How to find the polynomials of a mating

Daniel Meyer

How to find the polynomials of a mating

Daniel Meyer

Jacobs University

June 10, 2011

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

How to find the polynomials of a mating

Lemma

Daniel Meyer

S be a compact metric space. \sim on S is closed if each [x] is compact and one (hence all) of the following equivalent conditions is satisfied.

イロト 不得 トイヨト イヨト

э.

How to find the polynomials of a mating

Daniel Meyer

Lemma

S be a compact metric space. \sim on S is closed if each [x] is compact and one (hence all) of the following equivalent conditions is satisfied.

イロト 不得 トイヨト イヨト

3

1 The set $\{(s,t) \mid s \sim t\} \subset S \times S$ is closed.

How to find the polynomials of a mating

Daniel Meyer

Lemma

S be a compact metric space. \sim on S is closed if each [x] is compact and one (hence all) of the following equivalent conditions is satisfied.

1 The set
$$\{(s,t) \mid s \sim t\} \subset S \times S$$
 is closed.

2 $(s_n)_{n \in \mathbb{N}}, (t_n)_{n \in \mathbb{N}}$ convergent sequences in S. Then

 $s_n \sim t_n$ for all $n \in \mathbb{N}$, implies $\lim s_n \sim \lim t_n$.

How to find the polynomials of a mating

Daniel Meyer

Lemma

S be a compact metric space. \sim on S is closed if each [x] is compact and one (hence all) of the following equivalent conditions is satisfied.

- **1** The set $\{(s,t) \mid s \sim t\} \subset S \times S$ is closed.
- 2 $(s_n)_{n \in \mathbb{N}}, (t_n)_{n \in \mathbb{N}}$ convergent sequences in S. Then

 $s_n \sim t_n$ for all $n \in \mathbb{N}$, implies $\lim s_n \sim \lim t_n$.

3 The quotient map $\pi: S \to S / \sim$ is closed.

How to find the polynomials of a mating

Lemma

Daniel Meyer

S be a compact metric space. \sim on S is closed if each [x] is compact and one (hence all) of the following equivalent conditions is satisfied.

- **1** The set $\{(s,t) \mid s \sim t\} \subset S \times S$ is closed.
- 2 $(s_n)_{n \in \mathbb{N}}, (t_n)_{n \in \mathbb{N}}$ convergent sequences in S. Then

 $s_n \sim t_n$ for all $n \in \mathbb{N}$, implies $\lim s_n \sim \lim t_n$.

The quotient map π: S → S/ ~ is closed.
 The quotient space S/ ~ is Hausdorff.

How to find the polynomials of a mating

Lemma

Daniel Meyer

S be a compact metric space. \sim on S is closed if each [x] is compact and one (hence all) of the following equivalent conditions is satisfied.

- **1** The set $\{(s,t) \mid s \sim t\} \subset S \times S$ is closed.
- 2 $(s_n)_{n \in \mathbb{N}}, (t_n)_{n \in \mathbb{N}}$ convergent sequences in S. Then

 $s_n \sim t_n$ for all $n \in \mathbb{N}$, implies $\lim s_n \sim \lim t_n$.

- **3** The quotient map $\pi: S \to S/ \sim$ is closed.
- 4 The quotient space S/\sim is Hausdorff.
- **5** The quotient space S/ \sim is metrizable.

How to find the polynomials of a mating

Lemma

Daniel Meyer

6 Let $[x_n] \rightarrow C$ in Hausdorff topology. Then there is [x], s.t. $C \subset [x]$.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ ○ ヘ

How to find the polynomials of a mating

Lemma

Daniel Meyer

6 Let [x_n] → C in Hausdorff topology. Then there is [x], s.t. C ⊂ [x].
7 For nbhd U of [x] there is a nbhd V ⊂ U of [x], s.t. [y] ∩ V ≠ Ø ⇒ [y] ⊂ U.

How to find the polynomials of a mating

Lemma

Daniel Meyer

6 Let [x_n] → C in Hausdorff topology. Then there is [x], s.t. C ⊂ [x].
7 For nbhd U of [x] there is a nbhd V ⊂ U of [x], s.t. [y] ∩ V ≠ Ø ⇒ [y] ⊂ U.

