The Notion of Matings

Carsten Lunde Petersen
NSM Roskilde University

Université Paul Sabatier Toulouse June 8, 2011

Matings Workshop

Two views on Mating

- The constructive approach:

Mating is a procedure to construct new rational maps by combining two polynomials.

- The descriptive approach:

Mating is a way to understand the dynamics of certain rational maps in terms of pairs of polynomials.

Background Definitions

- Let $R(z)=p(z) / q(z): \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$ be a rational map, where the polynomials p and q are without common factors.
- The degree of R, i.e. the maximum of the degrees of p and q, will be assumed to be at least 2 .
- We consider the dynamical system given by iteration of R, i.e. with orbits:

$$
z_{0}, z_{1}, \ldots, z_{n}=R\left(z_{n-1}\right), \ldots
$$

- A point $z \in \overline{\mathbb{C}}$ is periodic if $R^{k}(z)=z$ for some $k \geq 1$.
- The multiplier or eigenvalue of a k-periodic point z_{0} is the complex number $\lambda=D R^{k}(z)=\left(R^{k}\right)(z)$.
- Periodic orbits are classified according to their multiplier, super attracting, attracting, neutral and repelling.

The Fatou and Julia set

- The Fatou set F_{R} is the open set of points in $\overline{\mathbb{C}}$, for which the family of iterates $\left\{R^{n}\right\}_{n}$ form a normal family in the sense of Montel in some neighbourhood of the point.
- The Julia set J_{R} is the compact complement. Alternatively the Julia set is the closure of the set of repelling periodic points.
- For a polynomial

$$
f(z)=a_{d} z^{d}+a_{d-1} z^{d-1}+\ldots a_{1} z+a_{0}
$$

the point ∞ is a super attracting fixed point.
Consequently the Julia set is a compact subset of \mathbb{C}.

- Infact:

Theorem (Böttcher)
Given a monic polynomial

$$
f(z)=z^{d}+a_{d-1} z^{d-1}+\ldots a_{1} z+a_{0}
$$

There exists a unique germ of a holomorphic map
$\phi=\phi_{f}:(\overline{\mathbb{C}}, \infty) \rightarrow(\overline{\mathbb{C}}, \infty), \quad \phi(z)=z+a_{d-1} / d+\mathcal{O}(1 / z)$
such that:

$$
\begin{array}{cc}
(\overline{\mathbb{C}}, \infty) \xrightarrow{f} & (\overline{\mathbb{C}}, \infty) \\
\phi \downarrow \\
(\overline{\mathbb{C}}, \infty) \xrightarrow{z^{d}} & (\overline{\mathbb{C}}, \infty)
\end{array}
$$

The filled-in Julia set K_{f}.

- The set

$$
K_{f}=\left\{z \in \mathbb{C} \mid f^{n}(z) \nrightarrow \infty, \text { as } n \rightarrow \infty\right\}
$$

is called the filled-in Julia set.

- $J_{f}=\partial K_{f}$.
- J_{f} and hence K_{f} is connected precisely, if no critical point escapes or iterates to ∞.
In this case the Böttcher-coordinate at infinity extends to a biholomorphic map
$\phi: \overline{\mathbb{C}} \backslash K_{f} \rightarrow \overline{\mathbb{C}} \backslash \overline{\mathbb{D}} \quad$ with inverse $\quad \psi: \overline{\mathbb{C}} \backslash \overline{\mathbb{D}} \rightarrow \overline{\mathbb{C}} \backslash K_{f}$.

External rays

In the following we shall assume that f is a monic polynomial and that K_{f} is connected.
Definition
The external ray $R(\theta)$ of argument $\theta \in \mathbb{R} / \mathbb{Z}=\mathbb{T}$ is the arc

$$
R(\theta)(t)=R_{f}(\theta)(t)=\psi\left(\mathrm{e}^{t+i 2 \pi \theta}\right), \quad t>0 .
$$

Here parametrized by the value of the Greens function:

$$
g(z)=g_{f}(z)=\log |\phi(z)|
$$

Theorem (Caratheodory)

A univalent map $\phi: \mathbb{D} \longrightarrow \mathbb{C}$ has a continuous extension to $\mathbb{S}^{1}=\partial \mathbb{D}$ if and only if $\partial \phi(\mathbb{D})$ is locally connected

Corollary
The Böttcher parameter ψ_{f}, at ∞ extends to a continuous map

$$
\psi: \overline{\mathbb{C}} \backslash \mathbb{D} \rightarrow \overline{\mathbb{C}} \backslash \stackrel{\circ}{K}_{f},
$$

if and only if J_{f} is locally connected.

