
KINETIC MODELLING OF STRONGLY MAGNETIZED TOKAMAK

PLASMAS WITH MASS DISPARATE PARTICLES. THE ELECTRON

BOLTZMANN RELATION.

CLAUDIA NEGULESCU

Abstract. The present work aims to justify on a formal level the obtention of the elec-

tron Boltzmann relation from a fully kinetic description of magnetically confined fusion

plasmas, performing a suitable asymptotic limit. The obtained asymptotic limit model

consists of the electron Boltzmann-equilibrium along the magnetic field lines, completed

with a non-trivial dynamics perpendicular to these field lines. In the same asymptotic

limit, the ions behave kinetically or reach either a gyrokinetic or a hydrodynamic regime.

The Boltzmann approximation for the electrons is widely used in numerical simulations in

the aim to drastically reduce the computational burden. It is thus crucial to understand

how to obtain this reduced model from modelling assumptions and asymptotic consider-

ations, starting from a microscopic description of the plasma.
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1. Introduction

The subject matter of the present paper is the formal obtention of the electron Boltzmann

relation, from the underlying kinetic description of strongly confined tokamak plasmas with

mass disparate particles. At the same time, we also present the asymptotic limit models

obtained during this procedure for the ions, namely the kinetic, gyrokinetic or hydrody-

namic ion models.

Fusion plasmas are weakly collisional, due to high temperatures and low densities, such

that the kinetic framework is the appropriate approach for their detailed description. In

particular this amounts to solve a coupled system of two Vlasov or Boltzmann equations

for the ion/electron distribution functions fi,e together with the Poisson equation for the

electrostatic potential φ (or Maxwell’s equations in the electromagnetic case). The diffi-

culty with a fully kinetic treatment is however the high-dimensionality of the phase-space

(6D). Furthermore the presence of multiple spatio-temporal scales makes the problem
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even more complicated, rendering it inaccessible for numerical simulations. To mention

only some examples, the temporary scales extend from the fast electron plasma frequency

ωp, to the fast Larmor gyromotion ωc, further to the collisional frequencies νi,e and finally

to the confinement time τE . Concerning the spatial scales, they range from the small

Debye length λD, to the electron Larmor radius ρe, further to the mean free path of the

particles and finally to the spatial extent of the tokamak L. These various scales impose

the use of very small time and space steps in numerical simulations in order to follow all

the microscopic motions. In our particular case, apart the strong magnetic field, it is the

small mass ratio me/mi ≈ 10−4 of the particles which induces disparate scales and hence

difficulties; in particular for a typical tokamak plasma with similar electron and ion tem-

peratures the electron dynamics is faster than the ion dynamics, the ratio of the thermal

velocities being given by vth,e/vth,i =
√

mi

me
≈ 102. This fact poses rather restrictive time-

step constraints related to the fast electron motion, when a standard discretization of the

bi-kinetic system is used, meaning that the numerical stability requires a CFL-condition

of the type vth,e∆t ≤ ∆x.

The fully-kinetic system contains however too many irrelevant spatio-temporal scales for

the study of many interesting plasma processes. To redress this situation, a more macro-

scopic approach has to be adopted, eliminating the unnecessary fast dynamics and keeping

the complete low-frequency physics. Such a macroscopic or reduced model is obtained

via an asymptotic analysis, letting some specific parameters tend towards zero. In our

particular case, we are only interested in following the plasma evolution on the large ion

time-scales. At these time-scales the electrons attain a certain macroscopic thermal equi-

librium, namely the electron Boltzmann-regime. In some words, this Boltzmann relation

is obtained by assuming zero electron inertia (me → 0) and zero viscosity in the ”parallel”

electron equation of motion (”parallel” with respect to the strong magnetic field), leading

to the relation

∇||pe = −q ne E|| , E = −∇φ . (1.1)

This relation indicates that the pressure-gradient and the electrostatic forces acting on the

electrons (parallel to the magnetic field) are in balance. Moreover, rapid parallel thermal

conduction assures that ∇||Te ∼ 0, such that with the thermodynamic equation of state

pe = ne kB Te, one obtains

ne(t,x) = c(t,x⊥) exp

(

q φ(t,x)

kB Te(t,x⊥)

)

, x = x⊥ + x|| ∈ R
3 , t ∈ R

+ . (1.2)

Equation (1.2) is the so-called Boltzmann relation or adiabatic response, relating the elec-

tron density to the electric potential. Here c(t,x⊥) and Te(t,x⊥) are functions to be deter-

mined from the remaining transport equations as well as initial and boundary conditions;

they do not depend on the parallel coordinate x||. Once c and Te are known, the relation
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(1.2) can be inserted into the Poisson equation for the electrostatic potential, which can

then be coupled to a model for the ion dynamics (kinetic or fluid). Such a procedure

is extensively applied in plasma simulations [14, 18, 27, 36], with the purpose to study

the ITG (ion-temperature-gradient) and TEM (trapped electron mode) micro-instabilities

and associated turbulences, and this because the adiabatic electron response leads to large

reductions in computational costs. Its practical use is due to the time-scale separation

between ion and electron dynamics.

Our main aim in the here presented work is to understand how to obtain from a kinetic

electron description the Boltzmann relation (1.2) in the so-called adiabatic limit. This

asymptotic passage from the kinetic to the adiabatic regime can be very interesting for

simulations in regions where the electron adiabatic response is violated, for example near

the edge of the tokamak [24]. There, one has to go back to the more precise kinetic electron

description, where the need to find the way how to couple these two regimes via a suitable

limit procedure. The first difficulty in this asymptotic study is to find the adequate scal-

ing of the starting kinetic equation, in particular to identify small parameters permitting

to obtain the desired asymptotic limit model. The second arduous task is to close the

asymptotic limit model, meaning to be able to find a well-posed macroscopic limit model

containing the relation (1.2). The mathematical literature in this field is not so abun-

dand, we refer the interested reader for example to the works [2, 4, 19, 23, 32, 34, 39] and

references therein. Other works on asymptotic regimes for strongly magnetized plasmas

where collisions are taken into account are mentioned here for completeness [3, 7, 12]. The

collision-less case has been studied quite extensively, for example in [8, 9, 25, 26, 31]. The

two works [21, 22] investigate binary gaz mixtures, where resembling considerations (to the

here presented ones) are explored.

The present paper is structured in the following manner. Section 2 presents the physical

scaling and identifies the small parameter ε permitting to capture the electron Boltzmann

relation in the limit ε → 0. Section 3 deals with the rigorous mathematical study of the

dominant gyrokinetic-operator as well as of the advection operator along the magnetic field

lines. Finally in Section 4 we formally prove that the chosen scaling permits indeed to get

the adiabatic limit regime for the electrons. An Appendix is attached, condensing some

important relations and computations, permitting thus to keep the presentation as simple

as possible.