8 Each nbhd U of [x] contains a saturated nbhd V of [x].

How to find the polynomials of a mating

Lemma

Daniel Meyer

6 Let [x_n] → C in Hausdorff topology. Then there is [x], s.t. C ⊂ [x].
7 For nbhd U of [x] there is a nbhd V ⊂ U of [x], s.t. [y] ∩ V ≠ Ø ⇒ [y] ⊂ U.

B Each nbhd U of [x] contains a saturated nbhd V of [x].
P For each open set U the set

$$U^* := \bigcup \{ [x] \mid [x] \subset U \}$$

is open.

How to find the polynomials of a mating

Daniel Meyer

Definition

A homotopy $H: X \times [0,1] \to X$ is a pseudo-isotopy if $H(\cdot, t)$ is a homeomorphism for each $t \in [0,1)$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

How to find the polynomials of a mating

Daniel Meyer

Definition

A homotopy $H: X \times [0,1] \to X$ is a pseudo-isotopy if $H(\cdot, t)$ is a homeomorphism for each $t \in [0,1)$.

Theorem (Moore, 1925)

 \sim closed equiv. relation on S², s.t.

How to find the polynomials of a mating

Daniel Meyer

Definition

A homotopy $H: X \times [0,1] \to X$ is a pseudo-isotopy if $H(\cdot, t)$ is a homeomorphism for each $t \in [0,1)$.

Theorem (Moore, 1925)

 \sim closed equiv. relation on S^2, s.t.

• ~ is non-trivial, i.e., $\exists [x] \neq [y]$;

How to find the polynomials of a mating

Daniel Meyer

Definition

A homotopy $H: X \times [0,1] \to X$ is a pseudo-isotopy if $H(\cdot, t)$ is a homeomorphism for each $t \in [0,1)$.

Theorem (Moore, 1925)

 \sim closed equiv. relation on S^2, s.t.

• \sim is non-trivial, i.e., $\exists [x] \neq [y];$

each [x] is connected;

How to find the polynomials of a mating

Daniel Meyer

Definition

A homotopy $H: X \times [0,1] \to X$ is a pseudo-isotopy if $H(\cdot, t)$ is a homeomorphism for each $t \in [0,1)$.

Theorem (Moore, 1925)

 \sim closed equiv. relation on S², s.t.

- ~ is non-trivial, i.e., $\exists [x] \neq [y]$;
- each [x] is connected;
- each $S^2 \setminus [x]$ is connected.

How to find the polynomials of a mating

Daniel Meyer

Definition

A homotopy $H: X \times [0,1] \to X$ is a pseudo-isotopy if $H(\cdot, t)$ is a homeomorphism for each $t \in [0,1)$.

Theorem (Moore, 1925)

 \sim closed equiv. relation on S², s.t.

- ~ is non-trivial, i.e., $\exists [x] \neq [y]$;
- each [x] is connected;

• each $S^2 \setminus [x]$ is connected.

Then \sim can be realized as the end of a pseudo-isotopy, there is a pseudo-isotopy $H: S^2 \times I \to S^2$ such that

 $x \sim y$ if and only if H(x, 1) = H(y, 1),

for all $x, y \in S^2$.

How to find the polynomials of a mating

Problem: given pcf rational map $f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$

Daniel Meyer

How to find the polynomials of a mating

Daniel Meyer

Problem: given pcf rational map $f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$

• decide if f arises as a (topological) mating. This means that f is topological conjugate to $p \perp q$;

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

How to find the polynomials of a mating

Daniel Mever

Problem: given pcf rational map $f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$

• decide if f arises as a (topological) mating. This means that f is topological conjugate to $p \perp q$;

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

■ find *p*, *q* (give algorithm);

How to find the polynomials of a mating

Deniel Meure

Problem: given pcf rational map $f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$

• decide if f arises as a (topological) mating. This means that f is topological conjugate to $p \perp q$;

- find *p*, *q* (give algorithm);
- find all shared matings (all p, q with $f = p \perp q$).

How to find the polynomials of a mating

Daniel Meyer

Problem: given pcf rational map $f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$

• decide if f arises as a (topological) mating. This means that f is topological conjugate to $p \perp q$;

- find *p*, *q* (give algorithm);
- find all shared matings (all p, q with $f = p \perp q$).

