The Notion of Matings

Carsten Lunde Petersen NSM Roskilde University

Université Paul Sabatier Toulouse June 8, 2011

Matings Workshop

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Two views on Mating

The constructive approach:

Mating is a procedure to construct new rational maps by combining two polynomials.

• The descriptive approach:

Mating is a way to understand the dynamics of certain rational maps in terms of pairs of polynomials.

Background Definitions

- ▶ Let $R(z) = p(z)/q(z) : \overline{\mathbb{C}} \to \overline{\mathbb{C}}$ be a rational map, where the polynomials p and q are without common factors.
- The degree of R, i.e. the maximum of the degrees of p and q, will be assumed to be at least 2.
- We consider the dynamical system given by iteration of *R*, i.e. with orbits:

$$z_0, z_1, \ldots, z_n = R(z_{n-1}), \ldots$$

- A point $z \in \overline{\mathbb{C}}$ is periodic if $R^k(z) = z$ for some $k \ge 1$.
- ► The multiplier or eigenvalue of a k-periodic point z₀ is the complex number λ = DR^k(z) = (R^k)(z).
- Periodic orbits are classified according to their multiplier, super attracting, attracting, neutral and repelling.

The Fatou and Julia set

- ► The Fatou set F_R is the open set of points in C, for which the family of iterates {Rⁿ}_n form a normal family in the sense of Montel in some neighbourhood of the point.
- The Julia set J_R is the compact complement. Alternatively the Julia set is the closure of the set of repelling periodic points.
- For a polynomial

$$f(z) = a_d z^d + a_{d-1} z^{d-1} + \dots a_1 z + a_0$$

the point ∞ is a super attracting fixed point. Consequently the Julia set is a compact subset of \mathbb{C} .

Infact:

Theorem (Böttcher) Given a monic polynomial

$$f(z) = z^d + a_{d-1}z^{d-1} + ...a_1z + a_0$$

There exists a unique germ of a holomorphic map

 $\phi = \phi_f : (\overline{\mathbb{C}}, \infty) \to (\overline{\mathbb{C}}, \infty), \qquad \phi(z) = z + a_{d-1}/d + \mathcal{O}(1/z)$

such that:

$$\begin{array}{ccc} (\overline{\mathbb{C}},\infty) & \stackrel{f}{\longrightarrow} & (\overline{\mathbb{C}},\infty) \\ \phi & & & \downarrow \phi \\ (\overline{\mathbb{C}},\infty) & \stackrel{z^d}{\longrightarrow} & (\overline{\mathbb{C}},\infty) \end{array}$$

The filled-in Julia set K_f .

The set

$$K_f = \{z \in \mathbb{C} | f^n(z) \not\to \infty, \text{as } n \to \infty\}$$

is called the filled-in Julia set.

- $J_f = \partial K_f$.
- J_f and hence K_f is connected precisely, if no critical point escapes or iterates to ∞.
 In this case the Böttcher-coordinate at infinity extends to a biholomorphic map

 $\phi:\overline{\mathbb{C}}\smallsetminus K_f\to\overline{\mathbb{C}}\smallsetminus\overline{\mathbb{D}}\quad\text{with inverse}\quad\psi:\overline{\mathbb{C}}\smallsetminus\overline{\mathbb{D}}\to\overline{\mathbb{C}}\smallsetminus K_f.$

External rays

In the following we shall assume that f is a monic polynomial and that K_f is connected.

Definition

The external ray $R(\theta)$ of argument $\theta \in \mathbb{R}/\mathbb{Z} = \mathbb{T}$ is the arc

$$R(heta)(t) = R_f(heta)(t) = \psi(\mathrm{e}^{t+i2\pi heta}), \qquad t>0.$$

Here parametrized by the value of the Greens function:

$$g(z) = g_f(z) = \log |\phi(z)|.$$

Theorem (Caratheodory)

A univalent map $\phi : \mathbb{D} \longrightarrow \mathbb{C}$ has a continuous extension to $\mathbb{S}^1 = \partial \mathbb{D}$ if and only if $\partial \phi(\mathbb{D})$ is locally connected

Corollary

The Böttcher parameter $\psi_{\rm f}$, at ∞ extends to a continuous map

$$\psi:\overline{\mathbb{C}}\smallsetminus\mathbb{D}\to\overline{\mathbb{C}}\smallsetminus\overset{\circ}{\mathsf{K}}_{f},$$

if and only if J_f is locally connected.

The Caratheodory loop

Definition

When J_f is the locally connected, the continuous map $\gamma: \mathbb{T} \longrightarrow J_f$

$$\gamma(\theta) = \gamma_f(\theta) = \psi_f(e^{i2\pi\theta}) = \lim_{t \to 0^+} R_f(\theta)(t)$$

is called the Caratheodory loop or Caratheodory semi-conjugacy.

