G, for a finitely generated group Γ.
Convergence on generators gives a notion of algebraic convergence of
representations. One may compare this with the notion of geometric
convergence, meaning Hausdorff-Chabauty convergence of the image
subgroups.

Proposition
If ρn converges algebraically then ρnk (Γ) converges geometrically, for
some subsequence ρnk . In this situation, the geometric limit contains
(the image of) the algebraic limit.
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Lecture I : Geometric Convergence

Geometric convergence

We define geometric convergence of conformal dynamical systems by
means of this lim inf = lim sup prescription. There are a number of
technical issues which require care :

A priori it is not sufficient to specify the convergent sequences, so
the definition is given in terms of nets :

Fη → F ⇐⇒ lim infFη = F = lim supFη

where

lim infFη = {f : fη → f for some fη ∈ Fη},
lim supFη =

⋃
subnets Fην

lim infFην .

Such a definition makes reference to convergence of maps in

HX = {f : U → X : f is analytic and U 6= ∅ is open in X}.

What topology is implied here ?
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Lecture I : Geometric Convergence

Spaces of analytic maps

In our setting, fη → f should mean uniform convergence on compact
sets. We have a choice of conventions for convergence of domains :

1 Any compact subset of dom f eventually belongs to dom fη.
2 The above, and also conversely.

Convention 1 yields a space |HX | which is locally compact but not
Hausdorff. Convention 2 yields a space ||HX || which is metrizable but
not locally compact. Fortunately, this dilemma has a resolution :

Classical hyperspace theory recommends that we give up the
Hausdorff property in favor of local compactness.
In any event, we are not concerned with all (compositionally
closed) sets of maps, but only with those that are saturated with
respect to restriction. Evidently, the closed subsets of |HX | are
precisely the saturated closed subsets of ||HX ||.
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Lecture I : Geometric Convergence

Spaces of analytic maps

We endow |HX | with the weakest topology such that

OΥ = {f : U is compactly contained in dom f , and f|U ∈ Υ}

is open, for every nonempty open subset U of X , and every open
subset Υ of the space of (open) analytic maps U → X .

Theorem
For any complex 1-manifold X :

The space |HX | is locally compact, but neither Hausdorff nor
regular.
If X has countably many components then |HX | is second
countable.
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Lecture I : Geometric Convergence

Spaces of analytic maps

The poor separation properties of |HX | (neither Hausdorff nor
regular) are due to the fact that

{f} = {f|U : U ⊆ dom f} 6= {f}.

The proper definition of local compactness is crucial :
We say that a space is locally compact if every open neighborhood
of a point contains a compact subneighborhood.
For spaces which are Hausdorff or regular, an a priori weaker
condition is equivalent to the a priori stronger requirement that
every open neighborhood of a point contains a closed compact
subneighborhood.
Local compactness of |HX | is a consequence of Montel’s Theorem.

The second countability assertion for |HX | follows from the second
countability of Riemann surfaces (Radó’s Theorem).
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Lecture I : Geometric Convergence

Hyperspaces

Let X be a topological space, and consider the hyperspaces
P(X) = {F : F ⊆ X},
P(X) = {F ∈ P(X) : F is closed}.

Note that there is an inclusion P(X) ↪→ P(X) and there is a retraction
P(X)→ P(X) given by F 7→ F . We topologize P(X), and then give
P(X) the weakest topology which makes that retraction continuous.

We desire P(X) to be a compact Hausdorff space, with convergence
given by the lim inf = lim sup prescription. Evidently, this can be done
in at most one way.

As discussed, if X is a locally compact second countable metric
space then the Hausdorff-Chabauty recipe may be applied.
Vietoris gave a purely topological description of the construction
applicable to compact Hausdorff spaces.
Fell appropriately generalized this to (not necessarily Hausdorff)
locally compact spaces.
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Lecture I : Geometric Convergence

Hyperspaces

Fell equips P(X) with the weakest topology such that the subset

ES = {F ∈ P(X) : F ∩ S 6= ∅}

is open in P(X) for every nonempty open S ⊆ X, and closed in P(X) for
every compact S ⊆ X.

Theorem

For any topological space X, the topological space P(X) is compact.
Moreover, if X is locally compact then :

1 The space P(X) is Hausdorff.
2 Fη → F if and only if lim inf Fη = F = lim sup Fη.
3 If X is second countable then P(X) is second countable, hence

metrizable.
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Lecture I : Geometric Convergence

Geometric limits of conformal dynamical systems

We apply Fell’s construction to the locally compact space |HX |, and
deduce the following :

Theorem
Let X be a complex 1-manifold.

1 There is a unique topology on CDS(X ) such that Fη → F if and
only if lim infFη = F = lim supFη.

2 The space CDS(X ) is compact and Hausdorff.
3 If X has countably many components then CDS(X ) is second

countable, hence metrizable.

