Slow Matings and Twisted Matings

SLOW MATINGS AND TWISTED MATINGS

XAVIER BUFF, ADAM L. EPSTEIN, AND SARAH KOCH

Abstract

One crucial tool for studying postcritically finite rational maps is Thurston's theorem on the topological characterization of rational functions There, one studies the iterates of a Thurston map σ_{f} acting on Teichmiiller space. This theorem has been proved to be useful for studying which mating of quadratic polynomials.

Introduction

Bartholdi and Nekrashevych, and then Koch showed that in many cases, the inverse of σ_{f} descends to a holomorphic map acting on moduli space. We will show that this approach can be used to study matings. We will focus on two concrete examples: the twisted matings of basilicas, and the mating of a basilica with a rabbit.

All the polynomials $P: \mathbb{C} \rightarrow \mathbb{C}$ considered in this article will be monic polynomials of degree $d \geq 2$: the coefficient of z^{d} is 1 . The polynomials will be postcritically finite polynomials: the critical points of P have finite orbits under iteration of P. In addition, the polynomials will be hyperbolic: the orbit of any critical point eventually lands on a superattracting cycle.

The filled-in Julia set is the set

$$
K(P)=\left\{z \in \mathbb{C} ;\left(P^{\circ n}(z)\right) \text { is bounded. }\right\} .
$$

The Julia set is the boundary of $K(P)$.
When P is postcritically finite, $K(P)$ and $J(P)$ are connected. ${ }^{1}$ The complement of $K(P)$ is isomorphic to $\mathbb{C} \backslash \overline{\mathbb{D}}$, and there is an isomorphism böt : $\mathbb{C} \backslash \overline{\mathbb{D}} \rightarrow \mathbb{C} \backslash K(P)$ conjugating $z \mapsto z^{d}$ to P. Such an isomorphism is called a Böttcher coordinate. Since P is monic, the Böttcher coordinate can be chosen to satisfy böt $(z)=z+O(1)$ as $z \rightarrow \infty$ (there is a unique such Böttcher coordinate).

If $\theta \in \mathbb{R} / \mathbb{Z}$, the external ray $\mathcal{R}_{\theta}=\mathcal{R}_{\theta}(P)$ of angle θ is the set of points of the form böt $\left(\rho e^{2 i \pi \theta}\right)$ with $\rho>1$. The polynomial P sends the external ray of angle θ to the external ray of angle $d \theta$.
0.1. Formal mating. We add to the complex plane \mathbb{C} the circle at infinity which is symbolically denoted $\left\{\infty \cdot e^{2 i \pi \theta} ; \theta \in \mathbb{R} / \mathbb{Z}\right\}$. We define

Slow Matings and Twisted Matings

with Xavier Buff and Adam Epstein
(1)

Recall...

- formal mating
- topological mating
- geometric mating
- shared mating

- slow mating
work of Rees, Shishikura, Tan Lei,...

Example: Basilica mate Basilica

$$
\star \stackrel{2}{\longrightarrow} \cdot \infty
$$

Formal mating:

$$
f:\left(S^{2}, P\right) \rightarrow\left(S^{2}, P\right)
$$

$$
\star \xrightarrow{2}
$$

$$
\star^{\prime} \xrightarrow{2}!^{\prime}
$$

Twisted Matings

If P is a monic polynomial of degree $d \geqslant 2$, then the polynomial $T(P): \mathbb{C} \rightarrow \mathbb{C}$ defined by

$$
T(P)(z)=e^{-2 \pi i /(d-1)} P\left(e^{2 \pi i /(d-1)} z\right)
$$

is also monic. The filled Julia set of $T(P)$ is the image of the Julia set of P by the rotation of angle $-1 /(d-1)$ turns centered at 0 .

$$
P: z \mapsto z^{7}+(0.9-0.3 i) z^{4}+z+0.2 i
$$

Construct the formal mating $f: S^{2} \rightarrow S^{2}$, and form S^{2} / \sim by identifying θ and $-k /(d-1)-\theta$.

