How to find the polynomials of a mating

Daniel Meyer
Jacobs University

June 10, 2011

Closed Equivalence Relations

How to find

Daniel Meyer

Lemma

S be a compact metric space. \sim on S is closed if each $[x]$ is compact and one (hence all) of the following equivalent conditions is satisfied.

Closed Equivalence Relations

How to find the polynomials of
a mating
Daniel Meyer

Lemma

S be a compact metric space. \sim on S is closed if each $[x]$ is compact and one (hence all) of the following equivalent conditions is satisfied.

1 The set $\{(s, t) \mid s \sim t\} \subset S \times S$ is closed.

Closed Equivalence Relations

How to find the polynomials of
a mating
Daniel Meyer

Lemma

S be a compact metric space. \sim on S is closed if each $[x]$ is compact and one (hence all) of the following equivalent conditions is satisfied.

1 The set $\{(s, t) \mid s \sim t\} \subset S \times S$ is closed.
$2\left(s_{n}\right)_{n \in \mathbb{N}},\left(t_{n}\right)_{n \in \mathbb{N}}$ convergent sequences in S. Then

$$
s_{n} \sim t_{n} \text { for all } n \in \mathbb{N}, \text { implies } \lim s_{n} \sim \lim t_{n} .
$$

Closed Equivalence Relations

How to find the polynomials of
a mating
Daniel Meyer

Lemma

S be a compact metric space. \sim on S is closed if each $[x]$ is compact and one (hence all) of the following equivalent conditions is satisfied.

1 The set $\{(s, t) \mid s \sim t\} \subset S \times S$ is closed.
$2\left(s_{n}\right)_{n \in \mathbb{N}},\left(t_{n}\right)_{n \in \mathbb{N}}$ convergent sequences in S. Then

$$
s_{n} \sim t_{n} \text { for all } n \in \mathbb{N}, \text { implies } \lim s_{n} \sim \lim t_{n} .
$$

3 The quotient $\operatorname{map} \pi: S \rightarrow S / \sim$ is closed.

Closed Equivalence Relations

How to find

Lemma

S be a compact metric space. \sim on S is closed if each $[x]$ is compact and one (hence all) of the following equivalent conditions is satisfied.

1 The set $\{(s, t) \mid s \sim t\} \subset S \times S$ is closed.
$2\left(s_{n}\right)_{n \in \mathbb{N}},\left(t_{n}\right)_{n \in \mathbb{N}}$ convergent sequences in S. Then
$s_{n} \sim t_{n}$ for all $n \in \mathbb{N}$, implies $\lim s_{n} \sim \lim t_{n}$.

3 The quotient $\operatorname{map} \pi: S \rightarrow S / \sim$ is closed.
4 The quotient space S / \sim is Hausdorff.

Closed Equivalence Relations

How to find

Lemma

S be a compact metric space. \sim on S is closed if each $[x]$ is compact and one (hence all) of the following equivalent conditions is satisfied.

1 The set $\{(s, t) \mid s \sim t\} \subset S \times S$ is closed.
$2\left(s_{n}\right)_{n \in \mathbb{N}},\left(t_{n}\right)_{n \in \mathbb{N}}$ convergent sequences in S. Then
$s_{n} \sim t_{n}$ for all $n \in \mathbb{N}$, implies $\lim s_{n} \sim \lim t_{n}$.

3 The quotient map $\pi: S \rightarrow S / \sim$ is closed.
4 The quotient space S / \sim is Hausdorff.
5 The quotient space S / \sim is metrizable.

Closed Equivalence Relations

How to find the
 Lemma
 6 Let $\left[x_{n}\right] \rightarrow C$ in Hausdorff topology. Then there is $[x]$, s.t. $C \subset[x]$.