When mating polynomials p,q, i.e., $p \perp\!\!\!\perp q \colon \overline{\mathbb{C}}_p \sqcup \overline{\mathbb{C}}_q / \sim$

How to find the polynomials of a mating

Daniel Mever

Problem: given pcf rational map $f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$

- decide if f arises as a (topological) mating. This means that f is topological conjugate to $p \perp q$;
- find *p*, *q* (give algorithm);
- find all shared matings (all p, q with $f = p \perp q$).

When mating polynomials p, q, i.e., $p \perp \!\!\!\perp q \colon \overline{\mathbb{C}}_p \sqcup \overline{\mathbb{C}}_q / \sim$ $\blacksquare \overline{\mathbb{C}}_p \sqcup \overline{\mathbb{C}}_q / \sim \text{may not be Hausdorff}$

How to find the polynomials of a mating

Daniel Meyer

Problem: given pcf rational map $f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$

- decide if f arises as a (topological) mating. This means that f is topological conjugate to $p \perp q$;
- find *p*, *q* (give algorithm);
- find all shared matings (all p, q with $f = p \perp q$).

When mating polynomials p, q, i.e., $p \perp \!\!\!\perp q \colon \overline{\mathbb{C}}_p \sqcup \overline{\mathbb{C}}_q / \sim$

■ $\overline{\mathbb{C}}_p \sqcup \overline{\mathbb{C}}_q / \sim$ may not be Hausdorff $\Leftrightarrow \sim$ not closed, Hausdorff obstruction.

How to find the polynomials of a mating

Daniel Meyer

Problem: given pcf rational map $f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$

- decide if f arises as a (topological) mating. This means that f is topological conjugate to $p \perp q$;
- find *p*, *q* (give algorithm);
- find all shared matings (all p, q with $f = p \perp q$).

When mating polynomials p, q, i.e., $p \perp \!\!\!\perp q \colon \overline{\mathbb{C}}_p \sqcup \overline{\mathbb{C}}_q / \sim$

■ $\overline{\mathbb{C}}_p \sqcup \overline{\mathbb{C}}_q / \sim$ may not be Hausdorff $\Leftrightarrow \sim$ not closed, Hausdorff obstruction.

•
$$\overline{\mathbb{C}}_p \sqcup \overline{\mathbb{C}}_q / \sim$$
 may not be S^2

How to find the polynomials of a mating

Daniel Meyer

Problem: given pcf rational map $f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$

- decide if f arises as a (topological) mating. This means that f is topological conjugate to $p \perp q$;
- find *p*, *q* (give algorithm);
- find all shared matings (all p, q with $f = p \perp q$).

When mating polynomials p, q, i.e., $p \perp \!\!\!\perp q \colon \overline{\mathbb{C}}_p \sqcup \overline{\mathbb{C}}_q / \sim$

• $\overline{\mathbb{C}}_p \sqcup \overline{\mathbb{C}}_q / \sim$ may not be Hausdorff $\Leftrightarrow \sim$ not closed, Hausdorff obstruction.

• $\overline{\mathbb{C}}_p \sqcup \overline{\mathbb{C}}_q / \sim \text{may not be } S^2$ Moore obstruction.

How to find the polynomials of a mating

Daniel Meyer

Problem: given pcf rational map $f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$

- decide if f arises as a (topological) mating. This means that f is topological conjugate to $p \perp q$;
- find *p*, *q* (give algorithm);
- find all shared matings (all p, q with $f = p \perp q$).

When mating polynomials p, q, i.e., $p \perp \!\!\!\perp q \colon \overline{\mathbb{C}}_p \sqcup \overline{\mathbb{C}}_q / \sim$

■ $\overline{\mathbb{C}}_p \sqcup \overline{\mathbb{C}}_q / \sim$ may not be Hausdorff $\Leftrightarrow \sim$ not closed, Hausdorff obstruction.

- $\overline{\mathbb{C}}_p \sqcup \overline{\mathbb{C}}_q / \sim \text{may not be } S^2$ Moore obstruction.
- $p \perp \!\!\!\perp q$ may not be equivalent to rational map.

How to find the polynomials of a mating

Daniel Meyer

Problem: given pcf rational map $f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$

- decide if f arises as a (topological) mating. This means that f is topological conjugate to $p \perp q$;
- find *p*, *q* (give algorithm);
- find all shared matings (all p, q with $f = p \perp q$).

When mating polynomials p, q, i.e., $p \perp \!\!\!\perp q \colon \overline{\mathbb{C}}_p \sqcup \overline{\mathbb{C}}_q / \sim$

• $\overline{\mathbb{C}}_p \sqcup \overline{\mathbb{C}}_q / \sim$ may not be Hausdorff $\Leftrightarrow \sim$ not closed, Hausdorff obstruction.

