Rational maps with Cluster Cycles and the Mating of Polynomials

Thomas Sharland

Mathematics Institute
University of Warwick
11th June 2011
Workshop on the Matings of Polynomials Institut de Mathématiques de Toulouse

Outline

(1) Introduction

- Standard Definitions
(2) Clustering
- Combinatorial data
(3) Results
- Thurston Equivalence
- Fixed Cluster points
- Period 2 cluster cycle results
(4) The general period two case

Definitions.

Let $f: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ be a (bicritical) rational map.

- The Julia set $J(f)$ is the closure of the set of repelling periodic points of f.
- The Fatou set $F(f)$ is $\widehat{\mathbb{C}} \backslash J(f)$.

If f is a polynomial

- The filled Julia set is $K(f)=\left\{z \in \widehat{\mathbb{C}} \mid f^{\circ n}(z) \nrightarrow \infty\right\}$, so that $J(f)=\partial K(f)$
In this talk, we will generally assume that f has a (finite) superatitracting periodic cycle of period $p>1$.

Definitions.

Let $f: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ be a (bicritical) rational map.

- The Julia set $J(f)$ is the closure of the set of repelling periodic points of f.
- The Fatou set $F(f)$ is $\widehat{\mathbb{C}} \backslash J(f)$.

If f is a polynomial

- The filled Julia set is $K(f)=\left\{z \in \widehat{\mathbb{C}} \mid f^{\circ n}(z) \nrightarrow \infty\right\}$, so that $J(f)=\partial K(f)$
In this talk, we will generally assume that f has a (finite) superattracting periodic cycle of period $p>1$.

Definitions

Suppose $f_{c}(z)=z^{d}+c$. Recall the definition of the Carathéodory loop, γ. Then we see

- The points $\beta_{k}=\gamma(k /(d-1)), k=0,1, \ldots, d-2$ are fixed points on $J(f)$.
- If $\alpha \in J(f)$ is the other fixed point and α is the landing point of the ray of angle θ, then it is also the landing point of the rays of angle $d \theta, d^{2} \theta, \ldots$
- Indeed, if $\boldsymbol{z}=\gamma(\theta)$, then $f(\boldsymbol{z})=\gamma(\boldsymbol{d} \theta)$.

Definition

A multicurve $\Gamma=\left\{\gamma_{1}, \ldots, \gamma_{n}\right\}$ of F is called a Levy cycle if for $i=1,2, \ldots, n$, the curve γ_{i-1} is homotopic (rel P_{F}) to a component γ_{i-1}^{\prime} of $F^{-1}\left(\gamma_{i}\right)$ and the map $F: \gamma_{i}^{\prime} \rightarrow \gamma_{i}$ is a homeomorphism.

WARWICK

Thurston's Theorem

Two branched covers F and G are said to be Thurston equivalent if \exists orientation preserving homeomorphisms $\phi_{0}, \phi_{1}: S^{2} \rightarrow S^{2}$:

- $\left.\phi_{0}\right|_{P_{F}}=\phi_{1} \mid P_{F}$
- $\phi_{1} \circ F=G \circ \phi_{0}$
- ϕ_{0} and ϕ_{1} are isotopic through $\phi_{t}, t \in[0,1],\left.\phi_{0}\right|_{P_{F}}=\left.\phi_{t}\right|_{P_{F}}=\left.\phi_{1}\right|_{P_{F}}$ for $t \in[0,1]$.

Theorem (Thurston)
 Let $F: S^{2} \rightarrow S^{2}$ be a postcritically finite branched cover with hyperbolic orbifold. Then F is equivalent to a rational map if and only if F has no Thurston obstructions. This rational map is unique up to Möbius transformation.

Thurston's Theorem

Two branched covers F and G are said to be Thurston equivalent if \exists orientation preserving homeomorphisms $\phi_{0}, \phi_{1}: S^{2} \rightarrow S^{2}$:

- $\left.\phi_{0}\right|_{P_{F}}=\left.\phi_{1}\right|_{P_{F}}$
- $\phi_{1} \circ F=G \circ \phi_{0}$
- ϕ_{0} and ϕ_{1} are isotopic through $\phi_{t}, t \in[0,1],\left.\phi_{0}\right|_{P_{F}}=\left.\phi_{t}\right|_{P_{F}}=\phi_{1} \mid P_{F}$ for $t \in[0,1]$.