2. The fully kinetic model and its scaling

Starting point of our study is a kinetic description of the plasma dynamics in a tokamak,

given by the following Boltzmann equations for the two species of charged particles, ions



4 C. NEGULESCU

and electrons, i.e.










∂tfi + v · ∇xfi +
q

mi
(E+ v ×B) · ∇vfi = Qii(fi) +Qie(fi, fe)

∂tfe + v · ∇xfe −
q

me

(E+ v ×B) · ∇vfe = Qee(fe) +Qei(fe, fi) ,
(2.3)

coupled to the Poisson equation for the electrostatic potential

−∆φ =
q

ε0
(ni − ne) , E = −∇φ , (2.4)

where q is the elementary charge, me,i the electron and ion masses, ε0 the vacuum permit-

tivity, whereas the electron and ion densities ne, ni are given by

ne,i(t,x) :=

∫

Rd

fe,i(t,x,v) dv. (2.5)

In plasmas, the adequate collision operators are of the Fokker-Planck-Landau type, how-

ever we shall choose here for simplicity reasons to deal with the artificial BGK-operators;

important for our present study are only the properties of conservation, entropy-dissipation

and thermal equilibria. These BGK-operators read

Qee,ii(fe,i)(v) := νee,ii (Mne,i,ue,i,Te,i
− fe,i) , (2.6)

Qei(fe, fi)(v) := νei (M
e
ne,ui,Ti

− fe) , Qie(fi, fe)(v) := νie (M
i
ni,ue,Te

− fi) , (2.7)

where νee, νei, νie, νii are the relaxation frequencies of the distribution functions towards

the Maxwellian distributions, given by

Mne,i,ue,i,Te,i
(t,x,v) = ne,i(t,x)

(

me,i

2πkBTe,i

)d/2

exp

(

−me,i
|ue,i(t,x)− v|2

2kBTe,i

)

. (2.8)

Here kB is the Planck constant, ue,i resp. Te,i are the particle mean momenta resp. tem-

peratures defined as

ne,iue,i(t,x) :=

∫

Rd

v fe,i(t,x,v) dv ,
d

2
kBne,iTe,i :=

me,i

2

∫

Rd

|v− ue,i|
2 fe,i(t,x,v) dv .

(2.9)

To have the classical mass, momentum and energy conservation properties of the collision

operators, we have to suppose in the following the relation

miniνie = meneνei .

Remark here also the notationMe
ne,ui,Ti

resp. Mi
ni,ue,Te

in the definition of the inter-species

collision operators, the upper index permitting to clarify which mass to take. These inter-

species collision operators have been taken from the NRL Plasma Formulary [40].

System (2.3)-(2.4) together with the collision operators (2.6)-(2.7) describes the motion

of charged particles in an externally given magnetic field and a self-consistent electric field.
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It permits the study of micro-turbulences arising in fusion plasma dynamics, such as the

ion-temperature-gradient (ITG) and the trapped electron mode (TEM) micro-instabilities.

Micro-turbulence is nowadays one of the most important topics in fusion plasma studies as

it is believed to be responsible for the anomalous transport and thus for the confinement

performances of the device [37].

2.1. Characteristic scales and regime of interest. Let us now identify some small

parameters, characterizing the different regimes of the fusion plasma dynamics. This shall

be done by firstly introducing the orders of magnitude of the quantities involved in the

description of the phenomenon we are interested in, in our particular case phenomena

occurring at the ion spatio-temporal scales. The characteristic scales are summarized here:

• Temperature (hot plasma) (Parameter: γ)

Ti ∼ Te , Ti = T̄ T ′
i , Te = T̄ T ′

e , γ :=
qφ̄

kBT̄
.

• Disparate masses (Parameter: ε)

ε2 :=
me

mi
≪ 1 .

• Microscopic velocity scale

v̄i := vth,i =

√

kBT̄

mi
, v̄e := vth,e =

√

kBT̄

me
=

1

ε
v̄i .

• Microscopic time and length scale (Parameter: η)

→ related to the strong magnetic field:

ωci :=
qB̄

mi
, τci :=

1

ωci
(ion cyclotron frequency) ,

ρL :=
v̄i
ωci

= v̄i τci (ion Larmor radius) ,

→ related to the ionic collision process:

τc := τii (elapsed time between 2 ionic collisions) ,

lc := v̄i τc (mean free path between 2 ionic collisions) ,

η :=
τci
τc

≪ 1 .

• Macroscopic velocity scale (Parameter: α)

ui ∼ ue , ū B̄ = Ē (Electric drift relation) ,

α :=
ū

v̄i
.
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• Macroscopic time and space scale (Dependent parameters: δ, τ, β)

x̄ (distance of interest) , δ :=
lc
x̄
,

t̄ :=
x̄

ū
(observation time) , τ :=

τc
t̄
, β :=

τci
t̄
,

→Relations between these parameters:

β =
α2

γ
, τ =

β

η
, δ =

τ

α
.

• Collision operators, distribution functions

ni ∼ ne , ni = n̄ n′
i ; ne = n̄ n′

e , f̄e =
n̄

v̄de
, f̄i =

n̄

v̄di
,

Q̄ee = νeef̄e , Q̄ii = νiif̄i , Q̄ei = νeif̄e , Q̄ie = νief̄i .

• Collision frequencies [28]

νii = ενee , νie = ε2νei , νie = ενii , νee = νei , τee = τei = ετc , τie =
τc
ε
.

• Debye length (Parameter: λ)

λD :=

√

ε0 kB T̄

n̄i q2
=

vth,i
ωp

, ωp :=

√

n̄q2

ε0mi

, τp := 1/ωp (plasma frequency) ,

λ :=
λD

x̄
=

v̄i
x̄

1

ωp
=

v̄i
ū

τp
t̄
=

1

α

τp
t̄
.

The units or scales chosen here are adapted to the plasma regimes we want to study

(electron Boltzmann regime, gyrokinetic or hydrodynamic ion regimes). The reader not so

familiar with the physics of tokamak fusion plasmas is referred to the introductory books

[17, 28, 29, 33]. Let us also remark that we have a set of 5 independent parameters, for ex.

(γ, ε, η, α, λ) or (β, ε, η, α, λ).