- $\overline{\mathbb{C}}_p \sqcup \overline{\mathbb{C}}_q / \sim \text{may not be } S^2$ Moore obstruction.
- $p \perp q$ may not be equivalent to rational map. Thurston obstruction.

	Undoing Matings
How to find the polynomials of a mating Daniel Meyer	Mating creates (possibly) obstructions.

・ロト (雪) (手) (手) (日)

How to find the polynomials of a mating

Daniel Meyer

Mating creates (possibly) obstructions.

Conversely if Thurston map f has no Lévy cycle, arises as mating $f = p \perp q$, then p, q have no Lévy cycle. Thus p, q are Thurston equivalent to polynomials.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

How to find the polynomials of a mating

Daniel Meyer

Mating creates (possibly) obstructions.

Conversely if Thurston map f has no Lévy cycle, arises as mating $f = p \perp q$, then p, q have no Lévy cycle. Thus p, q are Thurston equivalent to polynomials.

There seems to be very little difference between rational maps vs. Thurston maps for the problem of deciding if map is a matings.

	Hyperbolic or not?
How to find the polynomials of a mating Daniel Meyer	When deciding if f arises as mating it makes a big difference where the postcritical points are located.

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

How to find the polynomials of a mating

Daniel Meyer

When deciding if f arises as mating it makes a big difference where the postcritical points are located.

• $p \in J(f)$ (easier) or

How to find the polynomials of a mating

Daniel Meye

When deciding if f arises as mating it makes a big difference where the postcritical points are located.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

•
$$p \in J(f)$$
 (easier) or

•
$$p \in F(f)$$
 (harder).

How to find the polynomials of a mating

Daniel Meye

When deciding if f arises as mating it makes a big difference where the postcritical points are located.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

•
$$p \in J(f)$$
 (easier) or

•
$$p \in F(f)$$
 (harder).

Extreme cases:

•
$$\mathsf{post}(f) \subset J(f) \Leftrightarrow J(f) = \widehat{\mathbb{C}}.$$

How to find the polynomials of a mating

Daniel Meyer

When deciding if f arises as mating it makes a big difference where the postcritical points are located.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- $p \in J(f)$ (easier) or
- $p \in F(f)$ (harder).

Extreme cases:

- $\mathsf{post}(f) \subset J(f) \Leftrightarrow J(f) = \widehat{\mathbb{C}}.$
- $post(f) \subset F(f) \Leftrightarrow f$ hyperbolic.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Hyperbolic or not

How to find the polynomials of a mating

Daniel Meyer

Theorem (M)

f pcf rational map, # post(f) = 3, not polynomial. Then

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

• f hyperbolic \Rightarrow f is not a mating.

Hyperbolic or not

How to find the polynomials of a mating

Daniel Meyer

Theorem (M)

f pcf rational map, # post(f) = 3, not polynomial. Then

• f hyperbolic \Rightarrow f is not a mating. • $J(f) = \widehat{\mathbb{C}} \Rightarrow f$ or f^2 is a mating.

Hyperbolic or not

How to find the polynomials of a mating

Daniel Meyer

Theorem (M)

f pcf rational map, # post(f) = 3, not polynomial. Then

• f hyperbolic \Rightarrow f is not a mating. • $J(f) = \widehat{\mathbb{C}} \Rightarrow f$ or f^2 is a mating.

Theorem (M)

f pcf rational map, $J(f) = \widehat{\mathbb{C}}$ (or expanding Thurston map). Then each sufficiently high iterate $F = f^n$ is a mating.

Definition

An equator for f is a Jordan curve $\mathcal{E} \subset \widehat{\mathbb{C}} \setminus \text{post}(f)$ s.t.

How to find the polynomials of a mating

Definition

An equator for f is a Jordan curve $\mathcal{E} \subset \widehat{\mathbb{C}} \setminus \text{post}(f)$ s.t.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- $\mathcal{E}' := f^{-1}(\mathcal{E})$ has a single component.
 - Then $f : \mathcal{E}' \to \mathcal{E}$ has degree $d = \deg f$.

Definition

How to find the polynomials of a mating

Daniel Mever

An equator for f is a Jordan curve $\mathcal{E} \subset \widehat{\mathbb{C}} \setminus \text{post}(f)$ s.t.