Theorem (Thurston)

Let $F: S^{2} \rightarrow S^{2}$ be a postcritically finite branched cover with hyperbolic orbifold. Then F is equivalent to a rational map if and only if F has no Thurston obstructions. This rational map is unique up to Möbius transformation.

Simplifying Thurston's criterion

In general it is difficult to find Thurston obstructions. Levy cycles simplify the search.

- F has a Levy cycle $\Rightarrow F$ has a Thurston obstruction.
- In the bicritical case: F has a Thurston obstruction $\Rightarrow F$ has a Levy cycle.

Simplifying Thurston's criterion

In general it is difficult to find Thurston obstructions. Levy cycles simplify the search.

- F has a Levy cycle $\Rightarrow F$ has a Thurston obstruction.
- In the bicritical case: F has a Thurston obstruction $\Rightarrow F$ has a Levy cycle.

Theorem (Rees, Shishikura, Tan L.)

In the bicritical case, if $\left[\alpha_{1}\right] \neq\left[\alpha_{2}\right], K_{1} \Perp K_{2}$ is homeomorphic to S^{2} and we can give this sphere a unique conformal structure to make $f_{1} \Perp f_{2}$ a holomorphic degree d rational map.

Definition

Let F be a bicritical rational map such that the two critical points belong to the attracting basins of two disjoint (super)attracting periodic orbits of the same period.
Clustering is the condition that the critical orbit Fatou components group together to form a periodic cycle...

- The dynamics on each Fatou component can be conjugated using Böttcher's theorem.
- Internal rays
- The 0 internal ray is fixed under the first return map.
- If the 0 internal rays meet at a point c, and this point is periodic, we say c is a cluster point for F.
e.g. Rabbit \Perp Airplane.

Definition

Let F be a bicritical rational map such that the two critical points belong to the attracting basins of two disjoint (super)attracting periodic orbits of the same period.
Clustering is the condition that the critical orbit Fatou components group together to form a periodic cycle...

- The dynamics on each Fatou component can be conjugated using Böttcher's theorem.
- Internal rays
- The 0 internal ray is fixed under the first return map.
- If the 0 internal rays meet at a point c, and this point is periodic, we say c is a cluster point for F.
e.g. Rabbit \Perp Airplane.

Definition

Let F be a bicritical rational map such that the two critical points belong to the attracting basins of two disjoint (super)attracting periodic orbits of the same period.
Clustering is the condition that the critical orbit Fatou components group together to form a periodic cycle...

- The dynamics on each Fatou component can be conjugated using Böttcher's theorem.
- Internal rays
- The 0 internal ray is fixed under the first return map.
- If the 0 internal rays meet at a point c, and this point is periodic, we say c is a cluster point for F.
e.g. Rabbit \Perp Airplane.
the university of
WARWICK

Definition

Let F be a bicritical rational map such that the two critical points belong to the attracting basins of two disjoint (super)attracting periodic orbits of the same period.
Clustering is the condition that the critical orbit Fatou components group together to form a periodic cycle...

- The dynamics on each Fatou component can be conjugated using Böttcher's theorem.
- Internal rays
- The 0 internal ray is fixed under the first return map.
- If the 0 internal rays meet at a point c, and this point is periodic, we say c is a cluster point for F.
e.g. Rabbit \Perp Airplane.

Example

The Julia set for Rabbit \Perp Airplane (and Airplane \Perp Rabbit!).

Another example

The Julia set for a map with a period two cluster cycle.

Combinatorial data

Restrict attention to the period one and two cases. We can describe the cluster in simple combinatorial terms.
(1) The period of the critical cycles n.
(2) The combinatorial rotation number ρ.
(3) The critical displacement δ.

The combinatorial data of the cluster will be the pair (ρ, δ).

Combinatorial data

Restrict attention to the period one and two cases. We can describe the cluster in simple combinatorial terms.
(1) The period of the critical cycles n.
(2) The combinatorial rotation number ρ.
(3) The critical displacement δ.