It evidently satisfies

$$f(\gamma(\theta)) = \gamma(d \cdot \theta).$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

In the following I shall discuss several definitions of Matings

- Topological Mating
- Formal Mating
- Intermediate forms of Matings, a la Buff-Cheritat
- Geometric or Conformal mating
- The Zakeri-Yampolsky definition of Conformal Mating

Set Up for the Rest of this talk

- *f*₁, *f*₂ : C → C are monic degree *d* > 1 polynomials with connected and locally connected Julia sets.
- K_1 and K_2 are their filled-in Julia sets and
- $\gamma_i : \mathbb{T} \to J_i$, i = 1, 2 are the Caratheodory loops.
- ∼_T denotes the smallest equivalence relation on the disjoint union K₁ ⊔ K₂ for which :

$$\forall \theta \in \mathbb{T} : \gamma_1(\theta) \sim_{\mathcal{T}} \gamma_2(-\theta).$$

The Topological Mating

Definition

- Let $K_1 \perp K_2 = (K_1 \sqcup K_2) / \sim$.
- Let $\pi_T : K_1 \sqcup K_2 \longrightarrow K_1 \perp \perp K_2$ denote the natural projection.
- Equip $K_1 \perp \perp K_2$ with the quotient topology.
- Define $f_1 \perp\!\!\!\perp f_2 : K_1 \perp\!\!\!\perp K_2 \longrightarrow K_1 \perp\!\!\!\perp K_2$ by

$$f_1 \perp\!\!\!\perp f_2(z) = \begin{cases} \pi_T(f_1(w)), & \text{ if } w \in K_1 \text{ and } \pi_T(w) = z, \\ \pi_T(f_2(w)), & \text{ if } w \in K_2 \text{ and } \pi_T(w) = z. \end{cases}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Questions I

Natural questions are

- When is the topological space K₁ ⊥⊥ K₂ homeomorphic to the two sphere S²?
- In case there is a homeomorphism h : K₁ ⊥⊥ K₂ → S², when is the conjugate map

$$h \circ f_1 \perp \!\!\!\perp f_2 \circ h^{-1} : \mathbb{S}^2 \to \mathbb{S}^2$$

a branched covering?

- equivalent to a rational map $R : \overline{\mathbb{C}} \longrightarrow \overline{\mathbb{C}} \sim \mathbb{S}^2$?
- What does equivalence mean?

Assuming for the moment that $K_1 \perp \!\!\!\perp K_2 \simeq \mathbb{S}^2$. Then there are essentially two notions of equivalence in use.

- A weak form called Thurston equivalence and
- A stronger form called Conformal or Geometric Mating.

Even the Conformal Mating definition comes in various strengths.

Definition (Conformal/Geometric Mating I)

Two degree d > 1 polynomials f_1, f_2 with connected and locally connected filled-in Julia sets K_1, K_2 are conformally/geometrically mateable if there exists a degree drational map $R : \overline{\mathbb{C}} \longrightarrow \overline{\mathbb{C}}$ and a homeomorphism

$$h: K_1 \perp\!\!\!\perp K_2 \to \overline{\mathbb{C}}$$

conformal on $\pi_{\mathcal{T}}(\overset{\circ}{\mathcal{K}}_1\cup\overset{\circ}{\mathcal{K}}_2)$ and such that

$$\begin{array}{cccc} K_1 \coprod K_2 & \xrightarrow{f_1 \coprod f_2} & K_1 \coprod K_2 \\ & \downarrow & & \downarrow h \\ & \overline{\mathbb{C}} & \xrightarrow{R} & \overline{\mathbb{C}}. \end{array}$$

Before we proceed to the other definitions let me formulate some more questions:

If there exists a conformal mating of two polynomials, is it then unique up to Möbius conjugacy?

- How many ways can a rational map be obtained as a mating of two polynomials?
- When does the mating depend continuously/measureably/??? on input data?

Branched Coverings

Definition

A branched covering $F : \mathbb{S}^2 \longrightarrow \mathbb{S}^2$ is a map such that: For all $x \in \mathbb{S}^2$ there exists local coordinates $\eta : \omega(x) \longrightarrow \mathbb{C}$ and $\zeta : \omega(F(x)) \longrightarrow \mathbb{C}$ and $d \ge 1$ such that

$\zeta \circ F \circ \eta^{-1}(z) = z^d.$

When d > 1 above the point x is called a critical point. The set of critical points for F is denoted Ω_F .

The branched covering F is called post critically finite (PCF) if the post critical set

$$P_f = \{F^n(x) | x \in \Omega_f, n > 0\}$$

is finite.