2.2. Non-dimensional kinetic system. With the just defined characteristic scales, we

shall perform now the following changes of variables

x = x̄x′ , t = t̄t′ , vi = v̄iv
′ , ve = v̄ev

′ ,

E(t,x) = ĒE ′(t′,x′) , B(t,x) = B̄B′(t′,x′) , fe,i(t,x,ve,i) = f̄e,if
′
e,i(t

′,x′,v′) ,

which leads to the non-dimensional system (the primes were omitted for simplicity reasons)














∂tfi +
1

α
v · ∇xfi +

α

β

(

E+
1

α
v ×B

)

· ∇vfi =
η

β
[Qii(fi) + εQie(fi, fe)]

∂tfe +
1

ε α
v · ∇xfe −

α

εβ

(

E+
1

ε α
v ×B

)

· ∇vfe =
η

εβ
[Qee(fe) +Qei(fe, fi)] ,

(2.10)
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coupled to the rescaled Poisson equation

−λ2∆φ = ni − ne , ne,i(t,x) :=

∫

Rd

fe,i(t,x,v) dv , E := −∇φ . (2.11)

Here the BGK collision operators have now the forms (in the new variables)

Qee(fe)(v) = Ms
ne,εαue,Te

(t,x,v)− fe , Qii(fi)(v) = Ms
ni,αui,Ti

(t,x,v)− fi .

Qei(fe, fi)(v) = Ms
ne,εαui,Ti

(t,x,v)− fe , Qie(fi, fe)(v) = Ms
ni,αue,Te

(t,x,v)− fi ,

where Ms stands for the rescaled Maxwellian (me,i = 1 and kB = 1), i.e.

Ms
n,u,T (t,x,v) = n(t,x)

(

1

2πT

)d/2

exp

(

−
|u(t,x)− v|2

2T

)

.

Several asymptotic regimes can be studied starting from (2.10), permitting the description

of various plasma phenomena, some of them being presented in Section 2.4. For the moment

let us write down the corresponding, not-closed fluid equations.

2.3. The corresponding non-dimensional fluid model. In the aim to take the mo-

ments of the just obtained non-dimensional kinetic system (2.10), let us introduce the

rescaled macroscopic quantities.

ne,i(t,x) :=

∫

Rd

fe,i(t,x,v) dv ,

εα neue(t,x) :=

∫

Rd

v fe(t,x,v) dv , α niui(t,x) :=

∫

Rd

v fi(t,x,v) dv ,

we(t,x) :=
1

2

∫

Rd

|v|2 fe(t,x,v) dv =
1

2
ε2α2 ne|ue|

2 +
d

2
neTe ,

wi(t,x) :=
1

2

∫

Rd

|v|2 fi(t,x,v) dv =
1

2
α2 ni|ui|

2 +
d

2
niTi ,

Pe(t,x) :=

∫

Rd

(v− εαue)⊗ (v− εαue)fe dv , Pi(t,x) :=

∫

Rd

(v−αui)⊗ (v−αui)fi dv ,

qe(t,x) :=
1

2

∫

Rd

(v− εαue)|v− εαue|
2fe dv , qi(t,x) :=

1

2

∫

Rd

(v−αui)|v−αui|
2fi dv .

Taking now the moments of (2.10) leads to the following systems of macroscopic equa-

tions


























∂t ni + ∇x · (niui) = 0 ,

∂t (niui) +∇x · (niui ⊗ ui) +
1

α2
∇x · Pi −

1

β
ni(E+ ui ×B) = ε

η

β
ni(ue − ui)

∂twi +∇x · (wiui + Piui +
1

α
qi)−

α2

β
niE · ui = ε

η

β
ni

[

α2

2
(|ue|

2 − |ui|
2) +

d

2
(Te − Ti)

]

,

(2.12)
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∂t ne + ∇x · (neue) = 0 ,

∂t (neue) +∇x · (neue ⊗ ue) +
1

ε2α2
∇x · Pe +

1

ε2β
ne (E+ ue ×B) =

η

εβ
ne(ui − ue)

∂twe +∇x · (weue + Peue +
1

εα
qe) +

α2

β
neE · ue =

η

εβ
ne

[

ε2α2

2
(|ui|

2 − |ue|
2)

+
d

2
(Ti − Te)

]

,

(2.13)

coupled to the Poisson equation

−λ2∆φ = ni − ne , E := −∇φ . (2.14)

This system of equations (2.12)-(2.13) is not closed, it is coupled to the kinetic system

(2.10) via the pressure Pi ,Pe and the heat flux qi ,qe quantities. To close this system one

has to identify a small parameter leading (in the vanishing limit) towards a macroscopic

equilibrium, to be characterized in detail.

2.4. Review of different asymptotic models. As mentioned earlier, a variety of regimes

can be studied starting from (2.10), depending on the particular choice of the various in-

volved parameters. Let us mention here some examples and introduce the regime which is

adequate to get the Boltzmann relation. Let us suppose in the following that γ = 1 (mean-

ing that the electric energy is of the same order as the thermal energy), which implies

β = α2, and assume ε small, thus we shall start from














∂tfi +
1

α
v · ∇xfi +

1

α

(

E+
1

α
v ×B

)

· ∇vfi =
η

α2
[Qii(fi) + εQie(fi, fe)]

∂tfe +
1

ε α
v · ∇xfe −

1

ε α

(

E+
1

εα
v ×B

)

· ∇vfe =
η

εα2
[Qee(fe) +Qei(fe, fi)] .

(2.15)

As one can observe from this system, the dynamics of a plasma gaz is characterized by

several time scales, coming among others from the specificity of plasmas of having very

disparate masses. Observe first the scaling between the various collision operators (inter-

and intra-collision operators). Due to the small mass ratio, the ion-electron collision term

is negligible in the relaxation process of the ions towards their thermodynamic equilibrium.

Besides, both collision operators Qee and Qei act on the same time-scale and contribute to-

gether to the thermodynamic relaxation of the electrons. Secondly, observe also the scaling

of the transport parts, which in some situations will be of hydrodynamic type for the ions

(heavy species) and of diffusion type for the electrons (light species). The ions relax much

slower than the electrons towards their corresponding equilibrium, namely
√

me/mi-slower,

such that the electron fluid equations are established in advance to the ion hydrodynamic
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ones.

System (2.15) gives rise to a variety of hybrid ion/electron models, relevant for the descrip-

tion of a fusion plasma gaz. We can identify for example the following regimes:

• η = α = 1, ε ≪ 1:

→ ions: kinetic regime

→ electrons: ⋆ Drift-Diffusion (if Qei not negligible) [35, 38, 41]

⋆ or adiabatic regime (electron Boltzmann relation, if Qei negligible

– no friction);

• η = 1, α ∼ 1, α2 ≪ 1, εα ≪ 1:

→ ions: hydrodynamic scaling [1, 20, 30];

→ electrons: Drift-Diffusion or adiabatic regime ;

• η = α, α ∼ 1, α2 ≪ 1, εα ≪ 1:

→ ions: gyrokinetic regime [5, 6, 31];

→ electrons: Drift-Diffusion or adiabatic regime;

• η = α, α ≪ 1, ε ≪ 1: long time asymptotics:

→ ions: adiabatic regime (ion Boltzmann relation);

→ electrons: Drift-Diffusion or adiabatic regime.