The Caratheodory loop

Definition
When J_{f} is the locally connected, the continuous map
$\gamma: \mathbb{T} \longrightarrow J_{f}$

$$
\gamma(\theta)=\gamma_{f}(\theta)=\psi_{f}\left(\mathrm{e}^{i 2 \pi \theta}\right)=\lim _{t \rightarrow 0^{+}} R_{f}(\theta)(t)
$$

is called the Caratheodory loop or Caratheodory semi-conjugacy.
It evidently satisfies

$$
f(\gamma(\theta))=\gamma(d \cdot \theta)
$$

Mating Definitions

In the following I shall discuss several definitions of Matings

- Topological Mating
- Formal Mating
- Intermediate forms of Matings, a la Buff-Cheritat
- Geometric or Conformal mating
- The Zakeri-Yampolsky definition of Conformal Mating

Set Up for the Rest of this talk

- $f_{1}, f_{2}: \mathbb{C} \rightarrow \mathbb{C}$ are monic degree $d>1$ polynomials with connected and locally connected Julia sets.
- K_{1} and K_{2} are their filled-in Julia sets and
- $\gamma_{i}: \mathbb{T} \rightarrow J_{i}, i=1,2$ are the Caratheodory loops.
- \sim_{T} denotes the smallest equivalence relation on the disjoint union $K_{1} \sqcup K_{2}$ for which :

$$
\forall \theta \in \mathbb{T}: \gamma_{1}(\theta) \sim_{T} \gamma_{2}(-\theta)
$$

The Topological Mating

Definition

- Let $K_{1} \Perp K_{2}=\left(K_{1} \sqcup K_{2}\right) / \sim$.
- Let $\pi_{T}: K_{1} \sqcup K_{2} \longrightarrow K_{1} \Perp K_{2}$ denote the natural projection.
- Equip $K_{1} \Perp K_{2}$ with the quotient topology.
- Define $f_{1} \Perp f_{2}: K_{1} \Perp K_{2} \longrightarrow K_{1} \Perp K_{2}$ by

$$
f_{1} \Perp f_{2}(z)= \begin{cases}\pi_{T}\left(f_{1}(w)\right), & \text { if } w \in K_{1} \text { and } \pi_{T}(w)=z \\ \pi_{T}\left(f_{2}(w)\right), & \text { if } w \in K_{2} \text { and } \pi_{T}(w)=z\end{cases}
$$

Questions I

Natural questions are

- When is the topological space $K_{1} \Perp K_{2}$ homeomorphic to the two sphere \mathbb{S}^{2} ?
- In case there is a homeomorphism $h: K_{1} \Perp K_{2} \longrightarrow \mathbb{S}^{2}$, when is the conjugate map

$$
h \circ f_{1} \Perp f_{2} \circ h^{-1}: \mathbb{S}^{2} \rightarrow \mathbb{S}^{2}
$$

a branched covering?

- equivalent to a rational map $R: \overline{\mathbb{C}} \longrightarrow \overline{\mathbb{C}} \sim \mathbb{S}^{2}$?
- What does equivalence mean?

Equivalences

Assuming for the moment that $K_{1} \Perp K_{2} \simeq \mathbb{S}^{2}$. Then there are essentially two notions of equivalence in use.

- A weak form called Thurston equivalence and
- A stronger form called Conformal or Geometric Mating.

Even the Conformal Mating definition comes in various strengths.

Definition (Conformal/Geometric Mating I)

Two degree $d>1$ polynomials f_{1}, f_{2} with connected and locally connected filled-in Julia sets K_{1}, K_{2} are conformally/geometrically mateable if there exists a degree d rational map $R: \overline{\mathbb{C}} \longrightarrow \overline{\mathbb{C}}$ and a homeomorphism

$$
h: K_{1} \Perp K_{2} \rightarrow \overline{\mathbb{C}}
$$

conformal on $\pi_{T}\left(\stackrel{\circ}{K}_{1} \cup \stackrel{\circ}{K}_{2}\right)$ and such that

$$
\begin{array}{ccc}
K_{1} \Perp K_{2} & \xrightarrow{f_{1} \Perp f_{2}} & K_{1} \Perp K_{2} \\
h \downarrow & & \downarrow_{h} \\
\overline{\mathbb{C}} & \xrightarrow{R} & \overline{\mathbb{C}} .
\end{array}
$$

Questions II

Before we proceed to the other definitions let me formulate some more questions:

- If there exists a conformal mating of two polynomials, is it then unique up to Möbius conjugacy?
- How many ways can a rational map be obtained as a mating of two polynomials?
- When does the mating depend continuously/measureably/??? on input data?