Thurston Equivalence

Definition (Thurston Equivalence)

Two PCF branched coverings $F_1, F_2 : \mathbb{S}^2 \longrightarrow \mathbb{S}^2$ are said to be Thurston equivalent if and only if there exists a pair of homeomorphisms $\Phi_1, \Phi_2 : \mathbb{S}^2 \longrightarrow \mathbb{S}^2$ isotopic relative to the post critical set of F_1 such that

The fine Print

- The topological mating though very intuitive is not very operational in terms of proving theorems.
- A more successful definition in this respect is the notion of formal mating.

Definition (Formal Mating)

- Denote by C
 C ∪ {(∞, z) | z ∈ S¹} the compactification of C obtained by adjoining a circle at infinity.
- Let Ĉ_i denote the compactifications as above of the dynamical planes C_i for each polynomial f_i, i = 1, 2.

Define

$$\widehat{\mathbb{C}}_1 \uplus \widehat{\mathbb{C}}_2 = (\widehat{\mathbb{C}}_1 \sqcup \widehat{\mathbb{C}}_2)/(\infty_1, z) \sim (\infty_2, \overline{z})$$

• Then the Formal Mating $f_1 \uplus f_2 : \widehat{\mathbb{C}}_1 \uplus \widehat{\mathbb{C}}_2 \longrightarrow \widehat{\mathbb{C}}_1 \uplus \widehat{\mathbb{C}}_2$ is

$$f_1 \uplus f_2(z) = \begin{cases} f_1(z), & \text{if } z \in \mathbb{C}_1, \\ f_2(z), & \text{if } z \in \mathbb{C}_2, \\ (\infty, z^d), & \text{for } (\infty_i, z). \end{cases}$$

The Formal Mating II

- Then C
 ₁ ⊎ C
 ₂ is homeomorphic to S² and f₁ ⊎ f₂ is a branched covering.
- If we identify S² with C and if both polynomials f₁, f₂ are PCF. Then we may ask if f₁ ⊎ f₂ is Thurston equivalent to a rational map?
- Moreover we can reconstruct the topological mating in a way, which is more ameanable to proving theorems:

Relation to Topological Mating

▶ Let \sim_F denote the smallest equivalence relation on $\widehat{\mathbb{C}}_1 \uplus \widehat{\mathbb{C}}_2$ for which $\forall \theta \in \mathbb{T}$ the connected set

$$R_1(heta) \cup \{(\infty_1, e^{i2\pi\theta})\} \cup R_2(- heta)$$

is contained in one equivalence class.

- Let $K_1 \perp _F K_2 = (\widehat{\mathbb{C}}_1 \uplus \widehat{\mathbb{C}}_2) / \sim_F.$
- ▶ Let $\pi_F : \widehat{\mathbb{C}}_1 \uplus \widehat{\mathbb{C}}_2 \longrightarrow K_1 \perp _F K_2$ denote the natural projection.
- Equip $K_1 \perp _F K_2$ with the quotient topology.
- Let f₁ ⊥⊥_F f₂ : K₁ ⊥⊥_F K₂ → K₁ ⊥⊥_F K₂ be the mapping induced by f₁ ⊎ f₂

Then there is a natural homeomorphism

The Formal Advantage

The Formal Mating is more operational, because:

Theorem (R.L. Moore)

Let \sim be any topologically closed equivalence relation on \mathbb{S}^2 , with more than one equivalence class and with only connected equivalence classes. Then \mathbb{S}^2/\sim is homeomorphic to \mathbb{S}^2 if and only if each equivalence class is non separating. Moreover let $\pi : \mathbb{S}^2 \longrightarrow \mathbb{S}^2/\sim$ denote the natural projection. In the positive case above we may choose the homeomorphism $h : \mathbb{S}^2/\sim \longrightarrow \mathbb{S}^2$ such that the composite map $h \circ \pi$ is a uniform limit of homeomorphisms.

The Formal Advantage

The Formal Mating is more operational, because

Theorem (R.L. Moore)

Let \sim be any topologically closed equivalence relation on \mathbb{S}^2 , with more than one equivalence class and with only connected equivalence classes. Then \mathbb{S}^2 / \sim is homeomorphic to \mathbb{S}^2 if and only if each equivalence class is non separating. Moreover let $\pi : \mathbb{S}^2 \longrightarrow \mathbb{S}^2 / \sim$ denote the natural projection. In the positive case above we may choose the homeomorphism $h : \mathbb{S}^2 / \sim \longrightarrow \mathbb{S}^2$ such that the composite map $h \circ \pi$ is a uniform limit of homeomorphisms.