Adam Epstein ( Warwick University ) Geometric Limits in Holomorphic Dynamics Toulouse, November 2010 18 / 35



Lecture II : Finite Type Complex Analytic Maps

Overview

In this lecture we will :

Survey the theory of finite type complex analytic maps.
Discuss fundamental examples arising via parabolic
renormalization.

In the final lecture we will :
Study the towers of finite type complex analytic maps obtained
through (iterated) parabolic enrichment.
Discuss the relation between these towers and the geometric
limits considered in the previous lecture.
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Lecture II : Finite Type Complex Analytic Maps

Definitions

An analytic map of complex 1-manifolds

f : W → X

is of finite type if :
X is compact,
f is open,
f has no isolated removable singularities,
S(f ) is finite.

Here S(f ) is the set of singular values :
By definition, x ∈ X belongs to the complement of S(f ) if and only
if there exists an evenly covered open neighborhood of x .
In general, S(f ) = C(f ) ∪ A(f ), where C(f ) is the set of critical
values and A(f ) is the set of asymptotic values, hence
S(f ) = C(f ) ∪ A(f ) for f of finite type.
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Lecture II : Finite Type Complex Analytic Maps

Examples

Any nonconstant analytic map between compact Riemann
surfaces : in particular, any rational map P1 → P1.

Finite type maps C→ Ĉ :
entire : exp, sin, cos,

∫ z P(ζ) exp(Q(ζ)) dζ for polynomials P,Q, . . .
meromorphic : tan, ℘, . . .
Finite type maps C∗ → Ĉ∗ : z 7→ az exp b(z + 1

z ), . . .

The elliptic modular functions j , λ : H→ P1.
Skinning maps on boundaries of hyperbolic 3-manifolds.
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Lecture II : Finite Type Complex Analytic Maps

New maps from old

Let f : W → X and g : Y → Z be finite type maps with Y ⊆ X .
Then

g ◦ f : f−1(Y )→ Z

is of finite type. In particular, if W ⊆ X then the iterates f n are of
finite type.
If f : W → X is a finite type map, and if Z is a connected
component of X which intersects the image of f , then the first visit
to Z gives a finite type map f {Z} : W {Z} → Z .
Let f : W → X be a finite type map. If f is postsingularly finite then
the linearizers for repelling periodic points of f are finite type maps
Λ→ X for appropriate Λ ⊆ C. In particular, for a postsingularly
finite entire map C→ Ĉ, the linearizers are finite type entire maps
C→ Ĉ.
Let f : W → X be a finite type map. The parabolic renormalization
construction yields a finite type analytic mapWf → Xf .
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Lecture II : Finite Type Complex Analytic Maps

Islands and tracts

Let f : W → X be a finite type analytic map, and let B ⊆ X be a Jordan
domain whose boundary is disjoint from S(f ).

If B is disjoint from S(f ) then the components of f−1(B) are
Jordan domains : (simple) islands over B.
If B ∩ S(f ) consists of a single point then every component D of
f−1(B) is simply connected. If D is compactly contained in W then
D is a Jordan domain (island). Otherwise, D is a tract.
The preimage of the boundary of B is dense in the boundary of
any tract over B.
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Lecture II : Finite Type Complex Analytic Maps

Islands property

Theorem
Let f : W → X be a finite type analytic map. Assume that X is
connected, and let B ⊆ X be a Jordan domain whose closure is disjoint
from S(f ). Suppose further that W ⊆ Y, and let U be a connected
open subset of Y which intersects ∂W. Then any connected
component of U ∩W contains infinitely many islands over B.

Compare this to the Ahlfors Five Islands Theorem for (not necessarily
finite type) meromorphic C→ Ĉ.
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Lecture II : Finite Type Complex Analytic Maps

Fatou and Julia sets

Let f : W → X be an analytic map. Assume that W ⊂ X , and consider
the sequence of iterates f n : Wn → X : note that

X = W0 ⊇W1 ⊇W2 ⊇ . . .

The Fatou set Ω(f ) consists of all points x ∈ X possessing an
open neighborhood U such that :

Either there exists N ≥ 0 such that U ⊆Wn for n ≤ N and
U ⊆ X \Wn for n > N,
Or U ⊆Wn for every n, and moreover the family {f n

|U : n ∈ N} is
normal.

The Julia set J(f ) is the complement X \ Ω(f ).
Ω(f ) is open and J(f ) is closed.
Ω(f ) and J(f ) are invariant : if x ∈W then x belongs to Ω(f ) or
J(f ) if and only if f (x) does.
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Lecture II : Finite Type Complex Analytic Maps

Typical and exceptional maps

Let f : W → X be an analytic map, where X is connected. We say that

f is typical if
∞⋂

n=1
Wn contains a nonhyperbolic Riemann surface, and

exceptional otherwise.