Branched Coverings

Definition
A branched covering $F: \mathbb{S}^{2} \longrightarrow \mathbb{S}^{2}$ is a map such that: For all $x \in \mathbb{S}^{2}$ there exists local coordinates $\eta: \omega(x) \longrightarrow \mathbb{C}$ and $\zeta: \omega(F(x)) \longrightarrow \mathbb{C}$ and $d \geq 1$ such that

$$
\zeta \circ F \circ \eta^{-1}(z)=z^{d} .
$$

When $d>1$ above the point x is called a critical point. The set of critical points for F is denoted Ω_{F}.
The branched covering F is called post critically finite (PCF) if the post critical set

$$
P_{f}=\left\{F^{n}(x) \mid x \in \Omega_{f}, n>0\right\}
$$

is finite.

Thurston Equivalence

Definition (Thurston Equivalence)
Two PCF branched coverings $F_{1}, F_{2}: \mathbb{S}^{2} \longrightarrow \mathbb{S}^{2}$ are said to be Thurston equivalent if and only if there exists a pair of homeomorphisms $\Phi_{1}, \Phi_{2}: \mathbb{S}^{2} \longrightarrow \mathbb{S}^{2}$ isotopic relative to the post critical set of F_{1} such that

$$
\begin{array}{ccc}
\mathbb{S}^{2} \xrightarrow{F_{1}} \mathbb{S}^{2} \\
\Phi_{1} \downarrow & & \downarrow^{\prime} \\
\mathbb{S}^{2} \xrightarrow{F_{2}} & \mathbb{S}^{2} .
\end{array}
$$

The fine Print

- The topological mating though very intuitive is not very operational in terms of proving theorems.
- A more successful definition in this respect is the notion of formal mating.

Definition (Formal Mating)

- Denote by $\widehat{\mathbb{C}}=\mathbb{C} \cup\left\{(\infty, z) \mid z \in \mathbb{S}^{1}\right\}$ the compactification of \mathbb{C} obtained by adjoining a circle at infinity.
- Let $\widehat{\mathbb{C}}_{i}$ denote the compactifications as above of the dynamical planes \mathbb{C}_{i} for each polynomial $f_{i}, i=1,2$.
- Define

$$
\widehat{\mathbb{C}}_{1} \uplus \widehat{\mathbb{C}}_{2}=\left(\widehat{\mathbb{C}}_{1} \sqcup \widehat{\mathbb{C}}_{2}\right) /\left(\infty_{1}, z\right) \sim\left(\infty_{2}, \bar{z}\right)
$$

- Then the Formal Mating $f_{1} \uplus f_{2}: \widehat{\mathbb{C}}_{1} \uplus \widehat{\mathbb{C}}_{2} \longrightarrow \widehat{\mathbb{C}}_{1} \uplus \widehat{\mathbb{C}}_{2}$ is

$$
f_{1} \uplus f_{2}(z)= \begin{cases}f_{1}(z), & \text { if } z \in \mathbb{C}_{1}, \\ f_{2}(z), & \text { if } z \in \mathbb{C}_{2}, \\ \left(\infty, z^{d}\right), & \text { for }\left(\infty_{i}, z\right) .\end{cases}
$$

The Formal Mating II

- Then $\widehat{\mathbb{C}}_{1} \uplus \widehat{\mathbb{C}}_{2}$ is homeomorphic to \mathbb{S}^{2} and $f_{1} \uplus f_{2}$ is a branched covering.
- If we identify \mathbb{S}^{2} with $\overline{\mathbb{C}}$ and if both polynomials f_{1}, f_{2} are PCF. Then we may ask if $f_{1} \uplus f_{2}$ is Thurston equivalent to a rational map?
- Moreover we can reconstruct the topological mating in a way, which is more ameanable to proving theorems:

Relation to Topological Mating

- Let \sim_{F} denote the smallest equivalence relation on $\widehat{\mathbb{C}}_{1} \uplus \widehat{\mathbb{C}}_{2}$ for which $\forall \theta \in \mathbb{T}$ the connected set

$$
R_{1}(\theta) \cup\left\{\left(\infty_{1}, \mathrm{e}^{i 2 \pi \theta}\right)\right\} \cup R_{2}(-\theta)
$$

is contained in one equivalence class.