Proposition. Let P_{1} and P_{2} be two monic polynomials of degree $d \geqslant 2$ which are critically finite. Let $f:\left(S^{2}, \mathcal{P}_{f}\right) \rightarrow\left(S^{2}, \mathcal{P}_{f}\right)$ be the formal mating of P_{1} and P_{2}, and let $g:\left(S^{2}, \mathcal{P}_{g}\right) \rightarrow\left(S^{2}, \mathcal{P}_{g}\right)$ be the formal mating of P_{1} and $T^{\circ k}\left(P_{2}\right)$ (the twisted mating of angle $k /(d-1))$. Let $D: S^{2} \rightarrow S^{2}$ be the Dehn twist around the equator of $S^{2}-\mathcal{P}_{f}$. Then g is combinatorially equivalent to $D^{\circ k} \circ f$.

$$
P(z)=z^{2}-1
$$

geometric twisted mating of angle α of $P^{o l}$ with itself

Preliminaries

Recall that if $f:\left(S^{2}, P\right) \rightarrow\left(S^{2}, P\right)$ is a critically finite branched cover, then there is an associated holomorphic endomorphism

$$
\sigma_{f}: \mathcal{T}_{P} \rightarrow \mathcal{T}_{P}
$$

where \mathcal{T}_{P} is the Teichmüller space of $\left(S^{2}, P\right)$:

$$
\begin{aligned}
& \phi: S^{2} \rightarrow \mathbb{P}^{1}: \phi_{1} \sim \phi_{2} \Longleftrightarrow \exists \mu \in \operatorname{Aut}\left(\mathbb{P}^{1}\right) \text { such that } \\
& \text { - }\left.\phi_{1}\right|_{P}=\left.\left(\mu \circ \phi_{2}\right)\right|_{P}, \text { and }
\end{aligned}
$$

- ϕ_{1} is isotopic to $\mu \circ \phi_{2}$ relative to P

The space \mathcal{T}_{P} is the universal cover of the moduli space, \mathcal{M}_{P} :
$\left\{\varphi: P \hookrightarrow \mathbb{P}^{1}\right.$ up to postcomposition by elements of $\left.\operatorname{Aut}\left(\mathbb{P}^{1}\right)\right\}$.

$$
\pi: \mathcal{T}_{P} \rightarrow \mathcal{M}_{P}
$$

$$
\begin{aligned}
& \left(F_{1}, \alpha_{1}, \beta_{1}\right) \sim\left(F_{2}, \alpha_{2}, \beta_{2}\right) \Longleftrightarrow \exists(\mu, \nu) \in \operatorname{Aut}\left(\mathbb{P}^{1}\right) \times \operatorname{Aut}\left(\mathbb{P}^{1}\right) \text { such that } \\
& F_{1}=\nu^{-1} \circ F_{2} \circ \mu, \quad \alpha_{2}=\mu \circ \alpha_{1}, \quad \text { and } \quad \beta_{2}=\nu \circ \beta_{1} .
\end{aligned}
$$

do an example....

$F(t)=\frac{t^{2}-x^{2}}{t^{2}-1}$

$$
y=x^{2}
$$

$$
\begin{array}{ll}
\phi(\star)=0 & \psi(\star)=0 \\
\phi(\star)=\infty & \psi(\star)=\infty \\
\phi(q)=1 & \psi(q)=1 \\
\phi(p)=y & \psi(p)=x
\end{array}
$$

The skew product

$$
\begin{array}{r}
G: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2} \quad \text { given by } \quad G:\binom{t}{x} \mapsto\binom{F_{x}(t)}{g(x)} \\
\text { where } F_{x}(t)=\left(t^{2}-x^{2}\right) /\left(t^{2}-1\right), \text { and } g(x)=x^{2}
\end{array}
$$

Proposition. Let $\lambda=e^{2 \pi i \alpha}$ be a periodic point of g, hence $\alpha=-k /\left(2^{l}-1\right)$ for some l. If $k \neq 0$, the rational map $F_{\lambda}^{o l}$ is a geometric twisted mating of angle α of $P^{o l}$ with itself.

Compactifying

$G: \mathbb{P}^{2} \longrightarrow \mathbb{P}^{2}, \quad[t: x: z] \mapsto\left[z^{2}\left(t^{2}-x^{2}\right): x^{2}\left(t^{2}-z^{2}\right): z^{2}\left(t^{2}-z^{2}\right)\right]$

$$
G=\mu \circ s \quad \text { where } \quad s:[t: x: z] \mapsto\left[t^{2}: x^{2}: z^{2}\right]
$$

$$
\mu:[t, x, z] \mapsto[z(t-x): x(t-z): z(t-z)]
$$

$$
0.0
$$

$$
000
$$

merci :)