The combinatorial data of the cluster will be the pair (ρ, δ).

Combinatorial data

Restrict attention to the period one and two cases. We can describe the cluster in simple combinatorial terms.
(1) The period of the critical cycles n.
(2) The combinatorial rotation number ρ.
(3) The critical displacement δ.

The combinatorial data of the cluster will be the pair (ρ, δ).

Combinatorial data

Restrict attention to the period one and two cases. We can describe the cluster in simple combinatorial terms.
(1) The period of the critical cycles n.
(2) The combinatorial rotation number ρ.
(3) The critical displacement δ.

The combinatorial data of the cluster will be the pair (ρ, δ).

Clusters and Thurston Equivalence

Theorem (S., 2010)

If F and G are bicritical rational maps of the same degree and

- F and G have fixed cluster points and are of degree d
- F and G are quadratic with a period 2 cluster cycle then F and G have the same combinatorial data if and only if they are Thurston equivalent.

```
The above is false in the case where F and G have degree }d\geq3\mathrm{ and
a period two cluster cycle.
```


Clusters and Thurston Equivalence

Theorem (S., 2010)

If F and G are bicritical rational maps of the same degree and

- F and G have fixed cluster points and are of degree d
- F and G are quadratic with a period 2 cluster cycle then F and G have the same combinatorial data if and only if they are Thurston equivalent.

The above is false in the case where F and G have degree $d \geq 3$ and a period two cluster cycle.

Proof Outline

In both cases we use the following method. let X_{F} and X_{G} be the union of the stars of the clusters of F and G.
(1) There exists $\phi: X_{F} \rightarrow X_{G}$ which conjugates the dynamics.
(2) Extend ϕ to a map ϕ
(3) Construct a new map $\widehat{\phi}$ such that $\Phi \circ F=G \circ \widehat{\phi}$.
(4) Modify $\widehat{\phi}$ so that it is equal to ϕ on X_{F}.
(3) Modify this new $\widehat{\Phi}$ so that it is isotopic to ϕ rel X_{F}.

We get a commutative diagram.

Proof Outline

In both cases we use the following method. let X_{F} and X_{G} be the union of the stars of the clusters of F and G.
(1) There exists $\phi: X_{F} \rightarrow X_{G}$ which conjugates the dynamics.
(2) Extend ϕ to a map $\Phi: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$.
(3) Construct a new map $\widehat{\phi}$ such that $\Phi \circ F=G \circ \widehat{\phi}$.
(4) Modify $\widehat{\phi}$ so that it is equal to ϕ on X_{F}.
(5) Modify this new $\widehat{\Phi}$ so that it is isotopic to o rel X_{F}.

We get a commutative diagram.

Proof Outline

In both cases we use the following method. let X_{F} and X_{G} be the union of the stars of the clusters of F and G.
(1) There exists $\phi: X_{F} \rightarrow X_{G}$ which conjugates the dynamics.
(2) Extend ϕ to a map $\Phi: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$.
(3) Construct a new map $\widehat{\phi}$ such that $\Phi \circ F=G \circ \widehat{\phi}$.
(4) Modify $\widehat{\phi}$ so that it is equal to ϕ on X_{F}.
(5) Modify this new $\widehat{\Phi}$ so that it is isotopic to Φ rel X_{F}.

We get a commutative diagram.

Proof Outline

In both cases we use the following method. let X_{F} and X_{G} be the union of the stars of the clusters of F and G.
(1) There exists $\phi: X_{F} \rightarrow X_{G}$ which conjugates the dynamics.
(2) Extend ϕ to a map $\Phi: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$.
(3) Construct a new map $\widehat{\Phi}$ such that $\Phi \circ F=G \circ \widehat{\Phi}$.
(4) Modify $\widehat{\phi}$ so that it is equal to ϕ on X_{F}.
(5) Modify this new $\widehat{\Phi}$ so that it is isotopic to Φ rel X_{F}.

We get a commutative diagram.

