
How to find
the

polynomials of
a mating

Daniel Meyer

How to find the polynomials of a mating

Daniel Meyer

Jacobs University

June 10, 2011



How to find
the

polynomials of
a mating

Daniel Meyer

Closed Equivalence Relations

Lemma

S be a compact metric space. ∼ on S is closed if each [x ] is
compact and one (hence all) of the following equivalent
conditions is satisfied.

1 The set {(s, t) | s ∼ t} ⊂ S × S is closed.

2 (sn)n∈N, (tn)n∈N convergent sequences in S. Then

sn ∼ tn for all n ∈ N, implies lim sn ∼ lim tn.

3 The quotient map π : S → S/ ∼ is closed.

4 The quotient space S/ ∼ is Hausdorff.

5 The quotient space S/ ∼ is metrizable.
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Closed Equivalence Relations

Lemma

6 Let [xn]→ C in Hausdorff topology.
Then there is [x ], s.t. C ⊂ [x ].

7 For nbhd U of [x ] there is a nbhd V ⊂ U of [x ], s.t.

[y ] ∩ V 6= ∅ ⇒ [y ] ⊂ U.

8 Each nbhd U of [x ] contains a saturated nbhd V of [x ].

9 For each open set U the set

U∗ :=
⋃
{[x ] | [x ] ⊂ U}

is open.
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Moore’s Theorem

Definition

A homotopy H : X × [0, 1]→ X is a pseudo-isotopy if
H(·, t) is a homeomorphism for each t ∈ [0, 1).

Theorem (Moore, 1925)

∼ closed equiv. relation on S2, s.t.

∼ is non-trivial, i.e., ∃[x ] 6= [y ];

each [x ] is connected;

each S2 \ [x ] is connected.

Then ∼ can be realized as the end of a pseudo-isotopy, there is
a pseudo-isotopy H : S2 × I → S2 such that

x ∼ y if and only if H(x , 1) = H(y , 1),

for all x , y ∈ S2.
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Undoing a Mating

Problem: given pcf rational map f : Ĉ→ Ĉ

decide if f arises as a (topological) mating. This means
that f is topological conjugate to p ⊥⊥ q;

find p, q (give algorithm);

find all shared matings (all p, q with f = p ⊥⊥ q).

When mating polynomials p, q, i.e., p ⊥⊥ q : Cp t Cq/ ∼
Cp t Cq/ ∼ may not be Hausdorff ⇔ ∼ not closed,
Hausdorff obstruction.

Cp t Cq/ ∼ may not be S2

Moore obstruction.

p ⊥⊥ q may not be equivalent to rational map.
Thurston obstruction.
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decide if f arises as a (topological) mating. This means
that f is topological conjugate to p ⊥⊥ q;

find p, q (give algorithm);

find all shared matings (all p, q with f = p ⊥⊥ q).

When mating polynomials p, q, i.e., p ⊥⊥ q : Cp t Cq/ ∼
Cp t Cq/ ∼ may not be Hausdorff ⇔ ∼ not closed,
Hausdorff obstruction.

Cp t Cq/ ∼ may not be S2

Moore obstruction.

p ⊥⊥ q may not be equivalent to rational map.
Thurston obstruction.



How to find
the

polynomials of
a mating

Daniel Meyer

Undoing a Mating

Problem: given pcf rational map f : Ĉ→ Ĉ
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Undoing Matings

Mating creates (possibly) obstructions.

Conversely if Thurston map f has no Lévy cycle,
arises as mating f = p ⊥⊥ q, then p, q have no Lévy cycle.
Thus p, q are Thurston equivalent to polynomials.

There seems to be very little difference between rational maps
vs. Thurston maps for the problem of deciding if map is a
matings.
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Hyperbolic or not?

When deciding if f arises as mating it makes a big difference
where the postcritical points are located.

p ∈ J(f ) (easier) or

p ∈ F (f ) (harder).