Several other possible asymptotic regimes can be identified. The regime we shall investigate

in the sequel is the electron Boltzmann relation regime, since it is still badly understood

up to now, but often used in numerical simulations. Thus we shall examine in detail the

ε-behaviour of the following rescaled kinetic equation

∂tf
ε
e +

1

ε
v · ∇xf

ε
e −

1

ε

(

E+
1

ε
v ×B

)

· ∇vf
ε
e =

1

ε
Qε

ee(f
ε
e ) . (2.16)

This scaling highlights the delicate competition between transport, oscillating (due to the

strong magnetic field) and dissipative (due to the collision term) effects. As we shall

see later on, the assumption of the electron adiabatic response is based on the assertion

that these particles move very fast along the magnetic field lines, in such a way that

they reach rapidly a thermal equilibrium. However, one has to underline here that this

electron thermal equilibrium (Maxwellian distribution function) is maintained by electron

collisions. When the electrons do not undergo collisions, the Boltzmann equilibrium can

not be reached or even maintained and the approximation becomes controversial.

3. Mathematical study of the dominant operator

In the following we shall consider that we are living in the phase-space Ω × R
3 (from

now on d = 3), with regular and bounded space domain Ω ⊂ R
3 describing a flat torus

(see Section 4), which is a simplification of a real tokamak. The study of the asymptotic

limit ε → 0 of the electron kinetic equation (2.16), naturally leads to the investigation of
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the properties of two operators, namely the dominant operator T := (v×B) · ∇v as well

as the transport operator A := B · ∇x. This shall be done in the present section, starting

by supposing for the rest of this paper the following hypothesis concerning the magnetic

field:

Hypothesis A Let us assume that the magnetic field B is given, time-independent and

sufficiently smooth, with direction b(x) := B(x)
|B(x)|

and magnitude `(x) := |B(x)|, satisfying

infx∈Ω `(x) = γ > 0 for some constant γ. Furthermore we suppose that ∇ ·B = 0.

With respect to this magnetic field, we shall use in the sequel often the following notation

for a vector h ∈ R
3, a scalar function φ(x) or a vector field v(x):

hb := h · b , h‖ := (b⊗ b)h = hb b , h⊥ := (I− b⊗ b)h , h⊥ := h× b .

∇||φ := (b⊗ b)∇φ = (∂bφ)b , ∇⊥φ := (I− b⊗ b)∇φ , so that ∇φ = ∇||φ+∇⊥φ ,

∇|| · v := ∇ · v|| , ∇⊥ · v := ∇ · v⊥ , so that ∇ · v = ∇|| · v +∇⊥ · v ,
(3.17)

where we denoted by ⊗ the vector tensor product. Let us also remark that in some

situations it will be helpful to pass to cylindrical coordinates in velocity space, and this

with respect to a fixed b(x). In more details, each v ∈ R
3 can be characterized by the

coordinates (vb, r, ̟) ∈ R×R
+×S

1
b
, the identification being specified by the decomposition

v = v|| + v⊥ = vb b+ r ̟ , r := |v⊥| , ̟ :=
v⊥

|v⊥|
∈ S

1
b
,

where S
1
b
is the one-dimensional set of unitary vectors, perpendicular to b, namely

S
1
b
:= {̟ ∈ R

3 / |̟| = 1 , ̟ · b = 0} .

Figure 1 represents schematically this cylindrical coordinate system with respect to b. Let

us finally also note that one has dv = r dvb dr d̟.

Coming now to the study of the dominant operator, we can show that T = (v ×B) · ∇v

is a well-defined, linear operator defined on the following spaces

T : D(T ) ⊂ L2(Ω×R
3) → L2(Ω×R

3) , D(T ) :=
{

f ∈ L2(Ω× R
3) / T f ∈ L2(Ω× R

3)
}

.

(3.18)

The characteristics (X(s), V (s)) associated with this transport operator and passing through

the point (x,v), are defined by the ODE










dX

ds
= 0 ,

dV

ds
= `(X(s)) V (s)× b(X(s)) ,

(3.19)
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Figure 1. The cylindrical coordinate system with respect to a unitary, fixed

vector b ∈ R
3.

with initial condition (X(0), V (0)) = (x,v). We shall denote them (X(s;x,v), V (s;x,v)).

One can show immediately that for fixed (x,v) ∈ Ω × R
3, these trajectories have the

explicit form

X(s;x,v) = x , V (s;x,v) = cos(`(x) s)v⊥ + sin(`(x) s) ⊥v + v|| , ∀s ∈ R ,

and are periodic in s, with period Tc(x) :=
2π

`(x)
. The functions in the kernel of the oper-

ator T are nothing else than the functions which are constant along these characteristics.

Remark also that there are three invariants of this characteristic flow, namely x, |v⊥| and

v||. Finally let us introduce the gyro-average operator, corresponding to this periodic flow,

i.e.

J (·) : L2(Ω× R
3) → ker(T ) , (3.20)

defined for f ∈ L2(Ω× R
3) as the average over the trajectories, i.e.

J (f)(x,v) :=
1

Tc(x)

∫ Tc(x)

0

f(X(s;x,v), V (s;x,v)) ds

=
1

2 π

∫

S1
b

f(x, vb b+ |v⊥|̟) d̟ .

Let us summarize now the properties of these operators. For the proof of the following

Proposition we refer the interested reader to the work [13].

Proposition 1. The dominant operator T and gyro-average operator J , defined respec-

tively in (3.18) and (3.20), satisfy the following properties:

(i) The transport operator T is a linear, continuous operator T ∈ L(D(T ), L2), if we

endow the definition domain D(T ) with the norm

||f ||D(T ) := ||f ||L2 + ||(v×B) · ∇vf ||L2 , ∀f ∈ D(T ) .



12 C. NEGULESCU

(ii) The kernel of T corresponds to the functions which are constant along the character-

istics (3.19), i.e.

ker T := {f ∈ L2(Ω× R
3) / ∃ g : Ω× R× R

+ → R such that f(x,v) = g(x, vb, |v⊥|)} .

(iii) The gyro-average operator J : L2 → ker(T ) is linear, continuous and corresponds to

the orthogonal projection onto ker T , i.e.
∫

Ω

∫

R3

(f − J (f))ϕdvdx = 0 , ∀ϕ ∈ ker T .

(iv) The L2-space can be decomposed, by means of the orthogonal projector J , as follows

L2(Ω× R
3) = ker(T )⊕ (ker(T ))⊥ = ker(T )⊕⊥ ker(J ) = ker(T )⊕⊥ Im(T ) ,

where

f = J (f) + f ′ , f ′ := (Id− J )f ∈ ker(J ) .

(v) As `(x) ≥ γ > 0 for all x ∈ Ω, then Im(T ) is closed and one has the one-to-one

mapping

T : D(T ) ∩ ker(J ) → ker(J ) , (3.21)

with inverse belonging to L(ker(J ), ker(J )). Furthermore the Poincaré-like inequality holds

||u||L2 ≤
2π

γ
||T u||L2 , ∀u ∈ D(T ) ∩ ker(J ) .

