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• formal mating

• topological mating

• geometric mating

• shared mating

• slow mating

Recall...

work of Rees, Shishikura, Tan Lei,...



Preliminaries

Let S2 be the unit sphere in C× R, and let

P1 : C → C, and P2 : C → C
be monic polynomials of degree d � 2. The formal mating of P1 and
P2 is the branched cover f : S2 → S

2 defined as follows.

Identify dynamical plane of P1 to H
+, and identify the dynamical

plane of P2 to H
− via the projections

ρ1 : C → H
+ and ρ2 : C → H

−

ρ1(z) =
(z, 1)

�(z, 1)� and ρ2(z) =
(z, 1)

�(z, 1)� .

Since the polynomials have the same degree, the map ρ1 ◦ P1 ◦ ρ−1
1

defined on H
+ and the map ρ2 ◦ P2 ◦ ρ−1

2 defined on H
− extend con-

tinuously to the equator of S2.

Form the quotient S2
/ ∼ by collapsing along external rays. The ratio-

nal function F : P1 → P1 is a geometric mating of P1 and P2 if S2
/ ∼

is homeomorphic to S
2 and if the formal mating f : S2 → S

2 induces
a map

S
2
/ ∼ → S

2
/ ∼

which is topogically conjugate to

F : P1 → P1
.

Theorem. (Rees) Let P1 and P2 be critically finite hyperbolic poly-
nomials. The formal mating of P1 and P2 is combinatorially equivalent
to a rational map F : P1 → P1 if and only if F is a geometric mating
of P1 and P2.

Example: Basilica mate Basilica
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P = {x, y, z, w}

x
2 �� y��

z
2 �� w��

f : (S2
, P ) → (S2

, P )

P = {�, ��, ·, ·�}

�
2 �� ·��

��
2 �� ·���

Formal mating:

f : (S2, P ) → (S2, P )

No geometric mating exists; this
mating is obstructed.





Twisted Matings

If P is a monic polynomial of degree d � 2, then the polynomial
T (P ) : C → C defined by

T (P )(z) = e−2πi/(d−1)P (e2πi/(d−1)z)

is also monic. The filled Julia set of T (P ) is the image of the
Julia set of P by the rotation of angle −1/(d− 1) turns centered
at 0.

p(z) = z7 + z3 − 6

7
i
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If P1 and P2 are monic polynomials of degree d, the twisted mating
of angle k/(d− 1) of P1 and P2 is the mating (formal or geometric)
of P1 with T ◦k(P2).

Construct the formal mating f : S2 → S2, and form S2/ ∼ by
identifying θ and −k/(d− 1)− θ.
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If P1 and P2 are monic polynomials of degree d, the twisted mating
of angle k/(d− 1) of P1 and P2 is the mating (formal or geometric)
of P1 with T ◦k(P2).

Construct the formal mating f : S2 → S2, and form S2/ ∼ by
identifying θ and −k/(d− 1)− θ.

Proposition. Let P1 and P2 be two monic polynomials of degree
d � 2 which are critically finite. Let f : (S2,Pf ) → (S2,Pf ) be
the formal mating of P1 and P2, and let g : (S2,Pg) → (S2,Pg) be
the formal mating of P1 and T ◦k(P2) (the twisted mating of angle
k/(d− 1)). Let D : S2 → S2 be the Dehn twist around the equator
of S2 − Pf . Then g is combinatorially equivalent to D◦k ◦ f .



Preliminary Preliminaries

Preliminaries

Let f : (S2, A) → (S2, B) be an orientation-preserving branched
cover, where

• 3 � |A|, |B| < ∞,

• B contains the critical values of f , and

• A ⊆ f−1(B).

Under these conditions, there is a pullback map σf : TB → TA,
where TB and TA are the Teichmüller spaces of (S2, B) and (S2, A)
respectively.

Recall that if B ⊂ S2 is finite, TB is the set of all orientation-
preserving homeomorphisms φ : S2 → P1 such that φ1 ∼ φ2 if and
only if

• there exists µ ∈ Aut(P1) so that φ1 = µ ◦ φ2 on the set B,
and

• φ1 is isotopic to µ ◦ φ2 relative to B.