Extreme cases:

post(f ) ⊂ J(f ) ⇔ J(f ) = Ĉ.

post(f ) ⊂ F (f ) ⇔ f hyperbolic.
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Hyperbolic or not

Theorem (M)

f pcf rational map, # post(f ) = 3, not polynomial. Then

f hyperbolic ⇒ f is not a mating.

J(f ) = Ĉ ⇒ f or f 2 is a mating.

Theorem (M)

f pcf rational map, J(f ) = Ĉ (or expanding Thurston map).
Then each sufficiently high iterate F = f n is a mating.
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Equators

Definition

An equator for f is a Jordan curve E ⊂ Ĉ \ post(f ) s.t.

E ′ := f −1(E) has a single component.
Then f : E ′ → E has degree d = deg f .

E ′ is orientation-preserving isotopic to E rel. post(f ).

Theorem

f : Ĉ→ Ĉ rational, pcf, hyperbolic. Then

f is a (topological) mating ⇔ f has an equator.

Existence of an equator is right notion for a hyperbolic rational
map to arise from a mating.



How to find
the

polynomials of
a mating

Daniel Meyer

Equators

Definition

An equator for f is a Jordan curve E ⊂ Ĉ \ post(f ) s.t.
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Equators?

Equators are not right notion to check whether a
non-hyperbolic map arises as a mating.

# post(f ) = 3, f not polynomial, then f has no equator.

Any Lattès map has no equator.

Many examples as above are matings.
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A sufficient criterion for matings

A pseudo-isotopy is a homotopy H : Ĉ× [0, 1]→ Ĉ, s.t. H(·, t)
is a homeomorphism for 0 ≤ t < 1.

Theorem (M)

f : Ĉ→ Ĉ rational, pcf, J(f ) = Ĉ. Assume

∃ Jordan curve C ⊃ post(f ) s.t.

∃ pseudo-isotopy H : Ĉ× [0, 1]→ Ĉ rel. post(f ) with

H(C, 1) = f −1(C);

H deforms C orientation-preserving to f −1(C).

Then f arises as a (topological) mating.

Can find the polynomials p, q, s.t. f = p ⊥⊥ q by an algorithm.
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is a homeomorphism for 0 ≤ t < 1.

Theorem (M)
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Critical Portraits

What is a good way to represent a polynomial?

p = zd + ad−1zd−1 + · · ·+ a0 ?

Not good for matings.
Want: description via external rays.

Critical portraits (Bielefeld-Fisher-Hubbard ’92, Poirier ’93)
p pcf polynomial, monic, ∀c ∈ crit(p) preperiodic
(⇒ J(p) dendrite)

Example: p = z2 + i ,
external rays R1/12,R7/12 land at 0.
crit. portrait: {1/12, 7/12}.
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Critical Portraits

In general: for each crit. value a = p(c), let Rθ be external ray
landing at a, then

Jc = {τ | p(Rτ ) = Rθ,Rτ ends at c}

+ compatibility assumption

crit. portrait of p: {Jc | c ∈ crit(p)}.
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Critical Portraits

Definition

J1, . . . , Jm ⊂ Q/Z ⊂ R/Z = S1 are a critical portrait, if

the map µ(t) = dt( mod 1) maps

µ(Jk) = {αk}

∑
k(#Jk − 1) = d − 1

J1, . . . , Jm are non-crossing.

Let A =
⋃

k,n≥1 µ
n(Jk) (finite set).

No set Jk contains more than one point from A.

∃n0 ∈ N: α, β ∈ A distinct, then for m ≥ n0 no gap of
m-th order contains points from both sets Ji 3 α, Jk 3 β.
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Poirier’s Theorem

Theorem (Bielefeld-Fisher-Hubbard ’92, Poirier ’93)

For any crit. portrait J1, . . . , Jm there is a (unique up to affine
conjugacy) monic polynomial realizing it.