Proposition

If f is typical then J(f ) =
∞⋃

n=1
∂Wn.

If f is exceptional then, up to analytic conjugacy, f is :
(algebraic) a rational endomorphism of P1, or an affine toral
endomorphism, or an automorphism of a higher genus surface ;
(transcendental) a map C→ C ↪→ Ĉ, or a map C∗ → C∗ ↪→ Ĉ∗, or a
map C→ Ĉ whose second iterate is a map C∗ → C∗ ↪→ Ĉ∗.
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Lecture II : Finite Type Complex Analytic Maps

Stratification of J(f )

Let f : W → X be a finite type analytic map.
The islands property has the following consequences :

Proposition
Let f : W → X be a finite type analytic map.

1 J(f ) is the disjoint union of the sets f−(n−1)(∂W ), for n ≥ 1, and

the set J+(f ) = J(f ) ∩
∞⋂

n=1
Wn.

2 For each component Z of X , either Z ⊆ J(f ) or else J(f ) is
nowhere dense in Z .

3 J(f ) is an uncountable perfect set, if X is connected and f is not
an automorphism.

Adam Epstein ( Warwick University ) Geometric Limits in Holomorphic Dynamics Toulouse, November 2010 27 / 35



Lecture II : Finite Type Complex Analytic Maps

Density of repelling periodic points

Theorem
Let f : W → X be a finite type analytic map. Assume that X is
connected. Then ∂W is the accumulation of the set of repelling fixed
points of f .

Corollary

Under these assumptions, J(f ) is the closure of the set of repelling
periodic points of f .
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Lecture II : Finite Type Complex Analytic Maps

Geometric finiteness conditions

Let f : W → X be a finite type analytic map. By definition :
f is weakly geometrically finite if every infinite postsingular orbit
lies in the basin of some periodic cycle.
f is strongly geometrically finite if f is weakly geometrically finite
and every singular value in J(f ) is preperiodic.

Note that a transcendental exceptional map may be weakly
geometrically finite, but never strongly geometrically finite.

Theorem
Let f : W → X be a finite type analytic map.

If f is weakly geometrically finite then J+(f ) carries no invariant
linefield.
If f is strongly geometrically finite, and if J(f ) is nowhere dense in
X, then J+(f ) has measure 0.
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Lecture II : Finite Type Complex Analytic Maps

Classification of Fatou components

The domain W may have nonempty exterior X \W , and Fatou
components which eventually map to this exterior are said to escape.
The remaining Fatou components are classified precisely as in the
rational case.

Theorem
Let f be a finite type analytic map.

Every component of Ω(f ) which does not escape is eventually
periodic.
Every periodic component of Ω(f ) is a superattracting, attracting,
or parabolic basin, or a rotation domain.

In short : there are no wandering domains and no Baker domains.
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Lecture II : Finite Type Complex Analytic Maps

Fatou-Shishikura inequality

Let f : W → X be a finite type analytic map. By definition :
γ(f ) is the number of cycles of periodic points, with multiplicities

γ〈x〉(f ) =


0 if 〈x〉 is repelling or superattracting
1 if 〈x〉 is attracting or irrationally indifferent
ν if 〈x〉 is parabolic-repelling

ν + 1
if 〈x〉 is parabolic-attracting

or parabolic-indifferent .

~(f ) is the number of Herman ring cycles.
δ(f ) is the number of infinite tails of postsingular orbits.

Theorem
Let f : W → X be a finite type analytic map. Then γ(f ) + 2~(f ) ≤ δ(f ),
provided that no return to any component of X is an automorphism.
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Lecture II : Finite Type Complex Analytic Maps

Parabolic renormalization
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Lecture III : Towers

Overview

In this lecture we will :

Describe the parabolic enrichment process which adds a new
generator to a dynamical system with parabolic cycles.
Disuss how this procedure may be iterated, yielding countably
generated towers of finite type complex analytic maps.
State Structure and Realization theorems which recognize the
geometric limits considered in the previous lecture as (essentially)
these towers.
Outline the conceptual steps in our program for proving these
theorems.
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Lecture III : Towers

Parabolic Enrichment

Let f : W → X be an analytic map, and assume that f has at least one
parabolic cycle. Recall :

The quotient of the attracting petals by f is a disjoint union of
Riemann surfaces which are conformally equivalent to C/Z. We
denote by Xf the union of these (compactified) cylinders.
The quotient of the repelling petals by f is a disjoint union of
Riemann surfaces which are conformally equivalent to C/Z. We
denote by Yf the union of these (compactified) cylinders.
The local parabolic dynamics of f induces an analytic map
Ef :Wf → Xf whose domain contains the ends of Yf .
The specification of a transit isomorphism Φ : Xf → Yf creates
new dynamics on Xf ∪ Yf .
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Lecture III : Towers

Towers
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