We shall also need in the following to take the average of some quantities along the

magnetic field lines. This average will be related to the following transport operator

A : D(A) ⊂ L2(Ω) → L2(Ω) , Au := B · ∇xu , (3.22)

with definition domain given by

D(A) := {u ∈ L2(Ω) / B · ∇xu ∈ L2(Ω)} .

The characteristics Z(s;x) associated with this operator and passing through the point

x ∈ Ω are defined as the solutions to the ODE






dZ(s)

ds
= B(Z(s)) , ∀s ∈ R ,

Z(0) = x .

(3.23)

We shall consider in this work a tokamak plasma configuration, meaning that Ω and B

are given so that Z(s,Ω) = Ω for all s ∈ R, hence the magnetic field lines do not leave

the domain and fill the whole Ω. Now, let us define the average 〈a〉 of a scalar function

a : Ω → R along the B-field lines, called field-line average, by the formula

〈a〉(x) := lim
Ls→∞

1

Ls

∫ Ls

0

a(Z(s;x)) ds , 〈·〉 : L2(Ω) → ker(A) . (3.24)
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Lemma 2. [10, 11] For any a ∈ L2(Ω) the sequence {〈a〉L}L>0, with 〈a〉L := 1
L

∫ L

0
a(Z(s;x)) ds,

converges strongly in L2(Ω) as L → 0 towards a function 〈a〉 ∈ kerA, corresponding to the

orthogonal projection of a on kerA.

The following proposition summarizes the properties of these two new operators. For

the proof, we refer to [10, 11].

Proposition 3. The operator A and its average-operator 〈·〉, defined respectively in (3.22)

and (3.24), satisfy the following properties:

(i) The operator A is a linear, continuous operator A ∈ L(D(A), L2(Ω)), if we endow the

definition domain D(A) with the norm

||u||D(A) := ||u||L2(Ω) + ||B · ∇xu||L2(Ω) , ∀u ∈ D(A) .

(ii) The kernel of A corresponds to the functions which are constant along the character-

istics (3.23), i.e.

kerA := {u ∈ L2(Ω) / B ·∇xu = 0} = {u ∈ L2(Ω) / u(x) = u(Z(s;x)) ∀(s,x) ∈ R×Ω} .

(iii) The average-operator 〈·〉 : L2(Ω) → ker(A) is well-defined, linear, continuous and

corresponds to the orthogonal projection onto kerA, i.e.
∫

Ω

(u− 〈u〉)ϕdx = 0 , ∀ϕ ∈ kerA .

(iv) The L2-space can be decomposed, by means of the orthogonal projector 〈·〉, as follows

L2(Ω) = kerA⊕ (kerA)⊥ = kerA⊕⊥ ker〈·〉 = kerA⊕⊥ ImA ,

where each scalar quantity is decomposed into its mean and fluctuation part along B

u = 〈u〉+ u∗ , u∗ := u− 〈u〉 ∈ ker〈·〉 . (3.25)

Remark 3.1. One can argue that the definition of the field-line average (3.24) is not the

usual curve-integral average along the trajectory of B, which is rather given by

〈〈a〉〉(x) := lim
Ls→∞

1

Ls

∫ Ls

0

a(Z(s;x))

∣

∣

∣

∣

dZ(s;x)

ds

∣

∣

∣

∣

ds = lim
Ls→∞

1

Ls

∫ Ls

0

a(Z(s;x)) |B(Z(s;x))| ds ,

(3.26)

〈〈·〉〉 : L2(Ω) → ker(A) .

Indeed, 〈〈·〉〉 is also a projection on ker(A), however it is not an orthogonal projection with

respect to the L2(Ω) scalar product. One could use in the following the projection 〈〈·〉〉

however by changing the scalar product in L2(Ω), including a weight-function.

Remark 3.2. Let us also remark that when |B(Z(s;x))| is constant along the character-

istics, as it will be in the particular cases we shall consider here, namely for the helical

magnetic fields introduced below, one has

〈〈a〉〉(x) = |B(x)| 〈a〉(x) ,



14 C. NEGULESCU

such that the two projections differ only by a constant.

Remark 3.3. Finally, it will be useful in the sequel to take also the average along B of a

field-aligned vector function. What we mean with this is the following: For a given vector-

field Γ : Ω → R
3, for which we have the decomposition Γ = Γ|| + Γ⊥, with Γ|| = Γb b ∈ R

3

we shall mean with “average” and “fluctuation” part of Γ|| the following quantities:

〈Γ||〉 := 〈Γb〉b , Γ∗
|| := Γ∗

b
b , where Γb = 〈Γb〉+ Γ∗

b
∈ R . (3.27)

4. Obtention of the Boltzmann-relation limit ε → 0

The aim of this section is to obtain from the following rescaled electron kinetic equation

∂tf
ε +

1

ε
v · ∇xf

ε −
1

ε

(

E+
1

ε
v×B

)

· ∇vf
ε =

1

ε
Qε

BGK(f
ε) , (4.28)

the Boltzmann relation in the limit ε → 0 and this for a helical magnetic field, given by

B := Bz ez +Bθ(r) eθ , eθ := r (sin(θ),− cos(θ), 0)t ,

where Bz ∈ R, (r, θ) ∈ R
+ × [0, 2 π) and Bθ : R+ → R. Figure 2 is representing this

magnetic field, which is curving around the so-called “magnetic surfaces”. The field lines

are either closed and thus periodic, or open and fill the whole magnetic surface. Remark

that in this case the direction b(x) := B(x)/|B(x)| is verifying also ∇x · b = 0. A simple

example of such a helical magnetic field is

B(x) =





y

−x

1



 .

Equation (4.28) describes a long-time scaling of the so-called gyrokinetic regime of the

BGK-equation. Remark that this equation corresponds to a situation where the magnetic

force is stronger than the collision term. However the collision term appears at the same

order as the transport terms v · ∇xf
ε and E · ∇vf

ε, fact which will bring some difficulties

in the mathematical study. A competition will be installed between the transport term,

transporting the particles, the magnetic-field force term, confining the particles around the

filed lines, and the collision term, introducing some diffusion in the velocity space. This

competition is very delicate and the magnitude of the three different terms is very impor-

tant for the obtention of a well-defined equilibrium in the limit ε → 0.

The boundary conditions we associate with (4.28) correspond to the situation of a peri-

odic flat torus and are the following:

• The spatial domain Ω := S × (0, Lz) ⊂ R
3 with circular base S and boundary

∂Ω := {∂S × (0, Lz)} ∪ {S ×{0, Lz}} is considered periodic in z ∈ [0, Lz], meaning

f(t,x,v) = f(t,x+ Lz ez,v) , ∀(t,x,v) ∈ R
+ × Ω× R

3 . (4.29)
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Furthermore, specular reflection conditions are imposed on the mantle of the torus,

namely

f(t,x,v) = f(t,x,v − 2(v · ν(x)) ν(x)) , ∀x ∈ ∂S × (0, Lz) and ν(x) · v < 0 , (4.30)

where ν(x) denotes the outward normal vector to ∂Ω.