- $\mathcal{E}' := f^{-1}(\mathcal{E})$ has a single component. Then $f : \mathcal{E}' \to \mathcal{E}$ has degree $d = \deg f$.
- \mathcal{E}' is orientation-preserving isotopic to \mathcal{E} rel. post(f).

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Definition

How to find the polynomials of a mating

Daniel Meyer

An equator for f is a Jordan curve $\mathcal{E} \subset \widehat{\mathbb{C}} \setminus \mathsf{post}(f)$ s.t.

- $\mathcal{E}' := f^{-1}(\mathcal{E})$ has a single component. Then $f : \mathcal{E}' \to \mathcal{E}$ has degree $d = \deg f$.
- \mathcal{E}' is orientation-preserving isotopic to \mathcal{E} rel. post(f).

Theorem

$$f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$$
 rational, pcf, hyperbolic. Then

f is a (topological) mating \Leftrightarrow f has an equator.

How to find the polynomials of a mating

Daniel Meyer

Definition

An equator for f is a Jordan curve $\mathcal{E} \subset \widehat{\mathbb{C}} \setminus \text{post}(f)$ s.t.

• $\mathcal{E}' := f^{-1}(\mathcal{E})$ has a single component. Then $f : \mathcal{E}' \to \mathcal{E}$ has degree $d = \deg f$.

• \mathcal{E}' is orientation-preserving isotopic to \mathcal{E} rel. post(f).

Theorem

$$f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$$
 rational, pcf, hyperbolic. Then

f is a (topological) mating \Leftrightarrow f has an equator.

Existence of an equator is right notion for a hyperbolic rational map to arise from a mating.

Daniel Meyer

Equators are not right notion to check whether a non-hyperbolic map arises as a mating.

Daniel Meyer

Equators are not right notion to check whether a non-hyperbolic map arises as a mating.

• # post(f) = 3, f not polynomial, then f has no equator.

Daniel Meyer

Equators are not right notion to check whether a non-hyperbolic map arises as a mating.

• # post(f) = 3, f not polynomial, then f has no equator.

Any Lattès map has no equator.

How to find the polynomials of a mating

Daniel Meyer

Equators are not right notion to check whether a non-hyperbolic map arises as a mating.

• # post(f) = 3, f not polynomial, then f has no equator.

- Any Lattès map has no equator.
- Many examples as above are matings.

How to find the polynomials of a mating

A pseudo-isotopy is a homotopy $H: \widehat{\mathbb{C}} \times [0,1] \to \widehat{\mathbb{C}}$, s.t. $H(\cdot, t)$ is a homeomorphism for $0 \le t < 1$.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Daniel Meyer

How to find the polynomials of a mating

Daniel Meyer

A pseudo-isotopy is a homotopy $H : \widehat{\mathbb{C}} \times [0,1] \to \widehat{\mathbb{C}}$, s.t. $H(\cdot, t)$ is a homeomorphism for $0 \le t < 1$.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Theorem (M)

$$f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$$
 rational, pcf, $J(f) = \widehat{\mathbb{C}}$. Assume

How to find the polynomials of a mating

Daniel Meyer

A pseudo-isotopy is a homotopy $H : \widehat{\mathbb{C}} \times [0,1] \to \widehat{\mathbb{C}}$, s.t. $H(\cdot, t)$ is a homeomorphism for $0 \le t < 1$.

Theorem (M)

 $f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ rational, pcf, $J(f) = \widehat{\mathbb{C}}$. Assume

■ \exists Jordan curve $C \supset \text{post}(f)$ s.t.

How to find the polynomials of a mating

Daniel Meyer

A pseudo-isotopy is a homotopy $H : \widehat{\mathbb{C}} \times [0,1] \to \widehat{\mathbb{C}}$, s.t. $H(\cdot, t)$ is a homeomorphism for $0 \le t < 1$.

Theorem (M)

 $f:\widehat{\mathbb{C}}\to\widehat{\mathbb{C}}$ rational, pcf, $J(f)=\widehat{\mathbb{C}}.$ Assume

■ \exists Jordan curve $C \supset \text{post}(f)$ s.t.