Closed Equivalence Relations

How to find

Lemma

6 Let $\left[x_{n}\right] \rightarrow C$ in Hausdorff topology. Then there is $[x]$, s.t. $C \subset[x]$.
7 For nbhd U of $[x]$ there is a nbhd $V \subset U$ of $[x]$, s.t.

$$
[y] \cap V \neq \emptyset \Rightarrow[y] \subset U
$$

Closed Equivalence Relations

How to find

Lemma

6 Let $\left[x_{n}\right] \rightarrow C$ in Hausdorff topology.
Then there is $[x]$, s.t. $C \subset[x]$.
7 For nbhd U of $[x]$ there is a nbhd $V \subset U$ of $[x]$, s.t.

$$
[y] \cap V \neq \emptyset \Rightarrow[y] \subset U
$$

8 Each nbhd U of $[x]$ contains a saturated nbhd V of $[x]$.

Closed Equivalence Relations

How to find

Lemma

6 Let $\left[x_{n}\right] \rightarrow C$ in Hausdorff topology.
Then there is $[x]$, s.t. $C \subset[x]$.
7 For nbhd U of $[x]$ there is a nbhd $V \subset U$ of $[x]$, s.t.

$$
[y] \cap V \neq \emptyset \Rightarrow[y] \subset U
$$

8 Each nbhd U of $[x]$ contains a saturated nbhd V of $[x]$.
9 For each open set U the set

$$
U^{*}:=\bigcup\{[x] \mid[x] \subset U\}
$$

is open.

Moore's Theorem

```
How to find Definition
    A homotopy H:X }\times[0,1]->X\mathrm{ is a pseudo-isotopy if \(H(\cdot, t)\) is a homeomorphism for each \(t \in[0,1)\).
```


Moore's Theorem

How to find

Definition

A homotopy $H: X \times[0,1] \rightarrow X$ is a pseudo-isotopy if $H(\cdot, t)$ is a homeomorphism for each $t \in[0,1)$.

Theorem (Moore, 1925)
\sim closed equiv. relation on S^{2}, s.t.

Moore's Theorem

How to find

Daniel Meyer

Definition

A homotopy $H: X \times[0,1] \rightarrow X$ is a pseudo-isotopy if $H(\cdot, t)$ is a homeomorphism for each $t \in[0,1)$.

Theorem (Moore, 1925)
\sim closed equiv. relation on S^{2}, s.t.
■ ~ is non-trivial, i.e., $\exists[x] \neq[y]$;

Moore's Theorem

How to find

Daniel Meyer

Definition

A homotopy $H: X \times[0,1] \rightarrow X$ is a pseudo-isotopy if $H(\cdot, t)$ is a homeomorphism for each $t \in[0,1)$.

Theorem (Moore, 1925)
\sim closed equiv. relation on S^{2}, s.t.
■ ~ is non-trivial, i.e., $\exists[x] \neq[y]$;

- each $[x]$ is connected;

Moore's Theorem

How to find the polynomials of
a mating
Daniel Meyer

Definition

A homotopy $H: X \times[0,1] \rightarrow X$ is a pseudo-isotopy if $H(\cdot, t)$ is a homeomorphism for each $t \in[0,1)$.

Theorem (Moore, 1925)
\sim closed equiv. relation on S^{2}, s.t.
■ ~ is non-trivial, i.e., $\exists[x] \neq[y]$;

- each $[x]$ is connected;
- each $S^{2} \backslash[x]$ is connected.

Moore's Theorem

How to find the polynomials of
a mating
Daniel Meyer

Definition

A homotopy $H: X \times[0,1] \rightarrow X$ is a pseudo-isotopy if $H(\cdot, t)$ is a homeomorphism for each $t \in[0,1)$.

Theorem (Moore, 1925)
\sim closed equiv. relation on S^{2}, s.t.
■ ~ is non-trivial, i.e., $\exists[x] \neq[y]$;

- each $[x]$ is connected;
- each $S^{2} \backslash[x]$ is connected.

Then \sim can be realized as the end of a pseudo-isotopy, there is a pseudo-isotopy $H: S^{2} \times I \rightarrow S^{2}$ such that

$$
x \sim y \text { if and only if } H(x, 1)=H(y, 1)
$$

for all $x, y \in S^{2}$.