The moduli space MB of (S2, B) is the set of all injective maps
B �→ P1 up to post-composition by elements of Aut(P1).

The spaces TB and MB are complex manifolds of dimension |B|−
3.

πB : TB → MB

given by restriction is a covering map.

(S2, B)
φ

�� (P1,φ(B))

(S2, A)

f

��

ψ
�� (P1,ψ(A))

Fφ

��

(S2, B)
φ

�� (P1,φ(B))

σf : [φ] �→ [ψ]
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(S2, P )
φ

�� (P1,φ(P ))

(S2, P )

f

��

ψ
�� (P1,ψ(P ))

Fφ

��

(S2, P )
φ

�� (P1,φ(P ))

σf : [φ] �→ [ψ]

TP

σf ��

π

��

TP

π

��
MP MP

The HurW itz space Wf

Consider the quotient V := Ratd × (P1
)
A × (P1

)
B/ ∼ where

(F1,α1, β1) ∼ (F2,α2, β2) ⇐⇒ ∃ (µ, ν) ∈ Aut(P1
)×Aut(P1

) such that

F1 = ν−1 ◦ F2 ◦ µ, α2 = µ ◦ α1, and β2 = ν ◦ β1.

We want to consider injectivity locus in (P1
)
A
and (P1

)
B
.

V is a complex manifold and an algebraic variety.

There is a holomorphic map νf : TB → V defined by

[φ]TB �→ [Fφ,φ|A,ψ|B]V

The Hurwitz space Wf := νf (TB).

If Wf → MA is injective, then there is a moduli space map

gf : MA ��� MB.

MB MAgf
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Proposed Workshop on Complex Dynamics
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The field of complex analytic dynamics flourished in the early twentieth century, thanks

mainly to the work of such eminent mathematicians as Gaston Julia and Pierre Fatou.

Back then, the field centered around problems involving constructing domains where certain

holomorphic functions were “linearizable.” It turns our that the boundaries of those domains

were what we now call the Julia sets, often intriguingly beautiful fractal objects. But there

were no computers back then, so nobody could “see” these sets, and so the field more or less

died out in the 1920’s.

In the ensuing years, the field of discrete dynamical systems (i.e., iteration of functions

on various spaces) began to emerge. At first, dynamicists concentrated mostly on higher

dimensional manifolds. But the notion of chaos was discovered in the 1960’s and then

exploded in the 1970’s, causing many dynamicists to retreat to lower dimensional spaces,

often iteration on the real line. Then, in 1980, the so-called Mandelbrot set as well as

these Julia sets were first seen on computers and the field of complex dynamics immediately

reawakened. It turned out that the only way to understand many one dimensional dynamical

systems was to look at them in the complex plane since so many more tools were available

there. This induced many eminent mathematicians from different subfields to move into the

field. Sullivan immediately proved his Wandering Domains Theorem, finishing off a major

stumbling block that had hindered Julia and Fatou. Douady and Hubbard found a way to

comprehend most of the Mandelbrot set using their notion of external rays. And on and on.

Fields medalists Milnor and Thurston had major impacts on different aspects of complex

dynamics. Two younger researchers in the field, McMullen and Yoccoz, went on to win

Fields medals for their work in this area.

Interestingly, most of the work in the 1980’s focussed on complex polynomials, indeed, pri-

marily on the simplest map of all, the quadratic function z2 + c. To this day, we still do

not understand the complete picture (i.e., the Mandelbrot set) for this family. There are

c-values for which the dynamics of the corrresponding polynomial are extremely complicated

and the structure of the region where the chaos occurs (the Julia set) is still unknown. The

recent discovery by Buff and Cheritat of quadratic Julia sets with positive Lebesgue measure

indicates that we are still very far from completely understanding quadratic dynamics. The

tools necessary to understand this behavior involves both complex analysis and dynamical

systems, of course, but also many other subfields of mathematics, including number theory,

topology, hyperbolic geometry, etc., etc. So people who now work in this field have entered

it from many different backgrounds.
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do an example....