• The velocity domain is the whole space R
3 with vanishing boundary conditions,

namely

f(t,x,v) →|v|→±∞= 0 , ∀(t,x) ∈ R
+ × Ω . (4.31)

Figure 2. The toroidal magnetic-field configuration (flat torus).

To explicit the equation (4.28) further, recall that the collision operator has the form

Qε
BGK(f

ε) := Mnε,εuε,T ε − f ε , Mnε,εuε,T ε =
nε

(2πT ε)3/2
exp

(

−
|v − εuε|2

2T ε

)

, (4.32)

where Mnε,εuε,T ε stands for the local Maxwellian function with the same moments as the

distribution function f ε, in particular we have

nε(t,x) :=

∫

R3

f ε(t,x,v)dv , (4.33a)

ε nε(t,x)uε(t,x) :=

∫

R3

vf ε(t,x,v)dv , (4.33b)

wε(t,x) :=
1

2

∫

R3

|v|2f ε(t,x,v)dv =
3

2
nεT ε + ε2

nε|uε|2

2
, (4.33c)

3

2
nε(t,x)T ε(t,x) :=

1

2

∫

R3

|v − εuε|2f ε(t,x,v)dv . (4.33d)

Let us recall, for clarity reasons, the definitions of the stress tensor and heat flux

P
ε(t,x) :=

∫

R3

(v − εuε)⊗ (v − εuε)f ε(t,x,v)dv , (4.34)

qε(t,x) :=
1

2

∫

R3

|v − εuε|2(v − εuε)f ε(t,x,v)dv , (4.35)
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and denote by pε := nε T ε the scalar pressure. The (not-closed) fluid model associated to

the kinetic equation (4.28) is obtained by taking the moments of the BGK-equation and

reads


























∂tn
ε +∇ · (nεuε) = 0 ,

∂t(n
εuε) +∇ · (nεuε ⊗ uε) +

1

ε2
∇ · Pε +

1

ε2
nε(E+ uε ×B) = 0 ,

∂tw
ε +∇ · (wε uε + P

ε · uε) +
1

ε
∇ · qε + nεE · uε = 0 .

(4.36)

We shall now remain on a formal level and suppose that the kinetic equation is well-posed.

The main theorem of this paper is the following:

Theorem 4. (Limit-model) Under Hypothesis A and assuming a given smooth electric

field E = −∇φ, let us suppose that f ε, solution of the kinetic equation (4.28) with boundary

conditions (4.29)-(4.31), is sufficiently regular. Then, in the limit ε → 0, f ε tends formally

towards a local Maxwellian of the form

f0(t,x,v) = M0 =
n0

(2πT0)3/2
exp

(

−
|v|2

2T0

)

,

where the temperature T0 is independent on the field-coordinate, i.e. ∇||T0 ≡ 0, and the

density n0 has the form

n0(t,x) = c(t,x⊥) exp

(

φ(t,x)

T0(t,x⊥)

)

, ∀x = x⊥ + x|| ∈ R
3 , ∀t ∈ R . (4.37)

The functions c(t,x⊥) and T0(t,x⊥) are determined by the following Limit-model

(L)



































∂tn0 +∇⊥ · (n0u0)⊥ +∇|| · (n0u0)
∗
|| = 0 , 〈(n0u0)

∗
||〉 = 0 ,

∂t〈n0T0〉+
5

3
〈∇⊥ · (n0T0u⊥,0)〉+

5

3
〈∇⊥ · (n0T0

∇T0 ×B

|B|2
)〉

+
2

3
〈(n0u⊥,0) · E⊥〉 −

2

3
〈(n0u0)

∗
|| · ∇||φ〉 = 0 .

(4.38)

where u⊥,0 := uE + uD with uE := E×B

|B|2
the E × B-drift velocity and uD := 1

n0

∇p0×B

|B|2
the

diamagnetic drift velocity. We used the decomposition (3.25) for a quantity in the mean

and fluctuation part along the magnetic field lines, as well as the notation (3.27).

Remark 4.1. The relation (4.37) is the so-called electron Boltzmann relation. Its physical

meaning is that the electrons, being very light and hence mobile, accelerate to high energies

very quickly, leaving behind them a region of large ion charges, which creates a retarding

electric field. An equilibrium is hence achieved between the two antagonist forces, the

pressure-gradient and the electric force.
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Remark 4.2. The Limit-model (4.38) describes the non-trivial electron dynamics perpen-

dicular to the magnetic field. The well-posedness of this problem (existence, uniqueness

and stability results) is an interesting issue and is left for further works.

Remark 4.3. In the specific case of an axis-aligned magnetic field B := ez, the Limit

model takes the simpler form

(L)











∂tn0 + uE · ∇⊥n0 +∇|| · Γ
∗
||,0 = 0 , 〈Γ∗

||,0〉 = 0 ,

∂t〈n0T0〉+ 〈uE · ∇⊥(n0T0)〉 −
2

3
〈Γ∗

||,0 · ∇||φ〉 = 0 ,
(4.39)

where for simplicity reasons we denoted by Γ∗
||,0 := (n0u0)

∗
|| the electron momentum along

the B-direction. Remark that the diamagnetic drift velocity uD disappeared in this axis-

aligned, not-physical configuration.

Formal proof of Theorem 4:

The formal obtention of the Limit-model is based on the following Hilbert-expansion

f ε = f0 + εf1 + ε2f2 +O(ε3) , (4.40)

and the properties of the dominant operator T := (v ×B)·∇v, investigated in detail in the

last section. Indeed, inserting the Hilbert-Ansatz (4.40) into the kinetic equation (4.28)

and identifying the terms of the equal power in ε, yields the infinite hierarchy

v · ∇xf0 − E · ∇vf0 − T f1 = M0 − f0 , (4.41a)

∂tf0 + v · ∇xf1 − E · ∇vf1 − T f2 = M1 − f1 (4.41b)

∂tf1 + v · ∇xf2 − E · ∇vf2 − T f3 = M2 − f2 , · · · (4.41c)

where the Maxwellians Mi are given in Appendix 6.1. The fluid variables (nε,uε, T ε) asso-

ciated to f ε are expanded according to (6.55) which yields a corresponding fluid hierarchy

(6.56) or (6.60). The expansions of the stress tensor Pε and of the heat flux qε occurring

therein are given in (6.58) and in (6.59), respectively. The resolution of this kinetic hier-

archy together with the handling of the corresponding fluid hierarchy (6.60) shall permit

to obtain some information about f0 and acquire in this manner step by step the Limit

model (4.38). Let us show how this is achieved.