Undoing a Mating

How to find

Problem: given pcf rational map $f: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$

Undoing a Mating

How to find

Problem: given pcf rational map $f: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$
■ decide if f arises as a (topological) mating. This means that f is topological conjugate to $p \Perp q$;

Undoing a Mating

How to find

Problem: given pcf rational map $f: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$
■ decide if f arises as a (topological) mating. This means that f is topological conjugate to $p \Perp q$;

- find p, q (give algorithm);

Undoing a Mating

How to find

Problem: given pcf rational map $f: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$
■ decide if f arises as a (topological) mating. This means that f is topological conjugate to $p \Perp q$;

- find p, q (give algorithm);

■ find all shared matings (all p, q with $f=p \Perp q$).

Undoing a Mating

How to find
the
polynomials of
a mating
Daniel Meyer

Problem: given pcf rational map $f: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$
■ decide if f arises as a (topological) mating. This means that f is topological conjugate to $p \Perp q$;

- find p, q (give algorithm);

■ find all shared matings (all p, q with $f=p \Perp q$).
When mating polynomials p, q, i.e., $p \Perp q: \overline{\mathbb{C}}_{p} \sqcup \overline{\mathbb{C}}_{q} / \sim$

Undoing a Mating

How to find

Problem: given pcf rational map $f: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$
■ decide if f arises as a (topological) mating. This means that f is topological conjugate to $p \Perp q$;

- find p, q (give algorithm);

■ find all shared matings (all p, q with $f=p \Perp q$).
When mating polynomials p, q, i.e., $p \Perp q: \overline{\mathbb{C}}_{p} \sqcup \overline{\mathbb{C}}_{q} / \sim$
■ $\overline{\mathbb{C}}_{p} \sqcup \overline{\mathbb{C}}_{q} / \sim$ may not be Hausdorff

Undoing a Mating

How to find
the
polynomials of
a mating
Daniel Meyer

Problem: given pcf rational map $f: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$
■ decide if f arises as a (topological) mating. This means that f is topological conjugate to $p \Perp q$;

- find p, q (give algorithm);

■ find all shared matings (all p, q with $f=p \Perp q$).
When mating polynomials p, q, i.e., $p \Perp q: \overline{\mathbb{C}}_{p} \sqcup \overline{\mathbb{C}}_{q} / \sim$

- $\overline{\mathbb{C}}_{p} \sqcup \overline{\mathbb{C}}_{q} / \sim$ may not be Hausdorff $\Leftrightarrow \sim$ not closed, Hausdorff obstruction.

Undoing a Mating

How to find
the
polynomials of
a mating
Daniel Meyer

Problem: given pcf rational map $f: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$
■ decide if f arises as a (topological) mating. This means that f is topological conjugate to $p \Perp q$;

- find p, q (give algorithm);

■ find all shared matings (all p, q with $f=p \Perp q$).
When mating polynomials p, q, i.e., $p \Perp q: \overline{\mathbb{C}}_{p} \sqcup \overline{\mathbb{C}}_{q} / \sim$
■ $\overline{\mathbb{C}}_{p} \sqcup \overline{\mathbb{C}}_{q} / \sim$ may not be Hausdorff $\Leftrightarrow \sim$ not closed, Hausdorff obstruction.

- $\overline{\mathbb{C}}_{p} \sqcup \overline{\mathbb{C}}_{q} / \sim$ may not be S^{2}

Undoing a Mating

How to find
the
polynomials of
a mating
Daniel Meyer

Problem: given pcf rational map $f: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$
■ decide if f arises as a (topological) mating. This means that f is topological conjugate to $p \Perp q$;

- find p, q (give algorithm);

■ find all shared matings (all p, q with $f=p \Perp q$).
When mating polynomials p, q, i.e., $p \Perp q: \overline{\mathbb{C}}_{p} \sqcup \overline{\mathbb{C}}_{q} / \sim$
■ $\overline{\mathbb{C}}_{p} \sqcup \overline{\mathbb{C}}_{q} / \sim$ may not be Hausdorff $\Leftrightarrow \sim$ not closed, Hausdorff obstruction.