(S2, P )

f

��

(S2, P )

(x, y) := (ϕ(p),ϕ(q))

[x : y] ∈ P1 MP ≈ P1 − {0, 1,∞}
, (x, y) ∈ C2

gf : P1 → P1, gf : z �→ z2

gf : P1 × P1 ��� P1 × P1

gf : (x, y) �→
�
x2(1− y2)

y2(1− x2)
,
1− y2

1− x2

�

Compactifications: P1 × P1, P2, M0,5 ??

gf : P1 × P1 ��� P1 × P1

x y P1 × P1

(0, 0)

(∞,∞)

(1, 1)

x

y

0

∞

Each point in MP determines a line in P1 × P1

Let ϕ ∈ MP ; we can represent ϕ by (P1, {0,∞, x, y}).

Consider the embedding
�
P1, {0,∞, x, y}

�
�→ P1 × P1

given by
z �→ (x/z, y/z) ;

the image is the line through (0, 0) and (∞,∞) with slope y/x.

Example: Basilica mate Basilica

P = {�, p, �, q}

f : (S2, P ) → (S2, P )

�
2 �� p��

�
2 �� q��

r ��

MP is a 1-dimensional manifold.

ϕ ∈ MP ,

ϕ(�) = ∞,

ϕ(�) = 0,

ϕ(q) = 1

Then ϕ is determined by x := ϕ(p)

x ∈ C− {0, 1}, MP ≈ P1 − {0, 1,∞}

Computing Wf

φ : (S2, P ) → (P1,φ(P ))

φ(�) = 0

φ(�) = ∞

φ(q) = 1

φ(p) = y

ψ : (S2, P ) → (P1,ψ(P ))

ψ(�) = 0

ψ(�) = ∞

ψ(q) = 1

ψ(p) = x
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Let ϕ ∈ MP ; we can represent ϕ by (P1, {0,∞, x, y}).

Consider the embedding
�
P1, {0,∞, x, y}

�
�→ P1 × P1

given by
z �→ (x/z, y/z) ;

the image is the line through (0, 0) and (∞,∞) with slope y/x.
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(x, y) := (ϕ(p),ϕ(q))

[x : y] ∈ P1 MP ≈ P1 − {0, 1,∞}
, (x, y) ∈ C2

gf : P1 → P1, gf : z �→ z2

gf : P1 × P1 ��� P1 × P1

gf : (x, y) �→
�
x2(1− y2)

y2(1− x2)
,
1− y2

1− x2

�

Compactifications: P1 × P1, P2, M0,5 ??

gf : P1 × P1 ��� P1 × P1

x y P1 × P1

(0, 0)

(∞,∞)

(1, 1)

x

Example: Basilica mate Basilica

P = {�, p, �, q}

f : (S2, P ) → (S2, P )

�
2 �� p��

�
2 �� q��

r ��

MP is a 1-dimensional manifold.

ϕ ∈ MP ,

ϕ(�) = ∞,

ϕ(�) = 0,

ϕ(q) = 1

Then ϕ is determined by x := ϕ(p)

x ∈ C− {0, 1}, MP ≈ P1 − {0, 1,∞}

Computing Wf

φ : (S2, P ) → (P1,φ(P ))

φ(�) = 0

φ(�) = ∞

φ(q) = 1

φ(p) = y

ψ : (S2, P ) → (P1,ψ(P ))

ψ(�) = 0

ψ(�) = ∞

ψ(q) = 1

ψ(p) = x
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MP is a 1-dimensional manifold.

ϕ ∈ MP ,

ϕ(�) = ∞,

ϕ(�) = 0,

ϕ(q) = 1

Then ϕ is determined by x := ϕ(p)

x ∈ C− {0, 1}, MP ≈ P1 − {0, 1,∞}

Computing Wf

φ : (S2, P ) → (P1,φ(P ))

φ(�) = 0

φ(�) = ∞

φ(q) = 1

φ(p) = y

ψ : (S2, P ) → (P1,ψ(P ))

ψ(�) = 0

ψ(�) = ∞

ψ(q) = 1

ψ(p) = x
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F (t) =
t2 − x2

t2 − 1
Fx(t)

(x, y) := (ϕ(p),ϕ(q))