Step 1: H-theorem. The first information we can get, comes from the H-theorem, which

states that the asymptotic limit of the sequence {f ε}ε>0, as ε → 0, is a Maxwellian with

zero mean velocity, i.e.

f0(t,x,v) = M0 =
n0

(2πT0)3/2
exp

(

−
|v|2

2T0

)

, (4.42)
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such that zeroth order stress tensor and heat flux are given by P0 = n0 T0 I and q0 = 0.

Indeed, firstly for the BGK-collision operator one can show the non-increase of the H-

functional in time, i.e.
∫

R3×Ω

Qε
BGK(f

ε) ln(f ε) dv dx ≤ 0 (H-theorem) .

Secondly, multiplying the kinetic equation (4.28) by ln(f ε) and integrating over the phase-

space, yields

ε

∫

R3×Ω

∂tf
ε ln(f ε) dvdx =

∫

R3×Ω

Qε
BGK(f

ε) ln(f ε) dvdx ,

which gives in the limit ε → 0 even the equality
∫

R3×Ω

Q0
BGK(f

0) ln(f 0) dv dx = 0 .

The H-theorem [15, 16, 42] permits then to establish that f0 is a local Maxwellian, i.e.

f0 = Mn0,0,T0
.

Remains now to find the evolution equations permitting to compute the density n0 and

the temperature T0. This shall be done by going forth and back between the kinetic hi-

erarchy (4.41) and the corresponding fluid hierarchy (6.60), in order to obtain as much

information as possible.

Step 2: Drift velocities. Let us start by writing down the first three conservation laws

of the fluid hierarchy (6.60). Taking i = 0 and expliciting the energy conservation law in

terms of the pressure p0 = n0T0, yields






















∂tn0 +∇ · (n0u0) = 0 ,

∇p0 + n0E+ (n0u0)×B = 0 ,

∂tp0 +
5

3
∇ · (p0u0) +

2

3
∇ · q1 +

2

3
n0 u0 · E = 0 .

(4.43)

It is this system which shall permit, after some rearrangements, to get the desired evo-

lution equations for (n0, T0) (namely the Limit-model (4.38)), allowing thus to determine

completely the limit distribution function f0 via (4.42). This system is however only closed

if one finds a manner to express q1 in terms of the unknowns (n0,u0, T0), which will be

done, by trying to find some information about f1.

A further, useful information we get from (4.43) is the expression of u⊥,0 in terms of

(n0, T0). Indeed, taking the cross product of the momentum conservation law with B,
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yields for the mean velocity

u⊥,0 =
E×B

|B|2
+

1

n0

∇p0 ×B

|B|2
=: uE + uD , (4.44)

where uE denotes the electric-field drift velocity and uD stands for the diamagnetic drift

velocity [29, 33]. The parallel part of the momentum equation implies a balance between

the pressure force and the electric force, i.e.

∇||(n0 T0) + n0E|| = 0 .

For the moment this equation does not permit to get the Boltzmann relation.

Step 3: Boltzmann relation. Going now back to the kinetic hierarchy and taking the

gyro-average (3.20) over the Eqs. (4.41), eliminates the transport operator T and leads

first to

J (v · ∇xf0)−J (E · ∇vf0) = 0 , (4.45a)

∂tJ (f0) + J (v · ∇xf1)−J (E · ∇vf1) = J (M1)−J (f1) . (4.45b)

In order to determine the equations for the fluctuations f ′
i we subtract (4.45) from (4.41)

and obtain

(v · ∇xf0)
′ − (E · ∇vf0)

′ − T f ′
1 = 0 , (4.46a)

∂tf
′
0 + (v · ∇xf1)

′ − (E · ∇vf1)
′ − T f ′

2 = M′
1 − f ′

1 . (4.46b)

For our further development, namely the obtention of the Limit model (4.38), we shall only

need to solve (4.45a) and (4.46a), as will be seen in the following.

Let us thus start with the resolution of (4.45a). Knowing that f0 = M0, one can

immediately compute

g0 := v · ∇xf0 −E · ∇vf0

= v ·

[(

∇n0

n0
−

3

2

∇T0

T0

)

+
|v|2

2 T0

∇T0

T0
+

E

T0

]

Mn0,0,T0
,

and using the definition of the gyro-average operator (3.20), one gets

J (g0)(t,x,v) = v|| ·

[(

∇||n0

n0
−

3

2

∇||T0

T0

)

+
|v|2

2 T0

∇||T0

T0
+

E||

T0

]

Mn0,0,T0
.

Hence, the first equation in the hierarchy (4.45a), yields the relation

v|| ·

[(

∇||n0

n0
−

3

2

∇||T0

T0

)

+
|v|||

2 + |v⊥|
2

2 T0

∇||T0

T0
+

E||

T0

]

Mn0,0,T0
= 0 , ∀v ∈ R

3 ,
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which permits immediately to show, comparing the terms of equal power in v = v|| + v⊥,

that
∇||T0

T0
≡ 0 ⇒ ∇||T0 ≡ 0 and

∇||n0

n0
−

∇||φ

T0
≡ 0 ,

recovering the expected Boltzmann relation

n0(t,x) = c(t,x⊥) exp

(

φ(t,x)

T0(t,x⊥)

)

, ∀x = x⊥ + x|| ∈ R
3 , ∀t ∈ R . (4.47)

Remains to find the evolution equations for the quantities c(t,x⊥) and T0(t,x⊥), which

shall emerge from (4.43).

Step 4: Heat flux. After having computed f0, one can solve immediately (4.46a) for f ′
1,

using the property that the dominant operator T is bijective, see (3.21). Recalling that

J (g0) = 0 (see (4.45a)), equation (4.46a) can be uniquely solved in ker(J ), i.e.

T f ′
1 = g0 , f ′

1 ∈ ker(J ) .

The unique solution is obtained by passing to cylindrical coordinates in velocity and is

given by

f ′
1(t,x,v) = v⊥ ·

[ 1

`(x)

( |v|2

2T0

−
5

2

) ∇⊥T0

T0

+
u⊥,0

T0

]

M0 , (4.48)

which is easily verified.

As we are just interested in obtaining the limit model as ε → 0, it is not necessary to go

further and compute the full distribution function f1. Indeed, one finally only needs q⊥,1,

as will be shown Step 5. Let us for the moment compute this quantity.

According to Eq. (6.59c) the perpendicular heat flux is computed via

q⊥,1 =
1

2

∫

R3

|v|2v⊥J (f1)dv +
1

2

∫

R3

|v|2v⊥f
′
1dv −

5

2
u⊥,0 n0T0 . (4.49)

Firstly, one remarks that, due to the fact that J (f1) does not depend on ̟ ∈ S
1
b
, we have

1

2

∫

R3

|v|2v⊥J (f1)dv = 0 .