- Let $K_{1} \Perp_{F} K_{2}=\left(\widehat{\mathbb{C}}_{1} \uplus \widehat{\mathbb{C}}_{2}\right) / \sim_{F}$.
- Let $\pi_{F}: \widehat{\mathbb{C}}_{1} \uplus \widehat{\mathbb{C}}_{2} \longrightarrow K_{1} \Perp_{F} K_{2}$ denote the natural projection.
- Equip $K_{1} \Perp_{F} K_{2}$ with the quotient topology.
- Let $f_{1} \Perp_{F} f_{2}: K_{1} \Perp_{F} K_{2} \longrightarrow K_{1} \Perp_{F} K_{2}$ be the mapping induced by $f_{1} \uplus f_{2}$
- Then there is a natural homeomorphism
$\chi: K_{1} \Perp_{F} K_{2} \longrightarrow K_{1} \Perp_{T} K_{2}$ conjugating dynamics, i.e.

$$
\begin{array}{ccc}
K_{1} \Perp_{F} K_{2} & \xrightarrow{f_{1} \Perp_{F} f_{2}} & K_{1} \Perp_{F} K_{2} \\
\chi \downarrow & & \downarrow \\
K_{1} \Perp K_{2} & \xrightarrow{f_{1} \Perp f_{2}} & K_{1} \Perp K_{2} .
\end{array}
$$

The Formal Advantage

The Formal Mating is more operational, because:
Theorem (R.L. Moore)
Let \sim be any topologically closed equivalence relation on \mathbb{S}^{2}, with more than one equivalence class and with only connected equivalence classes. Then \mathbb{S}^{2} / \sim is homeomorphic to \mathbb{S}^{2} if and only if each equivalence class is non separating. Moreover let $\pi: \mathbb{S}^{2} \longrightarrow \mathbb{S}^{2} / \sim$ denote the natural projection. In the positive case above we may choose the homeomorphism $h: \mathbb{S}^{2} / \sim \longrightarrow \mathbb{S}^{2}$ such that the composite map $h \circ \pi$ is a uniform limit of homeomorphisms.

The Formal Advantage

The Formal Mating is more operational, because Theorem (R.L. Moore)
Let \sim be any topologically closed equivalence relation on \mathbb{S}^{2}, with more than one equivalence class and with only connected equivalence classes. Then \mathbb{S}^{2} / \sim is homeomorphic to \mathbb{S}^{2} if and only if each equivalence class is non separating. Moreover let $\pi: \mathbb{S}^{2} \longrightarrow \mathbb{S}^{2} / \sim$ denote the natural projection. In the positive case above we may choose the homeomorphism $h: \mathbb{S}^{2} / \sim \longrightarrow \mathbb{S}^{2}$ such that the composite map $h \circ \pi$ is a uniform limit of homeomorphisms.

Conformal mating revisited

Definition (Conformal/Geometric Mating II)

Two degree $d>1$ polynomials f_{1}, f_{2} with connected and locally connected filled-in Julia sets K_{1}, K_{2} are conformally mateable if there exists a degree d rational map $R: \overline{\mathbb{C}} \longrightarrow \overline{\mathbb{C}}$ and a homeomorphism

$$
h: K_{1} \Perp K_{2} \rightarrow \overline{\mathbb{C}}
$$

such that $h \circ \pi_{F}$ is a uniform limit of homeomorphisms which are conformal on $\left(\stackrel{\circ}{K}_{1} \cup \stackrel{\circ}{K}_{2}\right)$ and such that

$$
\begin{array}{ccc}
K_{1} \Perp K_{2} & \xrightarrow{f_{1} \Perp f_{2}} & K_{1} \Perp K_{2} \\
h \downarrow & & \\
& & \\
\\
\overline{\mathbb{C}} & \xrightarrow{R} & \\
\hline \mathbb{C} .
\end{array}
$$

Conformal mating according to Zakeri-Yampolsky

Definition (Conformal/Geometric Mating la)

Two degree $d>1$ polynomials f_{1}, f_{2} with connected and locally connected filled-in Julia sets K_{1}, K_{2} are conformally mateable if there exists a degree d rational map $R: \overline{\mathbb{C}} \longrightarrow \overline{\mathbb{C}}$ and two continuous semi-conjugacies

$$
\phi_{i}: K_{i} \rightarrow \overline{\mathbb{C}}, \quad \text { with } \quad \phi_{i} \circ f_{i}=R \circ \phi_{i}
$$

conformal in the interior of the filled Julia sets, with $\phi_{1}\left(K_{1}\right) \cup \phi_{2}\left(K_{2}\right)=\overline{\mathbb{C}}$ and with $\phi_{i}(z)=\phi_{j}(w)$ for $i, j \in\{1,2\}$ if and only if $z \sim{ }_{T} w$.