[x : y] ∈ P1 MP ≈ P1 − {0, 1,∞}
, (x, y) ∈ C2

gf : P1 → P1, gf : z �→ z2

gf : P1 × P1 ��� P1 × P1

gf : (x, y) �→
�
x2(1− y2)

y2(1− x2)
,
1− y2

1− x2

�

Compactifications: P1 × P1, P2, M0,5 ??

gf : P1 × P1 ��� P1 × P1

x y P1 × P1

(0, 0)

(∞,∞)
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f
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F (t) =
t2 − x2

t2 − 1
Fx(t)

y = x2

(x, y) := (ϕ(p),ϕ(q))

[x : y] ∈ P1 MP ≈ P1 − {0, 1,∞}
, (x, y) ∈ C2

gf : P1 → P1, gf : z �→ z2

gf : P1 × P1 ��� P1 × P1

gf : (x, y) �→
�
x2(1− y2)

y2(1− x2)
,
1− y2

1− x2

�

Compactifications: P1 × P1, P2, M0,5 ??

gf : P1 × P1 ��� P1 × P1

x y P1 × P1
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�� (P1,ψ(P ))
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∞ 1 0 y
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F (t) =
t2 − x2

t2 − 1
Fx(t)

y = x2

Wf ≈
�
t2 − x2

t2 − 1
, x, y

�
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MP MP
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�� (P1,ψ(P ))
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0

��
∞ 1 0 y
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F (t) =
t2 − x2

t2 − 1
Fx(t)

y = x2

Wf ≈
�
t2 − x2

t2 − 1
, x, y

�
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Wf
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MP MP

φ
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�� (P1,ψ(P ))
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(P1, Y )
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∞
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0
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∞ 1 0 y
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F (t) =
t2 − x2

t2 − 1
Fx(t)

y = x2

Wf ≈
�
t2 − x2

t2 − 1
, x, y

�

TP
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��

TP

��

Wf

����
MP MP

φ

ψ
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y

(S2, P )

f

��

(S2, P )

(S2, P )
ψ

�� (P1,ψ(P ))

(P1, X)
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(P1, Y )

1

��

∞
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x

��

0

��
∞ 1 0 y
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F (t) =
t2 − x2

t2 − 1
Fx(t)

y = x2

Wf ≈
�
t2 − x2

t2 − 1
, x, y

�

TP
��

��

��

TP

��

Wf

����
MP MP

φ
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(S2, P )
φ

�� (P1,φ(P ))

(S2, P )

f

��

ψ
�� (P1,ψ(P ))

Fφ
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(S2, P )
φ

�� (P1,φ(P ))

σf : [φ] �→ [ψ]

TP

σf ��

π

��

TP

π

��
MP MP

The HurW itz space Wf

Consider the quotient V := Ratd × (P1
)
A × (P1

)
B/ ∼ where

(F1,α1, β1) ∼ (F2,α2, β2) ⇐⇒ ∃ (µ, ν) ∈ Aut(P1
)×Aut(P1

) such that

F1 = ν−1 ◦ F2 ◦ µ, α2 = µ ◦ α1, and β2 = ν ◦ β1.

We want to consider injectivity locus in (P1
)
A
and (P1

)
B
.

V is a complex manifold and an algebraic variety.

There is a holomorphic map νf : TB → V defined by

[φ]TB �→ [Fφ,φ|A,ψ|B]V

The Hurwitz space Wf := νf (TB).

If Wf → MA is injective, then there is a moduli space map

gf : MA ��� MB.

MB MAgf
��
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(S2, P )
ψ

�� (P1,ψ(P ))

(P1, X)

F

��

(P1, Y )

1

��

∞
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x

��

0

��
∞ 1 0 y

2

F (t) =
t2 − x2

t2 − 1
Fx(t)

y = x2

Wf ≈
�
t2 − x2

t2 − 1
, x2, x

�

TP
��

��

��

TP

��

Wf

����
MP MP

��

φ

ψ

x

y

g

Preliminary Preliminaries

Preliminaries

←−

Recall that if f : (S2, P ) → (S2, P ) is a critically finite branched
cover, then there is an associated holomorphic endomorphism

σf : TP → TP

where TP is the Teichmüller space of (S2, P ):

φ : S2 → P1 : φ1 ∼ φ2 ⇐⇒ ∃µ ∈ Aut(P1) such that

• φ1|P = (µ ◦ φ2)|P , and

• φ1 is isotopic to µ ◦ φ2 relative to P

The space TP is the universal cover of the moduli space, MP :

{ϕ : P �→ P1 up to postcomposition by elements of Aut(P1)}.