Proof Outline

In both cases we use the following method. let X_{F} and X_{G} be the union of the stars of the clusters of F and G.
(1) There exists $\phi: X_{F} \rightarrow X_{G}$ which conjugates the dynamics.
(2) Extend ϕ to a map $\Phi: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$.
(3) Construct a new map $\widehat{\phi}$ such that $\Phi \circ F=G \circ \widehat{\Phi}$.
(4) Modify $\widehat{\phi}$ so that it is equal to ϕ on X_{F}.
(5) Modify this new $\widehat{\Phi}$ so that it is isotopic to Φ rel X_{F}.

We get a commutative diagram...

Constructing the diagram

Ω is either \mathbb{D} (fixed case) or an annulus (period 2 case).

Constructing the diagram

$$
\begin{array}{lccc}
\left(\widehat{\mathbb{C}}, X_{F}\right) & & (\widehat{\mathbb{C}} \backslash \Omega, \partial \Omega) \\
& \left(\widehat{\mathbb{C}}, X_{F}\right) & (\widehat{\mathbb{C}} \backslash \Omega, \partial \Omega) & \\
& \phi \mid & & \\
& \left(\widehat{\mathbb{C}}, X_{G}\right) & (\widehat{\mathbb{C}} \backslash \Omega, \partial \Omega) & \\
& & & (\widehat{\mathbb{C}} \backslash \Omega, \partial \Omega)
\end{array}
$$

ϕ is a conjugacy.

Constructing the diagram

$$
\begin{array}{lll}
\left(\widehat{\mathbb{C}}, X_{F}\right) & & (\widehat{\mathbb{C}} \backslash \Omega, \partial \Omega) \\
& \left(\widehat{\mathbb{C}}, X_{F}\right) \stackrel{\tilde{\tilde{n}}_{F}}{\sim}(\widehat{\mathbb{C}} \backslash \Omega, \partial \Omega) & \\
& \phi \mid & \mid \\
& \left(\widehat{\mathbb{C}}, X_{G}\right) \stackrel{-}{\tilde{n}_{G}}(\widehat{\mathbb{C}} \backslash \Omega, \partial \Omega) & \\
& & (\widehat{\mathbb{C}} \backslash \Omega, \partial \Omega)
\end{array}
$$

$\tilde{\eta}_{F}$ and $\tilde{\eta}_{G}$ are Riemann maps. ψ is induced by ϕ.

Constructing the diagram

$$
\begin{array}{lll}
\left(\widehat{\mathbb{C}}, X_{F}\right) & & (\widehat{\mathbb{C}} \backslash \Omega, \partial \Omega) \\
& \left(\widehat{\mathbb{C}}, X_{F}\right) \stackrel{\tilde{\eta}_{F}}{\longleftarrow}(\widehat{\mathbb{C}} \backslash \Omega, \partial \Omega) & \\
& (\Phi, \phi) \mid & \\
& \left(\widehat{\mathbb{C}}, X_{G}\right) \stackrel{(\Psi, \psi)}{\leftarrow}\left(\widehat{\tilde{n}_{G}} \backslash \Omega, \partial \Omega\right) & \\
& & (\widehat{\mathbb{C}} \backslash \Omega, \partial \Omega)
\end{array}
$$

ψ extends to the homeomorphism ψ which induces the homeomorphism Φ.

Constructing the diagram

Construct $\hat{\Phi}^{\prime}$ so the diagram commutes.

Constructing the diagram

Finally, get the induced map $\widehat{\psi}$ and check if it is isotopic to ψ.

Period 1 Results

A rabbit is any map with a "star-shaped" Hubbard tree. They belong to hyperbolic components which bifurcate from the (unique) period one component in the Multibrot set.

Period 1 Results

A rabbit is any map with a "star-shaped" Hubbard tree. They belong to hyperbolic components which bifurcate from the (unique) period one component in the Multibrot set.

Period 1 Results

A rabbit is any map with a "star-shaped" Hubbard tree. They belong to hyperbolic components which bifurcate from the (unique) period one component in the Multibrot set.

Lemma

If $F=f_{1} \Perp f_{2}$ has a fixed cluster point, then precisely one of the f_{i} is a rabbit.

Lemma

All combinatorial data can be realised (in precisely $2 d-2$ ways), save for the case with $\delta=1$ or $\delta=2 n-1$

The rotation number is fixed by the rotation number of the α-fixed point for the rabbit. The critical displacement is determined by the choice of the complementary map.

Period 1 Results

A rabbit is any map with a "star-shaped" Hubbard tree. They belong to hyperbolic components which bifurcate from the (unique) period one component in the Multibrot set.

Lemma

If $F=f_{1} \Perp f_{2}$ has a fixed cluster point, then precisely one of the f_{i} is a rabbit.

Lemma

All combinatorial data can be realised (in precisely 2d - 2 ways), save for the case with $\delta=1$ or $\delta=2 n-1$.

The rotation number is fixed by the rotation number of the α-fixed point for the rabbit. The critical displacement is determined by the choice of the complementary map.

Period 1 Results

A rabbit is any map with a "star-shaped" Hubbard tree. They belong to hyperbolic components which bifurcate from the (unique) period one component in the Multibrot set.

Lemma

If $F=f_{1} \Perp f_{2}$ has a fixed cluster point, then precisely one of the f_{i} is a rabbit.

Lemma

All combinatorial data can be realised (in precisely 2d - 2 ways), save for the case with $\delta=1$ or $\delta=2 n-1$.

The rotation number is fixed by the rotation number of the α-fixed point for the rabbit. The critical displacement is determined by the choice of the complementary map.

Period 2 (quadratic) Results

A bi-rabbit is a map bifurcating off the period 2 component.

Period 2 (quadratic) Results

A bi-rabbit is a map bifurcating off the period 2 component.

Period 2 (quadratic) Results

A bi-rabbit is a map bifurcating off the period 2 component.

Period 2 (quadratic) Results

A bi-rabbit is a map bifurcating off the period 2 component.

Period 2 (quadratic) Results

A bi-rabbit is a map bifurcating off the period 2 component.

Theorem (S., 2009)

If $F=f_{1} \Perp f_{2}$ has a period two cluster cycle, one of the f_{i} is either a bi-rabbit or a secondary map which lies in the limb of the bi-rabbit.

Lemma (S., 2009)
 All combinatorial data can be realised (in at least two ways).
 Theorem (S., 2010)
 The cases $\delta=1$ and $\delta=2 n-1$ can be constructed from mating with the secondary map.

the university of
WARWICK

Period 2 (quadratic) Results

A bi-rabbit is a map bifurcating off the period 2 component.

Theorem (S., 2009)

If $F=f_{1} \Perp f_{2}$ has a period two cluster cycle, one of the f_{i} is either a bi-rabbit or a secondary map which lies in the limb of the bi-rabbit.

Lemma (S., 2009)

All combinatorial data can be realised (in at least two ways).
\square
The cases $\delta=1$ and $\delta=2 n-1$ can be constructed from mating with the secondary map.

Period 2 (quadratic) Results

A bi-rabbit is a map bifurcating off the period 2 component.

Theorem (S., 2009)

If $F=f_{1} \Perp f_{2}$ has a period two cluster cycle, one of the f_{i} is either a bi-rabbit or a secondary map which lies in the limb of the bi-rabbit.

Lemma (S., 2009)

All combinatorial data can be realised (in at least two ways).

Theorem (S., 2010)

The cases $\delta=1$ and $\delta=2 n-1$ can be constructed from mating with the secondary map.

Example

The mating of these two components. ..

Example

... is equivalent to the mating of these two components

But we've all seen this example before!

A counterexample

Consider the degree 3 multibrot set.

A counterexample

The mating of these two components is a rational map with combinatorial data $(\rho, \delta)=(1 / 2,3)$.

A counterexample

This is the mating of a bi-rabbit. . .

A counterexample

... with a complementary map.

A counterexample

The mating of these two components is also rational map with combinatorial data $(\rho, \delta)=(1 / 2,3)$.

A counterexample

The first map is a bi-rabbit. . .

A counterexample

...the other map lies beyond the same period two component

A counterexample

A closer look at the critical value component for this map.

Observations

These two examples allow us to observe

- both maps have the same intrinsic combinatorial data
- the two rational maps formed by the matings are different
- the first mating is analogous to the degree 2 case, the second is a different kind of mating... in higher degrees, we have the
existence of non-principal root points.
So in this case the combinatorial data is not enough to classify the rational maps in the sense of Thurston.
There is a difference between the degree 2 and the bicritical cases.

Observations

These two examples allow us to observe

- both maps have the same intrinsic combinatorial data
- the two rational maps formed by the matings are different
- the first mating is analogous to the degree 2 case, the second is a different kind of mating. . . in higher degrees, we have the existence of non-principal root points.

So in this case the combinatorial data is not enough to classify the rational maps in the sense of Thurston.
There is a difference between the degree 2 and the bicritical cases.
the university of
WARWICK

Observations

These two examples allow us to observe

- both maps have the same intrinsic combinatorial data
- the two rational maps formed by the matings are different
- the first mating is analogous to the degree 2 case, the second is a different kind of mating. . . in higher degrees, we have the existence of non-principal root points.

So in this case the combinatorial data is not enough to classify the rational maps in the sense of Thurston.
There is a difference between the degree 2 and the bicritical cases.

Summary

- In simple cases, the combinatorial data of a cluster completely defines a rational map.
- Period 1 and period 2 cases are very similar, but with an increased level of complexity for the period 2 case.
- "Non-trivial" shared matings
- Different combinatorial data
- Simple Thurston classification only works in the quadratic case for period 2
- Combinatorics of the matings (not discussed in the talk)

Summary

- In simple cases, the combinatorial data of a cluster completely defines a rational map.
- Period 3?
- Period 1 and period 2 cases are very similar, but with an increased level of complexity for the period 2 case.
- "Non-trivial" shared matings
- Different combinatorial data
- Simple Thurston classification only works in the quadratic case for period 2
- Combinatorics of the matings (not discussed in the talk)

Summary

- In simple cases, the combinatorial data of a cluster completely defines a rational map.
- Period 3?
- Period 1 and period 2 cases are very similar, but with an increased level of complexity for the period 2 case.
- "Non-trivial" shared matings
- Different combinatorial data
- Simple Thurston classification only works in the quadratic case for period 2
- Combinatorics of the matings (not discussed in the talk)

Summary

- In simple cases, the combinatorial data of a cluster completely defines a rational map.
- Period 3?
- Period 1 and period 2 cases are very similar, but with an increased level of complexity for the period 2 case.
- "Non-trivial" shared matings
- Different combinatorial data
- Simple Thurston classification only works in the quadratic case for period 2
- Combinatorics of the matings (not discussed in the talk)

Summary

- In simple cases, the combinatorial data of a cluster completely defines a rational map.
- Period 3?
- Period 1 and period 2 cases are very similar, but with an increased level of complexity for the period 2 case.
- "Non-trivial" shared matings
- Different combinatorial data
- Simple Thurston classification only works in the quadratic case for period 2
- Combinatorics of the matings (not discussed in the talk)
- How to completely classify the period two case?
- Positions of fixed points
- Possibly a classification of the "2 period 2" case will shed light on the problem
- Cluster cycles of period ≥ 3.
- More "secondary maps"
- Early results suggest far more complexity in the descriptions of the matings
- Parameter space (cf. discussion in Buff, Écalle and Epstein for the parabolic case)?

Thanks for listening!

- How to completely classify the period two case?
- Positions of fixed points
- Possibly a classification of the "2 period 2" case will shed light on the problem
- Cluster cycles of period ≥ 3.
- More "secondary maps"
- Early results suggest far more complexity in the descriptions of the matings
- Parameter space (cf. discussion in Buff, Ecalle and Epstein for the parabolic case)?
- How to completely classify the period two case?
- Positions of fixed points
- Possibly a classification of the "2 period 2" case will shed light on the problem
- Cluster cycles of period ≥ 3.
- More "secondary maps"
- Early results suggest far more complexity in the descriptions of the matings
- Parameter space (cf. discussion in Buff, Écalle and Epstein for the parabolic case)?
- How to completely classify the period two case?
- Positions of fixed points
- Possibly a classification of the "2 period 2" case will shed light on the problem
- Cluster cycles of period ≥ 3.
- More "secondary maps"
- Early results suggest far more complexity in the descriptions of the matings
- Parameter space (cf. discussion in Buff, Écalle and Epstein for the parabolic case)?

Thanks for listening!