- $\overline{\mathbb{C}}_{p} \sqcup \overline{\mathbb{C}}_{q} / \sim$ may not be S^{2} Moore obstruction.

Undoing a Mating

How to find

the
polynomials of
a mating
Daniel Meyer

Problem: given pcf rational map $f: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$
■ decide if f arises as a (topological) mating. This means that f is topological conjugate to $p \Perp q$;

- find p, q (give algorithm);

■ find all shared matings (all p, q with $f=p \Perp q$).
When mating polynomials p, q, i.e., $p \Perp q: \overline{\mathbb{C}}_{p} \sqcup \overline{\mathbb{C}}_{q} / \sim$
■ $\overline{\mathbb{C}}_{p} \sqcup \overline{\mathbb{C}}_{q} / \sim$ may not be Hausdorff $\Leftrightarrow \sim$ not closed, Hausdorff obstruction.

- $\overline{\mathbb{C}}_{p} \sqcup \overline{\mathbb{C}}_{q} / \sim$ may not be S^{2} Moore obstruction.
- $p \Perp q$ may not be equivalent to rational map.

Undoing a Mating

How to find
the
polynomials of
a mating
Daniel Meyer

Problem: given pcf rational map $f: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$

- decide if f arises as a (topological) mating. This means that f is topological conjugate to $p \Perp q$;
- find p, q (give algorithm);

■ find all shared matings (all p, q with $f=p \Perp q$).
When mating polynomials p, q, i.e., $p \Perp q: \overline{\mathbb{C}}_{p} \sqcup \overline{\mathbb{C}}_{q} / \sim$

- $\overline{\mathbb{C}}_{p} \sqcup \overline{\mathbb{C}}_{q} / \sim$ may not be Hausdorff $\Leftrightarrow \sim$ not closed, Hausdorff obstruction.
- $\overline{\mathbb{C}}_{p} \sqcup \overline{\mathbb{C}}_{q} / \sim$ may not be S^{2} Moore obstruction.
- $p \Perp q$ may not be equivalent to rational map. Thurston obstruction.

Undoing Matings

How to find

Daniel Meyer

Mating creates (possibly) obstructions.

Undoing Matings

How to find

Mating creates (possibly) obstructions.
Conversely if Thurston map f has no Lévy cycle, arises as mating $f=p \Perp q$, then p, q have no Lévy cycle. Thus p, q are Thurston equivalent to polynomials.

Undoing Matings

How to find

Mating creates (possibly) obstructions.
Conversely if Thurston map f has no Lévy cycle, arises as mating $f=p \Perp q$, then p, q have no Lévy cycle. Thus p, q are Thurston equivalent to polynomials.
There seems to be very little difference between rational maps vs. Thurston maps for the problem of deciding if map is a matings.

Hyperbolic or not?

How to find

Daniel Meyer

When deciding if f arises as mating it makes a big difference where the postcritical points are located.

Hyperbolic or not?

How to find

When deciding if f arises as mating it makes a big difference where the postcritical points are located.

- $p \in J(f)$ (easier) or

Hyperbolic or not?

How to find

When deciding if f arises as mating it makes a big difference where the postcritical points are located.

- $p \in J(f)$ (easier) or
- $p \in F(f)$ (harder).

Hyperbolic or not?

When deciding if f arises as mating it makes a big difference where the postcritical points are located.

- $p \in J(f)$ (easier) or
- $p \in F(f)$ (harder).

Extreme cases:

- $\operatorname{post}(f) \subset J(f) \Leftrightarrow J(f)=\widehat{\mathbb{C}}$.

Hyperbolic or not?

When deciding if f arises as mating it makes a big difference where the postcritical points are located.

- $p \in J(f)$ (easier) or
- $p \in F(f)$ (harder).

Extreme cases:

- $\operatorname{post}(f) \subset J(f) \Leftrightarrow J(f)=\widehat{\mathbb{C}}$.
- $\operatorname{post}(f) \subset F(f) \Leftrightarrow f$ hyperbolic.