The spaces TP and MP are both complex manifolds of dimension
|P |− 3.

π : TP → MP

Let f : (S2, A) → (S2, B) be an orientation-preserving branched
cover, where

• 3 � |A|, |B| < ∞,

• B contains the critical values of f , and

• A ⊆ f−1(B).

Under these conditions, there is a pullback map σf : TB → TA,
where TB and TA are the Teichmüller spaces of (S2, B) and (S2, A)
respectively.

Recall that if B ⊂ S2 is finite, TB is the set of all orientation-
preserving homeomorphisms φ : S2 → P1 such that φ1 ∼ φ2 if and
only if

• there exists µ ∈ Aut(P1) so that φ1 = µ ◦ φ2 on the set B,
and

• φ1 is isotopic to µ ◦ φ2 relative to B.

The moduli space MB of (S2, B) is the set of all injective maps
B �→ P1 up to post-composition by elements of Aut(P1).





(F, y, x)

The skew product

G : C2 → C2 given by G :

�
t
x

�
�→

�
(t2 − x2)/(t2 − 1)

x2

�

(x, y) := (ϕ(p),ϕ(q))

[x : y] ∈ P1 MP ≈ P1 − {0, 1,∞}
, (x, y) ∈ C2

gf : P1 → P1, gf : z �→ z2

gf : P1 × P1 ��� P1 × P1

gf : (x, y) �→
�
x2(1− y2)

y2(1− x2)
,
1− y2

1− x2

�

Compactifications: P1 × P1, P2, M0,5 ??

gf : P1 × P1 ��� P1 × P1

x y P1 × P1

(0, 0)

(∞,∞)

(1, 1)

x

y

0

∞

Each point in MP determines a line in P1 × P1

Let ϕ ∈ MP ; we can represent ϕ by (P1, {0,∞, x, y}).

Consider the embedding
�
P1, {0,∞, x, y}

�
�→ P1 × P1

given by
z �→ (x/z, y/z) ;

the image is the line through (0, 0) and (∞,∞) with slope y/x.

(F, y, x)

The skew product

G : C2 → C2 given by G :

�
t
x

�
�→

�
Fx(t)
g(x)

�

where Fx(t) = (t2 − x2)/(t2 − 1), and g(x) = x2

Proposition. Let λ = e2πiα be a (non-fixed) periodic point of g,
hence α = −k/(2l − 1). Then the rational map F ◦l

λ is a geometric
twisted mating of angle α of P ◦l with itself.

(x, y) := (ϕ(p),ϕ(q))

[x : y] ∈ P1 MP ≈ P1 − {0, 1,∞}
, (x, y) ∈ C2

gf : P1 → P1, gf : z �→ z2

gf : P1 × P1 ��� P1 × P1

gf : (x, y) �→
�
x2(1− y2)

y2(1− x2)
,
1− y2

1− x2

�

Compactifications: P1 × P1, P2, M0,5 ??

gf : P1 × P1 ��� P1 × P1

x y P1 × P1

(0, 0)

(∞,∞)

(1, 1)

x

y

0

∞

Each point in MP determines a line in P1 × P1

Let ϕ ∈ MP ; we can represent ϕ by (P1, {0,∞, x, y}).

Consider the embedding
�
P1, {0,∞, x, y}

�
�→ P1 × P1

(F, y, x)

The skew product

G : C2 → C2 given by G :

�
t
x

�
�→

�
Fx(t)
g(x)

�

where Fx(t) = (t2 − x2)/(t2 − 1), and g(x) = x2

Proposition. Let λ = e2πiα be a periodic point of g, hence
α = −k/(2l − 1) for some l. If k �= 0, the rational map F ◦l

λ is a
geometric twisted mating of angle α of P ◦l with itself.