■ \exists pseudo-isotopy $H : \widehat{\mathbb{C}} \times [0,1] \to \widehat{\mathbb{C}}$ rel. post(f) with

$$H(\mathcal{C},1)=f^{-1}(\mathcal{C});$$

How to find the polynomials of a mating

Daniel Meyer

A pseudo-isotopy is a homotopy $H : \widehat{\mathbb{C}} \times [0,1] \to \widehat{\mathbb{C}}$, s.t. $H(\cdot, t)$ is a homeomorphism for $0 \le t < 1$.

Theorem (M)

$$f:\widehat{\mathbb{C}}
ightarrow \widehat{\mathbb{C}}$$
 rational, pcf, J $(f)=\widehat{\mathbb{C}}.$ Assume

■ \exists Jordan curve $C \supset \text{post}(f)$ s.t.

■ \exists pseudo-isotopy $H : \widehat{\mathbb{C}} \times [0,1] \to \widehat{\mathbb{C}}$ rel. post(f) with

$$H(\mathcal{C},1)=f^{-1}(\mathcal{C});$$

• *H* deforms C orientation-preserving to $f^{-1}(C)$. Then f arises as a (topological) mating.

How to find the polynomials of a mating

Daniel Meyer

A pseudo-isotopy is a homotopy $H : \widehat{\mathbb{C}} \times [0,1] \to \widehat{\mathbb{C}}$, s.t. $H(\cdot, t)$ is a homeomorphism for $0 \le t < 1$.

Theorem (M)

$$f:\widehat{\mathbb{C}}
ightarrow \widehat{\mathbb{C}}$$
 rational, pcf, J $(f)=\widehat{\mathbb{C}}.$ Assume

■ \exists Jordan curve $C \supset \text{post}(f)$ s.t.

■ \exists pseudo-isotopy $H : \widehat{\mathbb{C}} \times [0,1] \to \widehat{\mathbb{C}}$ rel. post(f) with

$$H(\mathcal{C},1)=f^{-1}(\mathcal{C});$$

• *H* deforms C orientation-preserving to $f^{-1}(C)$. Then f arises as a (topological) mating.

Can find the polynomials p, q, s.t. $f = p \perp q$ by an algorithm.

	Critical Portraits
How to find the polynomials of a mating Daniel Meyer	What is a good way to represent a polynomial?

◆□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶

How to find the polynomials of a mating

Daniel Meyer

What is a good way to represent a polynomial? $p = z^d + a_{d-1}z^{d-1} + \cdots + a_0$?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

How to find the polynomials of a mating

Daniel Meyer

What is a good way to represent a polynomial? $p = z^d + a_{d-1}z^{d-1} + \cdots + a_0$?

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Not good for matings.

How to find the polynomials of a mating

Daniel Meyer

What is a good way to represent a polynomial? $p = z^d + a_{d-1}z^{d-1} + \cdots + a_0$?

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Not good for matings. Want: description via external rays.

How to find the polynomials of a mating

Daniel Meyer

What is a good way to represent a polynomial? $p = z^d + a_{d-1}z^{d-1} + \cdots + a_0$?

Not good for matings. Want: description via external rays.

Critical portraits (Bielefeld-Fisher-Hubbard '92, Poirier '93)

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

How to find the polynomials of a mating

Daniel Meyer

What is a good way to represent a polynomial? $p = z^d + a_{d-1}z^{d-1} + \cdots + a_0$?

Not good for matings. Want: description via external rays.

Critical portraits (Bielefeld-Fisher-Hubbard '92, Poirier '93) p pcf polynomial, monic, $\forall c \in \operatorname{crit}(p)$ preperiodic ($\Rightarrow J(p)$ dendrite)

How to find the polynomials of a mating

Daniel Meyer

What is a good way to represent a polynomial? $p = z^d + a_{d-1}z^{d-1} + \cdots + a_0$?

Not good for matings. Want: description via external rays.

Critical portraits (Bielefeld-Fisher-Hubbard '92, Poirier '93) p pcf polynomial, monic, $\forall c \in \operatorname{crit}(p)$ preperiodic $(\Rightarrow J(p) \text{ dendrite})$

Example: $p = z^2 + i$, external rays $R_{1/12}, R_{7/12}$ land at 0. crit. portrait: $\{1/12, 7/12\}$.

