Matings, captures and regluings

Vladlen Timorin*
*Faculty of Mathematics
National Research University Higher School of Economics, Moscow

Toulouse, June 9, 2011

Geodesic laminations

Laminations provide topological models for polynomials, say, $f_{c}(z)=z^{2}+c$, with connected and locally connected Julia sets.
E.g. consider the basilica $f(z)=z^{2}-1$.

Lamination for the basilica

The Julia set of f can be modeled as follows.

Lamination for the basilica

The Julia set of f can be modeled as follows.

Lamination for the basilica

The Julia set of f can be modeled as follows.

Lamination for the basilica

The Julia set of f can be modeled as follows.

Rabbit

Topological mating $f_{1} \amalg f_{2}$

- Let f_{1} and f_{2} be two quadratic polynomials with locally connected Julia sets.
- Consider the corresponding laminations L_{1} and L_{2}.
- Draw L_{1} in the closed unit disk, and L_{2} in the complement to the open unit disk.
- Collapse leaves and polygons of both laminations.

Path homeomorphisms

Definition

Let $\beta:[0,1] \rightarrow S^{2}$ be a simple path. Define a path homeomorphism $\sigma_{\beta}: S^{2} \rightarrow S^{2}$ as a homeomorphism such that

- $\sigma_{\beta}(\beta(0))=\beta(1)$,
- $\sigma_{\beta}(x)=x$ except in a narrow tube around $\beta[0,1]$.

Path homeomorphisms

Definition

Let $\beta:[0,1] \rightarrow S^{2}$ be a simple path. Define a path homeomorphism $\sigma_{\beta}: S^{2} \rightarrow S^{2}$ as a homeomorphism such that

- $\sigma_{\beta}(\beta(0))=\beta(1)$,
- $\sigma_{\beta}(x)=x$ except in a narrow tube around $\beta[0,1]$.

Formal capture

Suppose that $f(z)=z^{2}+c$ is such that $f^{\circ k}(0)=0$. Let a be a strictly preperiodic point that is eventually mapped to 0 ; denote by U the Fatou component of f containing a. Choose β as the union of

- external ray landing at some point $b \in \partial U$,
- the point b,
- internal ray of U connecting b with a.

Then $\sigma_{\beta} \circ f$ is a formal capture of f at a.

Conformal capture

The formal capture $\sigma_{\beta} \circ f$ is a Thurston map with critical points 0 and ∞. Moreover, 0 is periodic of period k, and ∞ gets eventually mapped to 0 .

Suppose that $\sigma_{\beta} \circ f$ is Thurston equivalent to a rational map. Call it the conformal capture.

Hyperbolic rational functions

Definition

A rational function $f: \mathbb{C} P^{1} \rightarrow \mathbb{C} P^{1}$ is called hyperbolic if it is expanding with respect to some Riemannian metric on a neighborhood of the Julia set.

The topological dynamics of hyperbolic rational functions is stable and in many cases easy to understand.

A conformal capture is a hyperbolic map.

The slices $\operatorname{Per}_{k}(0)=V_{k}$

$\operatorname{Per}_{k}(0)$ is the set of (Möbius conjugacy classes of) rational maps of degree 2 with marked critical points c_{1}, c_{2} such that c_{1} is periodic of period k. E.g.

- $\operatorname{Per}_{1}(0)=\left\{z^{2}+c\right\}$,
- $\operatorname{Per}_{2}(0)=\left\{\frac{1}{z^{2}}\right\} \cup\left\{\frac{c}{z^{2}+2 z}\right\}$.

Capture components

Let $R \in \operatorname{Per}_{k}(0)$ be a conformal capture. Consider the hyperbolic component in $\operatorname{Per}_{k}(0)$ (i.e. component of the set of hyperbolic maps in $\left.\operatorname{Per}_{k}(0)\right)$ containing R. This component is called the capture component.

The parameter plane of maps $c /\left(z^{2}+2 z\right)$

The parameter plane of maps $c /\left(z^{2}+2 z\right)$

The parameter plane of maps $c /\left(z^{2}+2 z\right)$

The parameter plane of maps $c /\left(z^{2}+2 z\right)$

The parameter plane of maps $c /\left(z^{2}+2 z\right)$

Parameter plane $\mathrm{Per}_{3}(0)$

Parameter plane $\mathrm{Per}_{4}(0)$

Formal capture

Suppose that $f(z)=z^{2}+c$ is such that $f^{\circ k}(0)=0$. Let a be a strictly preperiodic point that is eventually mapped to 0 ; denote by U the Fatou component of f containing a. Choose β as the union of

- external ray landing at some point $b \in \partial U$,
- the point b,
- internal ray of U connecting b with a.

Then $\sigma_{\beta} \circ f$ is a formal capture of f at a.

Capture vs mating

Fix β as above, and consider its pullbacks under $\sigma_{\beta} \circ f$. The intersections of these pullbacks with $\overline{\mathbb{C}}-K_{f}$ can be straightened. This yields a geodesic lamination L in $\overline{\mathbb{C}}-K_{f}$. If we put L into \mathbb{D}, then it will correspond to a polynomial p. Thus a fixed capture path β gives rise to both the capture R and the mating $f \amalg p$.

The mating p lies on the boundary of the capture component of R.

A regluing

\square

A regluing

A regluing

A regluing

三 \quad 〇Qल

A regluing

三صดく

A regluing

A regluing

三صQく

A regluing

三 \quad Qल

A regluing

三 \quad ミQく

A regluing

Capture vs mating: regluing

Capture vs mating: regluing