Compactifications

G : P2 ��� P2, [x : t : z] �→ [z2(t2−x2) : x2(t2−z2) : z2(t2−z2)]

G = µ ◦ s where s : [x : t : z] �→ [x2 : t2 : z2],

µ : [x, t, z] �→ [z(t− x) : x(t− z) : z(t− z)]

Points of indeterminacy of µ : P2 ��� P2

Iµ = {[0 : 1 : 0], [1 : 0 : 0], [1 : 1 : 1]}
therefore

IG = {[0 : 1 : 0], [1 : 0 : 0], [1 : 1 : 1],

[−1 : 1 : 1], [1 : −1 : 1], [1 : 1 : −1]}

(x, y) := (ϕ(p),ϕ(q))

[x : y] ∈ P1 MP ≈ P1 − {0, 1,∞}
, (x, y) ∈ C2

gf : P1 → P1, gf : z �→ z2

gf : P1 × P1 ��� P1 × P1

gf : (x, y) �→
�
x2(1− y2)

y2(1− x2)
,
1− y2

1− x2

�

Compactifications: P1 × P1, P2, M0,5 ??

gf : P1 × P1 ��� P1 × P1

x y P1 × P1

(0, 0)

(∞,∞)

(1, 1)





z = 0

t = z

Since there are curves blown down by G; this map is not alge-
braically stable on P2.

Exchange of DNA

Compactifying

(x, y) := (ϕ(p),ϕ(q))

[x : y] ∈ P1 MP ≈ P1 − {0, 1,∞}
, (x, y) ∈ C2

gf : P1 → P1, gf : z �→ z2

gf : P1 × P1 ��� P1 × P1

gf : (x, y) �→
�
x2(1− y2)

y2(1− x2)
,
1− y2

1− x2

�

Compactifications: P1 × P1, P2, M0,5 ??

gf : P1 × P1 ��� P1 × P1

x y P1 × P1

(0, 0)

(∞,∞)

(1, 1)

x

y

0

∞

Each point in MP determines a line in P1 × P1

Let ϕ ∈ MP ; we can represent ϕ by (P1, {0,∞, x, y}).

Consider the embedding
�
P1, {0,∞, x, y}

�
�→ P1 × P1

given by
z �→ (x/z, y/z) ;

the image is the line through (0, 0) and (∞,∞) with slope y/x.

(F, y, x)

The skew product

G : C2 → C2 given by G :

�
t
x

�
�→

�
Fx(t)
g(x)

�

where Fx(t) = (t2 − x2)/(t2 − 1), and g(x) = x2

Proposition. Let λ = e2πiα be a periodic point of g, hence α =
−k/(2l−1) for some l. If k �= 0, the rational map F ◦l

λ is a geometric
twisted mating of angle α of P ◦l with itself.

Compactifications

G : P2 ��� P2, [t : x : z] �→ [z2(t2 − x2) : x2(t2 − z2) : z2(t2 − z2)]

G = µ ◦ s where s : [t : x : z] �→ [t2 : x2 : z2],

µ : [t, x, z] �→ [z(t− x) : x(t− z) : z(t− z)]

Points of indeterminacy of µ : P2 ��� P2

Iµ = {[0 : 1 : 0], [1 : 0 : 0], [1 : 1 : 1]}
therefore

IG = {[0 : 1 : 0], [1 : 0 : 0], [1 : 1 : 1],

[−1 : 1 : 1], [1 : −1 : 1], [1 : 1 : −1]}

CG = {t = 0, x = 0, z = 0, x = ±z, t = ±z}

[0 : 0 : 1]

[1 : 0 : 0]

[0 : 1 : 0]

[1 : 1 : 1]

(x = ±z) �→ [1 : 1 : 1] (t = ±z) �→ [1 : 0 : 0]

(z = 0) �→ [0 : 1 : 0]

(x = 0) �→ (x = 0)

(t = 0) �→ (x = t) �→ (t = 0)

EG = {x = ±z, t = ±z, z = 0}

x = z

x = t

x = 0

t = 0
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