How to find the polynomials of a mating

Daniel Meyer

In general: for each crit. value a = p(c), let R_{θ} be external ray landing at a, then

$$J_c = \{\tau \mid p(R_\tau) = R_\theta, R_\tau \text{ ends at } c\}$$

+ compatibility assumption

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

How to find the polynomials of a mating

Daniel Meyer

In general: for each crit. value a = p(c), let R_{θ} be external ray landing at a, then

$$J_c = \{ au \mid p(R_ au) = R_ heta, R_ au$$
 ends at $c \}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

+ compatibility assumption crit. portrait of $p: \{J_c \mid c \in crit(p)\}.$

How to find the polynomials of a mating

Definition

 $J_1, \ldots, J_m \subset \mathbb{Q}/\mathbb{Z} \subset \mathbb{R}/\mathbb{Z} = S^1$ are a critical portrait, if

Definition

How to find the polynomials of a mating

Daniel Meyer

 $J_1, \ldots, J_m \subset \mathbb{Q}/\mathbb{Z} \subset \mathbb{R}/\mathbb{Z} = S^1$ are a critical portrait, if • the map $\mu(t) = dt \pmod{1}$ maps

 $\mu(J_k) = \{\alpha_k\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Definition

How to find the polynomials of a mating

Daniel Meyer

 $J_1, \ldots, J_m \subset \mathbb{Q}/\mathbb{Z} \subset \mathbb{R}/\mathbb{Z} = S^1$ are a critical portrait, if • the map $\mu(t) = dt \pmod{1}$ maps

 $\mu(J_k) = \{\alpha_k\}$

▲口 → ▲圖 → ▲ 臣 → ▲ 臣 → □ 臣 □

$$\square \sum_k (\#J_k-1) = d-1$$

Definition

How to find the polynomials of a mating

Daniel Meyer

 $J_1, \ldots, J_m \subset \mathbb{Q}/\mathbb{Z} \subset \mathbb{R}/\mathbb{Z} = S^1$ are a critical portrait, if • the map $\mu(t) = dt \pmod{1}$ maps

$$\mu(J_k) = \{\alpha_k\}$$

▲口 → ▲圖 → ▲ 臣 → ▲ 臣 → □ 臣 □

$$\sum_{k} (\#J_k - 1) = d - 1$$

$$J_1, \dots, J_m \text{ are non-crossing}$$

Definition

How to find the polynomials of a mating

Daniel Meyer

 $J_1, \ldots, J_m \subset \mathbb{Q}/\mathbb{Z} \subset \mathbb{R}/\mathbb{Z} = S^1$ are a critical portrait, if • the map $\mu(t) = dt \pmod{1}$ maps $\mu(J_k) = \{\alpha_k\}$

• $\sum_{k} (\#J_k - 1) = d - 1$ • J_1, \dots, J_m are non-crossing. Let $A = \bigcup_{k,n \ge 1} \mu^n(J_k)$ (finite set).

Definition

How to find the polynomials of a mating

Daniel Meyer

 $J_1, \ldots, J_m \subset \mathbb{Q}/\mathbb{Z} \subset \mathbb{R}/\mathbb{Z} = S^1$ are a critical portrait, if • the map $\mu(t) = dt \pmod{1}$ maps $\mu(J_k) = \{\alpha_k\}$

∑_k(#J_k − 1) = d − 1
J₁,..., J_m are non-crossing.
Let A = U_{k,n≥1} μⁿ(J_k) (finite set).
No set J_k contains more than one point from A.

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

Definition

How to find the polynomials of a mating

Daniel Meyer

 $J_1, \ldots, J_m \subset \mathbb{Q}/\mathbb{Z} \subset \mathbb{R}/\mathbb{Z} = S^1$ are a critical portrait, if • the map $\mu(t) = dt \pmod{1}$ maps

$$\mu(J_k) = \{\alpha_k\}$$

$$\square \sum_k (\#J_k-1) = d-1$$

■ J_1, \ldots, J_m are non-crossing.

Let $A = \bigcup_{k,n \ge 1} \mu^n(J_k)$ (finite set).

• No set J_k contains more than one point from A.

 ∃n₀ ∈ ℕ: α, β ∈ A distinct, then for m ≥ n₀ no gap of m-th order contains points from both sets J_i ∋ α, J_k ∋ β.

Poirier's Theorem

How to find the polynomials of a mating

Daniel Meyer

Theorem (Bielefeld-Fisher-Hubbard '92, Poirier '93)

For any crit. portrait J_1, \ldots, J_m there is a (unique up to affine conjugacy) monic polynomial realizing it.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