Hyperbolic or not

How to find

Theorem (M)
f pcf rational map, $\# \operatorname{post}(f)=3$, not polynomial. Then

Hyperbolic or not

How to find

Theorem (M)

f pcf rational map, $\# \operatorname{post}(f)=3$, not polynomial. Then

- f hyperbolic $\Rightarrow f$ is not a mating.

Hyperbolic or not

How to find

Theorem (M)

f pcf rational map, \# post $(f)=3$, not polynomial. Then

- f hyperbolic $\Rightarrow f$ is not a mating.
- $J(f)=\widehat{\mathbb{C}} \Rightarrow f$ or f^{2} is a mating.

Hyperbolic or not

How to find

Theorem (M)

f pcf rational map, \# post $(f)=3$, not polynomial. Then

- f hyperbolic $\Rightarrow f$ is not a mating.
- $J(f)=\widehat{\mathbb{C}} \Rightarrow f$ or f^{2} is a mating.

Theorem (M)

f pcf rational map, $J(f)=\widehat{\mathbb{C}}$ (or expanding Thurston map).
Then each sufficiently high iterate $F=f^{n}$ is a mating.

Equators

How to find

Definition

An equator for f is a Jordan curve $\mathcal{E} \subset \widehat{\mathbb{C}} \backslash \operatorname{post}(f)$ s.t.

Equators

How to find

Daniel Meyer

Definition

An equator for f is a Jordan curve $\mathcal{E} \subset \widehat{\mathbb{C}} \backslash \operatorname{post}(f)$ s.t.

- $\mathcal{E}^{\prime}:=f^{-1}(\mathcal{E})$ has a single component. Then $f: \mathcal{E}^{\prime} \rightarrow \mathcal{E}$ has degree $d=\operatorname{deg} f$.

Equators

How to find

Definition

An equator for f is a Jordan curve $\mathcal{E} \subset \widehat{\mathbb{C}} \backslash \operatorname{post}(f)$ s.t.

- $\mathcal{E}^{\prime}:=f^{-1}(\mathcal{E})$ has a single component. Then $f: \mathcal{E}^{\prime} \rightarrow \mathcal{E}$ has degree $d=\operatorname{deg} f$.
- \mathcal{E}^{\prime} is orientation-preserving isotopic to \mathcal{E} rel. $\operatorname{post}(f)$.

Equators

How to find

Definition

An equator for f is a Jordan curve $\mathcal{E} \subset \widehat{\mathbb{C}} \backslash \operatorname{post}(f)$ s.t.

- $\mathcal{E}^{\prime}:=f^{-1}(\mathcal{E})$ has a single component.

Then $f: \mathcal{E}^{\prime} \rightarrow \mathcal{E}$ has degree $d=\operatorname{deg} f$.

- \mathcal{E}^{\prime} is orientation-preserving isotopic to \mathcal{E} rel. $\operatorname{post}(f)$.

Theorem

$f: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ rational, pcf, hyperbolic. Then
f is a (topological) mating $\Leftrightarrow f$ has an equator.

Equators

Definition

An equator for f is a Jordan curve $\mathcal{E} \subset \widehat{\mathbb{C}} \backslash \operatorname{post}(f)$ s.t.

- $\mathcal{E}^{\prime}:=f^{-1}(\mathcal{E})$ has a single component.

Then $f: \mathcal{E}^{\prime} \rightarrow \mathcal{E}$ has degree $d=\operatorname{deg} f$.

- \mathcal{E}^{\prime} is orientation-preserving isotopic to \mathcal{E} rel. $\operatorname{post}(f)$.

Theorem
$f: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ rational, pcf, hyperbolic. Then
f is a (topological) mating $\Leftrightarrow f$ has an equator.

Existence of an equator is right notion for a hyperbolic rational map to arise from a mating.

Equators?

How to find

Equators are not right notion to check whether a non-hyperbolic map arises as a mating.

Equators?

How to find

Equators are not right notion to check whether a non-hyperbolic map arises as a mating.

- \# post $(f)=3, f$ not polynomial, then f has no equator.

Equators?

How to find the polynomials of
a mating
Daniel Meyer

Equators are not right notion to check whether a non-hyperbolic map arises as a mating.

- \# $\operatorname{post}(f)=3, f$ not polynomial, then f has no equator.

■ Any Lattès map has no equator.

Equators?

How to find the polynomials of
a mating
Daniel Meyer

Equators are not right notion to check whether a non-hyperbolic map arises as a mating.

- \# post $(f)=3, f$ not polynomial, then f has no equator.
- Any Lattès map has no equator.

■ Many examples as above are matings.

A sufficient criterion for matings

How to find

A pseudo-isotopy is a homotopy $H: \widehat{\mathbb{C}} \times[0,1] \rightarrow \widehat{\mathbb{C}}$, s.t. $H(\cdot, t)$ is a homeomorphism for $0 \leq t<1$.

A sufficient criterion for matings

How to find

A pseudo-isotopy is a homotopy $H: \widehat{\mathbb{C}} \times[0,1] \rightarrow \widehat{\mathbb{C}}$, s.t. $H(\cdot, t)$ is a homeomorphism for $0 \leq t<1$.

Theorem (M)
$f: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ rational, pcf, $J(f)=\widehat{\mathbb{C}}$. Assume

A sufficient criterion for matings

How to find

A pseudo-isotopy is a homotopy $H: \widehat{\mathbb{C}} \times[0,1] \rightarrow \widehat{\mathbb{C}}$, s.t. $H(\cdot, t)$ is a homeomorphism for $0 \leq t<1$.

Theorem (M)

$$
\begin{aligned}
f: & \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}} \text { rational, pcf, } J(f)=\widehat{\mathbb{C}} . \text { Assume } \\
& ■ \exists \text { Jordan curve } \mathcal{C} \supset \operatorname{post}(f) \text { s.t. }
\end{aligned}
$$

A sufficient criterion for matings

How to find

A pseudo-isotopy is a homotopy $H: \widehat{\mathbb{C}} \times[0,1] \rightarrow \widehat{\mathbb{C}}$, s.t. $H(\cdot, t)$ is a homeomorphism for $0 \leq t<1$.

Theorem (M)
$f: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ rational, pcf, $J(f)=\widehat{\mathbb{C}}$. Assume
■ \exists Jordan curve $\mathcal{C} \supset \operatorname{post}(f)$ s.t.

- \exists pseudo-isotopy $H: \widehat{\mathbb{C}} \times[0,1] \rightarrow \widehat{\mathbb{C}}$ rel. $\operatorname{post}(f)$ with

$$
H(\mathcal{C}, 1)=f^{-1}(\mathcal{C}) ;
$$

A sufficient criterion for matings

How to find the polynomials of
a mating
Daniel Meyer

A pseudo-isotopy is a homotopy $H: \widehat{\mathbb{C}} \times[0,1] \rightarrow \widehat{\mathbb{C}}$, s.t. $H(\cdot, t)$ is a homeomorphism for $0 \leq t<1$.

Theorem (M)

$f: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ rational, pcf, $J(f)=\widehat{\mathbb{C}}$. Assume

- \exists Jordan curve $\mathcal{C} \supset \operatorname{post}(f)$ s.t.
- \exists pseudo-isotopy $H: \widehat{\mathbb{C}} \times[0,1] \rightarrow \widehat{\mathbb{C}}$ rel. $\operatorname{post}(f)$ with

$$
H(\mathcal{C}, 1)=f^{-1}(\mathcal{C})
$$

- H deforms \mathcal{C} orientation-preserving to $f^{-1}(\mathcal{C})$.

Then f arises as a (topological) mating.

A sufficient criterion for matings

How to find

A pseudo-isotopy is a homotopy $H: \widehat{\mathbb{C}} \times[0,1] \rightarrow \widehat{\mathbb{C}}$, s.t. $H(\cdot, t)$ is a homeomorphism for $0 \leq t<1$.

Theorem (M)

$f: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ rational, pcf, $J(f)=\widehat{\mathbb{C}}$. Assume

- \exists Jordan curve $\mathcal{C} \supset \operatorname{post}(f)$ s.t.
- \exists pseudo-isotopy $H: \widehat{\mathbb{C}} \times[0,1] \rightarrow \widehat{\mathbb{C}}$ rel. $\operatorname{post}(f)$ with

$$
H(\mathcal{C}, 1)=f^{-1}(\mathcal{C}) ;
$$

- H deforms \mathcal{C} orientation-preserving to $f^{-1}(\mathcal{C})$.

Then f arises as a (topological) mating.
Can find the polynomials p, q, s.t. $f=p \Perp q$ by an algorithm.

Critical Portraits

How to find

What is a good way to represent a polynomial?

Critical Portraits

How to find

Daniel Meyer

What is a good way to represent a polynomial?

$$
p=z^{d}+a_{d-1} z^{d-1}+\cdots+a_{0} ?
$$

Critical Portraits

How to find the polynomials of a mating

Daniel Meyer

What is a good way to represent a polynomial?
$p=z^{d}+a_{d-1} z^{d-1}+\cdots+a_{0}$?
Not good for matings.

Critical Portraits

How to find

What is a good way to represent a polynomial?
$p=z^{d}+a_{d-1} z^{d-1}+\cdots+a_{0}$?
Not good for matings.
Want: description via external rays.

Critical Portraits

How to find the polynomials of
a mating
Daniel Meyer

What is a good way to represent a polynomial?
$p=z^{d}+a_{d-1} z^{d-1}+\cdots+a_{0}$?
Not good for matings.
Want: description via external rays.
Critical portraits (Bielefeld-Fisher-Hubbard '92, Poirier '93)

Critical Portraits

How to find

What is a good way to represent a polynomial?
$p=z^{d}+a_{d-1} z^{d-1}+\cdots+a_{0}$?
Not good for matings.
Want: description via external rays.
Critical portraits (Bielefeld-Fisher-Hubbard '92, Poirier '93) p pcf polynomial, monic, $\forall c \in \operatorname{crit}(p)$ preperiodic $(\Rightarrow J(p)$ dendrite)

Critical Portraits

How to find

What is a good way to represent a polynomial?
$p=z^{d}+a_{d-1} z^{d-1}+\cdots+a_{0}$?
Not good for matings.
Want: description via external rays.
Critical portraits (Bielefeld-Fisher-Hubbard '92, Poirier '93)
p pcf polynomial, monic, $\forall c \in \operatorname{crit}(p)$ preperiodic $(\Rightarrow J(p)$ dendrite)
Example: $p=z^{2}+i$,
external rays $R_{1 / 12}, R_{7 / 12}$ land at 0 . crit. portrait: $\{1 / 12,7 / 12\}$.

Critical Portraits

In general: for each crit. value $a=p(c)$, let R_{θ} be external ray landing at a, then

$$
J_{c}=\left\{\tau \mid p\left(R_{\tau}\right)=R_{\theta}, R_{\tau} \text { ends at } c\right\}
$$

+ compatibility assumption

Critical Portraits

How to find the polynomials of
a mating

Daniel Meyer

In general: for each crit. value $a=p(c)$, let R_{θ} be external ray landing at a, then

$$
J_{c}=\left\{\tau \mid p\left(R_{\tau}\right)=R_{\theta}, R_{\tau} \text { ends at } c\right\}
$$

+ compatibility assumption
crit. portrait of $p:\left\{J_{c} \mid c \in \operatorname{crit}(p)\right\}$.

Critical Portraits

How to find

Definition

$J_{1}, \ldots, J_{m} \subset \mathbb{Q} / \mathbb{Z} \subset \mathbb{R} / \mathbb{Z}=S^{1}$ are a critical portrait, if

Critical Portraits

How to find the polynomials of a mating

Daniel Meyer

Definition

$J_{1}, \ldots, J_{m} \subset \mathbb{Q} / \mathbb{Z} \subset \mathbb{R} / \mathbb{Z}=S^{1}$ are a critical portrait, if

- the map $\mu(t)=d t(\bmod 1)$ maps

$$
\mu\left(J_{k}\right)=\left\{\alpha_{k}\right\}
$$

Critical Portraits

How to find

Daniel Meyer

Definition

$J_{1}, \ldots, J_{m} \subset \mathbb{Q} / \mathbb{Z} \subset \mathbb{R} / \mathbb{Z}=S^{1}$ are a critical portrait, if
■ the map $\mu(t)=d t(\bmod 1)$ maps

$$
\mu\left(J_{k}\right)=\left\{\alpha_{k}\right\}
$$

■ $\sum_{k}\left(\# J_{k}-1\right)=d-1$

Critical Portraits

How to find

Daniel Meyer

Definition

$J_{1}, \ldots, J_{m} \subset \mathbb{Q} / \mathbb{Z} \subset \mathbb{R} / \mathbb{Z}=S^{1}$ are a critical portrait, if
■ the map $\mu(t)=d t(\bmod 1)$ maps

$$
\mu\left(J_{k}\right)=\left\{\alpha_{k}\right\}
$$

■ $\sum_{k}\left(\# J_{k}-1\right)=d-1$

- J_{1}, \ldots, J_{m} are non-crossing.

Critical Portraits

How to find the polynomials of a mating

Daniel Meyer

Definition

$J_{1}, \ldots, J_{m} \subset \mathbb{Q} / \mathbb{Z} \subset \mathbb{R} / \mathbb{Z}=S^{1}$ are a critical portrait, if
■ the map $\mu(t)=d t(\bmod 1)$ maps

$$
\mu\left(J_{k}\right)=\left\{\alpha_{k}\right\}
$$

■ $\sum_{k}\left(\# J_{k}-1\right)=d-1$

- J_{1}, \ldots, J_{m} are non-crossing.

Let $A=\bigcup_{k, n \geq 1} \mu^{n}\left(J_{k}\right)$ (finite set).

Critical Portraits

How to find the polynomials of
a mating
Daniel Meyer

Definition

$J_{1}, \ldots, J_{m} \subset \mathbb{Q} / \mathbb{Z} \subset \mathbb{R} / \mathbb{Z}=S^{1}$ are a critical portrait, if
■ the map $\mu(t)=d t(\bmod 1)$ maps

$$
\mu\left(J_{k}\right)=\left\{\alpha_{k}\right\}
$$

■ $\sum_{k}\left(\# J_{k}-1\right)=d-1$
■ J_{1}, \ldots, J_{m} are non-crossing.
Let $A=\bigcup_{k, n \geq 1} \mu^{n}\left(J_{k}\right)$ (finite set).
■ No set J_{k} contains more than one point from A.

Critical Portraits

How to find

 the polynomials ofa mating
Daniel Meyer

Definition

$J_{1}, \ldots, J_{m} \subset \mathbb{Q} / \mathbb{Z} \subset \mathbb{R} / \mathbb{Z}=S^{1}$ are a critical portrait, if

- the map $\mu(t)=d t(\bmod 1)$ maps

$$
\mu\left(J_{k}\right)=\left\{\alpha_{k}\right\}
$$

■ $\sum_{k}\left(\# J_{k}-1\right)=d-1$
■ J_{1}, \ldots, J_{m} are non-crossing.
Let $A=\bigcup_{k, n \geq 1} \mu^{n}\left(J_{k}\right)$ (finite set).
■ No set J_{k} contains more than one point from A.

- $\exists n_{0} \in \mathbb{N}: \alpha, \beta \in A$ distinct, then for $m \geq n_{0}$ no gap of m-th order contains points from both sets $J_{i} \ni \alpha, J_{k} \ni \beta$.

Poirier's Theorem

Theorem (Bielefeld-Fisher-Hubbard '92, Poirier '93)
For any crit. portrait J_{1}, \ldots, J_{m} there is a (unique up to affine conjugacy) monic polynomial realizing it.