Mating Questions 3

- When is the equivalence relation \sim_{F} closed?
- When are all equivalence classes non-separating?
- If $K_{1} \Perp K_{2}$ is homeomorphic to $\mathbb{S}^{2} \sim \overline{\mathbb{C}}$, when is there then a homeomorphism which cojugates $f_{1} \Perp f_{2}$ to a rational map?
- Are the equivalence classes of \sim_{T} always finite sets?
- If bounded can they be of arbitrary size? (This is the question of long ray-connections)

Existence of Matings

Theorem (Tan Lei, Rees, Shishikura)
Let $f_{1}(z)=z^{2}+c_{1}$ and $f_{2}(z)=z^{2}+c_{2}$ be two post critically finite quadratic polynomials. Then f_{1} and f_{2} are conformally mateable (in the strong sense) if and only if c_{1} and c_{2} does not belong to conjugate limbs of the Mandelbrot set. Moreover if mateable the resulting rational map is unique up to Mbius conjugacy.

Let there Be FILMS

Multicurves

Let $P \subset \mathbb{S}^{2}$ be a finite set.

- A simple closed curve $\gamma: \mathbb{S}^{1} \longrightarrow \mathbb{S}^{2} \backslash P$ is called peritheral if one of the complementary components $\mathbb{S}^{2} \backslash \gamma$ contains at most one point of P.
- A multi curve Γ in $\mathbb{S}^{2} \backslash P$ is a set or collection of mutually non homotopic, non-peritheral simple closed curves in $\mathbb{S}^{2} \backslash P$.
- Note that a multi curve has at most \#P-3 elements.

Thurston matrices

- Let $F: \mathbb{S}^{2} \longrightarrow \mathbb{S}^{2}$ be a PCF branched covering with post critical set $P, \# P>3$
- A multicurve $\Gamma=\left\{\gamma_{1}, \ldots, \gamma_{n}\right\}$ in $\mathbb{S}^{2} \backslash P$ is F-stable if for every j and every connected component δ of $F^{-1}\left(\gamma_{j}\right)$, the simple closed curve δ is either homotopic to some γ_{i} or peritheral in $\mathbb{S}^{2} \backslash P$.
- The Thurston Matrix of F with respect to the F-stable multicurve Γ is the non negative $n \times n$ matrix $A=A_{i, j}$ given by

$$
A_{i, j}=\sum_{\delta} 1 / \operatorname{deg}\left(F: \delta \rightarrow \gamma_{j}\right)
$$

where the sum is over all connected components δ of $F^{-1}\left(\gamma_{j}\right)$ homotopic to γ_{i} relative to P, i.i. in $\mathbb{S}^{2} \backslash P$.

Thurston obstructions

- Having only non negative entries, the Thurston matrix A has a positive leading eigenvalue, i.e. eigenvalue of maximal modulus.
- A Thurston obstruction to F is an F-stable multicurve Γ with leading eigenvalue of modulus at least 1.

Theorem (Thurston)
Let $F: \mathbb{S}^{2} \longrightarrow \mathbb{S}^{2}$ be a PCF branched covering with post critical set P, and hyperbolic orbifold. Then F is Thurston equivalent to a rational map if and only if F has no Thurston obstruction.

The Orbifold of F

- The orbifold \mathcal{O}_{F} associated to F is the topological orbifold $\left(\mathbb{S}^{2}, \nu\right)$ with underlying space \mathbb{S}^{2} and whose weight $\nu(x)$ at x is the least common multiple of the local degree of F^{n} over all iterated preimages $F^{-n}(x)$ of x.
- The orbifold \mathcal{O}_{F} is said to be hyperbolic if its Euler characteristic $\chi\left(\mathcal{O}_{F}\right)$ is negative, that is if:

$$
\chi\left(\mathcal{O}_{F}\right):=2-\sum_{x \in P}\left(1-\frac{1}{\nu(x)}\right)<0 .
$$

圁 J. Milnor, Pasting together Julia sets: Aworked out example. Exp. Math. Vol 13 (2004) No. 1.