Conformal mating revisited

Definition (Conformal/Geometric Mating II)

Two degree d > 1 polynomials f_1, f_2 with connected and locally connected filled-in Julia sets K_1, K_2 are conformally mateable if there exists a degree d rational map $R : \overline{\mathbb{C}} \longrightarrow \overline{\mathbb{C}}$ and a homeomorphism

$$h: K_1 \perp\!\!\!\perp K_2 \to \overline{\mathbb{C}}$$

such that $h \circ \pi_F$ is a uniform limit of homeomorphisms which are conformal on $(\overset{\circ}{K_1} \cup \overset{\circ}{K_2})$ and such that

$$\begin{array}{cccc} K_1 \coprod K_2 & \xrightarrow{f_1 \coprod f_2} & K_1 \coprod K_2 \\ & h \\ & & & \downarrow h \\ & \overline{\mathbb{C}} & \xrightarrow{R} & \overline{\mathbb{C}}. \end{array}$$

Definition (Conformal/Geometric Mating Ia)

Two degree d > 1 polynomials f_1, f_2 with connected and locally connected filled-in Julia sets K_1, K_2 are conformally mateable if there exists a degree d rational map $R : \overline{\mathbb{C}} \longrightarrow \overline{\mathbb{C}}$ and two continuous semi-conjugacies

$$\phi_i: K_i \to \overline{\mathbb{C}}, \quad \text{with} \quad \phi_i \circ f_i = R \circ \phi_i,$$

conformal in the interior of the filled Julia sets, with $\phi_1(K_1) \cup \phi_2(K_2) = \overline{\mathbb{C}}$ and with $\phi_i(z) = \phi_j(w)$ for $i, j \in \{1, 2\}$ if and only if $z \sim_T w$.

Mating Questions 3

- When is the equivalence relation \sim_F closed?
- When are all equivalence classes non-separating?
- If K₁ ⊥⊥ K₂ is homeomorphic to S² ~ C, when is there then a homeomorphism which cojugates f₁ ⊥⊥ f₂ to a rational map?
- Are the equivalence classes of $\sim_{\mathcal{T}}$ always finite sets?
- If bounded can they be of arbitrary size? (This is the question of long ray-connections)

Theorem (Tan Lei, Rees, Shishikura)

Let $f_1(z) = z^2 + c_1$ and $f_2(z) = z^2 + c_2$ be two post critically finite quadratic polynomials. Then f_1 and f_2 are conformally mateable (in the strong sense) if and only if c_1 and c_2 does not belong to conjugate limbs of the Mandelbrot set. Moreover if mateable the resulting rational map is unique up to Mbius conjugacy.

Let there Be FILMS

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ∽ � � �

Multicurves

Let $P \subset \mathbb{S}^2$ be a finite set.

- A simple closed curve γ : S¹ → S² ∨ P is called peritheral if one of the complementary components S² ∨ γ contains at most one point of P.
- A multi curve Γ in S² ∨ P is a set or collection of mutually non homotopic, non-peritheral simple closed curves in S² ∨ P.

• Note that a multi curve has at most #P - 3 elements.

Thurston matrices

- Let F : S² → S² be a PCF branched covering with post critical set P, #P > 3
- A multicurve Γ = {γ₁,..., γ_n} in S² ∨ P is F-stable if for every j and every connected component δ of F⁻¹(γ_j), the simple closed curve δ is either homotopic to some γ_i or peritheral in S² ∨ P.
- The Thurston Matrix of F with respect to the F-stable multicurve Γ is the non negative n × n matrix A = A_{i,j} given by

$$m{A}_{i,j} = \sum_{\delta} 1/\deg(m{F}:\delta o \gamma_j)$$

where the sum is over all connected components δ of $F^{-1}(\gamma_j)$ homotopic to γ_i relative to P, i.i. in $\mathbb{S}^2 \setminus P$.

Thurston obstructions

- Having only non negative entries, the Thurston matrix A has a positive leading eigenvalue, i.e. eigenvalue of maximal modulus.
- A Thurston obstruction to F is an F-stable multicurve Γ with leading eigenvalue of modulus at least 1.

Theorem (Thurston)

Let $F : \mathbb{S}^2 \longrightarrow \mathbb{S}^2$ be a PCF branched covering with post critical set P, and hyperbolic orbifold. Then F is Thurston equivalent to a rational map if and only if F has no Thurston obstruction.

The Orbifold of F

- The orbifold O_F associated to F is the topological orbifold (S², ν) with underlying space S² and whose weight ν(x) at x is the least common multiple of the local degree of Fⁿ over all iterated preimages F⁻ⁿ(x) of x.
- ► The orbifold O_F is said to be hyperbolic if its Euler characteristic χ(O_F) is negative, that is if:

$$\chi(\mathcal{O}_F) := 2 - \sum_{x \in P} \left(1 - \frac{1}{\nu(x)}\right) < 0.$$

J. Milnor, *Pasting together Julia sets: Aworked out example.* Exp. Math. Vol 13 (2004) No. 1.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで