Matings, captures and regluings

Vladlen Timorin*

*Faculty of Mathematics National Research University Higher School of Economics, Moscow

Toulouse, June 9, 2011

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Geodesic laminations

Laminations provide topological models for polynomials, say, $f_c(z) = z^2 + c$, with connected and locally connected Julia sets. E.g. consider the basilica $f(z) = z^2 - 1$.

The Julia set of f can be modeled as follows.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The Julia set of f can be modeled as follows.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The Julia set of f can be modeled as follows.

The Julia set of f can be modeled as follows.

Rabbit

Lamination for the rabbit

Topological mating $f_1 \amalg f_2$

- Let *f*₁ and *f*₂ be two quadratic polynomials with locally connected Julia sets.
- Consider the corresponding laminations L₁ and L₂.
- Draw L₁ in the closed unit disk, and L₂ in the complement to the open unit disk.

ション ふゆ アメリア メリア しょうくの

• Collapse leaves and polygons of both laminations.

Path homeomorphisms

Definition

Let $\beta : [0,1] \to S^2$ be a simple path. Define a path homeomorphism $\sigma_\beta : S^2 \to S^2$ as a homeomorphism such that

•
$$\sigma_{\beta}(\beta(0)) = \beta(1)$$

 σ_β(x) = x except in a narrow tube around β[0, 1].

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Path homeomorphisms

Definition

Let $\beta : [0,1] \to S^2$ be a simple path. Define a path homeomorphism $\sigma_\beta : S^2 \to S^2$ as a homeomorphism such that

•
$$\sigma_{\beta}(\beta(0)) = \beta(1)$$

 σ_β(x) = x except in a narrow tube around β[0, 1].

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Formal capture

Suppose that $f(z) = z^2 + c$ is such that $f^{\circ k}(0) = 0$. Let *a* be a strictly preperiodic point that is eventually mapped to 0; denote by *U* the Fatou component of *f* containing *a*. Choose β as the union of

ション ふゆ く は マ く ほ マ く し マ

- external ray landing at some point $b \in \partial U$,
- the point b,
- internal ray of U connecting b with a.

Then $\sigma_{\beta} \circ f$ is a formal capture of f at a.

Conformal capture

The formal capture $\sigma_{\beta} \circ f$ is a Thurston map with critical points 0 and ∞ . Moreover, 0 is periodic of period k, and ∞ gets eventually mapped to 0.

Suppose that $\sigma_{\beta} \circ f$ is Thurston equivalent to a rational map. Call it the conformal capture.

ション ふゆ アメリア メリア しょうくの

Hyperbolic rational functions

Definition

A rational function $f : \mathbb{C}P^1 \to \mathbb{C}P^1$ is called hyperbolic if it is expanding with respect to some Riemannian metric on a neighborhood of the Julia set.

The topological dynamics of hyperbolic rational functions is stable and in many cases easy to understand.

ション ふゆ く は マ く ほ マ く し マ

A conformal capture is a hyperbolic map.

The slices $Per_k(0) = V_k$

 $Per_k(0)$ is the set of (Möbius conjugacy classes of) rational maps of degree 2 with marked critical points c_1 , c_2 such that c_1 is periodic of period k. E.g.

ション ふゆ く は マ く ほ マ く し マ

- $Per_1(0) = \{z^2 + c\},\$
- $Per_2(0) = \{\frac{1}{z^2}\} \cup \{\frac{c}{z^2+2z}\}.$

Capture components

Let $R \in Per_k(0)$ be a conformal capture. Consider the hyperbolic component in $Per_k(0)$ (i.e. component of the set of hyperbolic maps in $Per_k(0)$) containing R. This component is called the capture component.

< □ > < 同 > < 三)

< □ > < 同 > < 三

< □ > < 同 > < 回

< □ > < 同 > < 回

Parameter plane $Per_3(0)$

Parameter plane $Per_4(0)$

・ロト ・聞 ・ ・ ヨ ・ ・ ヨ ・ うくぐ

Formal capture

Suppose that $f(z) = z^2 + c$ is such that $f^{\circ k}(0) = 0$. Let *a* be a strictly preperiodic point that is eventually mapped to 0; denote by *U* the Fatou component of *f* containing *a*. Choose β as the union of

ション ふゆ く は マ く ほ マ く し マ

- external ray landing at some point $b \in \partial U$,
- the point b,
- internal ray of U connecting b with a.

Then $\sigma_{\beta} \circ f$ is a formal capture of f at a.

Capture vs mating

Fix β as above, and consider its pullbacks under $\sigma_{\beta} \circ f$. The intersections of these pullbacks with $\overline{\mathbb{C}} - K_f$ can be straightened. This yields a geodesic lamination L in $\overline{\mathbb{C}} - K_f$. If we put L into \mathbb{D} , then it will correspond to a polynomial p. Thus a fixed capture path β gives rise to both the capture R and the mating $f \coprod p$.

The mating p lies on the boundary of the capture component of R.

€ 990

- nac

うくぐ

うくで

- nac

. nac

うくで

うくぐ

୬ବ୍ଦ

Capture vs mating: regluing

Capture vs mating: regluing