The second term on the right-hand-side in (4.49) is computed finally via (4.48) and gives

1

2

∫

R3

|v|2v⊥f
′
1dv =

5

2
n0T0

∇T0 ×B

|B|2
+

5

2
u⊥,0 n0T0 .

Therefore, q⊥,1 has been entirely determined, and one has

2

3
∇⊥ · q⊥,1 =

5

3
∇⊥ · (n0T0

∇T0 ×B

|B|2
) .
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With all these information, let us finally explain, how to obtain, starting from the fluid

system (4.43), the asymptotic Limit-model (4.38) corresponding to the kinetic equation

(4.28) and permitting to obtain the remaining quantities c(t,x⊥) and T0(t,x⊥). Recall for

this the decomposition and notation (3.25), (3.27) for the mean and the fluctuation part

of a function along the B-field.

Step 5: Limit model. The equation for the Boltzmann-relation ”constant” c(t,x⊥) is ob-

tained by taking the field-line average of the particle conservation law. Indeed, one can

rewrite the particle conservation law as

∂tn0 +∇⊥ · (n0u0)⊥ +∇|| · (n0u0)|| = 0 . (4.50)

Taking now the field-line mean leads to

∂t〈n0〉+ 〈∇⊥ · (n0u0)⊥〉 = 0 , (4.51)

where we used the fact that 〈∇|| ·Γ||,0〉 = 0, with Γ0 standing for n0u0 and Γb,0 := (n0u0)b.

Clearly, for given T0 this equation can be written as an evolution equation for the function

c(t,x⊥).

The evolution of the temperature T0(t,x⊥) is then obtained by averaging the energy

equation along B, i.e.

∂t〈n0T0〉+
5

3
〈∇⊥·(n0T0u⊥,0)〉+

5

3
〈∇⊥·(n0T0

∇T0 ×B

|B|2
)〉+

2

3
〈(n0u⊥,0)·E⊥〉−

2

3
〈Γ∗

||,0·∇||φ〉 = 0 .

(4.52)

We used the fact that Γ||,0 =
[

〈Γb,0〉+ Γ∗
b,0

]

b as well as 〈∂bφ〉 = 0, permitting thus the

elimination of the mean part 〈Γb,0〉b in the system, part which we are in the impossibility

to compute. In what concerns the fluctuation part Γ∗
||,0 = Γ∗

b,0 b, we shall use the remaining

information from the particle continuity equation for its computation. Indeed, subtracting

the average (4.51) from the particle conservation law yields

∇|| · Γ
∗
||,0 = −∂tn

∗
0 − (∇⊥ · (n0u0)⊥)

∗ = 0 , 〈Γ∗
||,0〉 = 0 .

For given n0 and u⊥,0 this last equation is readily solved by integrating along the field lines

of B; the constant of integration is then determined via the integral constraint 〈Γ∗
||,0〉 = 0,
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which guarantees the uniqueness of the solution Γ∗
||,0. Summarizing, we obtain the Limit-

model (4.38) for the unknowns (n0, (n0u0)
∗
||, T0), i.e

(L)



































∂tn0 +∇⊥ · (n0u0)⊥ +∇|| · (n0u0)
∗
|| = 0 , 〈(n0u0)

∗
||〉 = 0 ,

∂t〈n0T0〉+
5

3
〈∇⊥ · (n0T0u⊥,0)〉+

5

3
〈∇⊥ · (n0T0

∇T0 ×B

|B|2
)〉

+
2

3
〈(n0u⊥,0) · E⊥〉 −

2

3
〈(n0u0)

∗
|| · ∇||φ〉 = 0 .

(4.53)

The study of the well-posedness of this Limit-model is a rather hard task and is left for

further works.

5. Conclusions and prospects

In this work we proved how to obtain on a formal level the electron Boltzmann relation

from a suitable scaling of the underlying electron kinetic equation. In this scaling the mag-

netic force term is the dominant operator, whereas the collision term appears at the same

order as the transport terms. It is a scaling which corresponds to a long-time asymptotics

(or zero electron mass, low Mach-number regime) with negligible friction.

Starting from this work several directions can now be considered in future works. Firstly,

the rigorous mathematical study of this asymptotic limit as well as the well-posedness

of the obtained Limit-model is an interesting and hard point. Remark that there exists

no mathematical rigorous justification of the formal development presented in the present

work.

Secondly, the construction of an Asymptotic-Preserving scheme permitting to solve numer-

ically the electron kinetic equation in all regimes ε ∈ [0, 1] (microscopic as well as adiabatic

regimes) with no huge computational costs (ε-independent accuracy, stability and grids)

would be very helpful for plasma studies. Indeed, the Boltzmann relation is often used in

numerical simulations, however it is not valid all over the tokamak device. In particular

near the edge of the device this approximation is violated, so that one has to go back to a

kinetic electron description in order to be accurate enough. This points out the need for a

scheme permitting to mimic at the discrete level, what has been performed in the present

paper at the continuous level. Some first steps in this direction have been performed in

the recent work [19].
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6. Appendix

The author decided to regroup in this Appendix some cumbersome computations and

expansions, in order to keep the presentation of this work as clear as possible.

6.1. Expansion of the Maxwellian in powers of ε. The series expansion of the

Maxwellian (4.32) in powers of ε reads

Mε = M0 + εM1 + ε2M2 +O(ε3) ,

where

M0 =
n0

(2πT0)3/2
exp

(

−
|v|2

2T0

)

, (6.54a)

M1 = M0

[

n1

n0
+

v · u0

T0
−

T1

T0

(3

2
−

|v|2

2T0

)

]

, (6.54b)

M2 = M0

[

n2

n0
+

v · u1

T0
+

n1

n0

v · u0

T0
−

5

2

T1

T0

v · u0

T0
−

3

2

T2

T0
−

3

2

n1T1

n0T0
+

15

8

T 2
1

T 2
0

(6.54c)

−
|u0|

2

2T0

+
T2

2T 2
0

|v|2 +
n1

n0

T1

2T 2
0

|v|2 −
5

4

T 2
1

T 3
0

|v|2 +
(v · u0)

2

2T0

+
T1

2T 3
0

|v|2(v · u0)

+
1

8

T 2
1

T 4
0

|v|4
]

,

6.2. Expansion of the fluid variables in powers of ε. The fluid variables (nε,uε, T ε),

defined in (4.33), have to be expanded in powers of ε as well,

nε = n0 + εn1 + ε2n2 +O(ε3) , (6.55a)

uε = u0 + εu1 + ε2u2 +O(ε3) , (6.55b)

T ε = T0 + εT1 + ε2T2 +O(ε3) . (6.55c)

The expansion coefficients of products aεbε are defined as

(aεbε)0 := a0b0 , (aεbε)1 := a1b0 + a0b1 , (aεbε)2 := a2b0 + a1b1 + a0b2 , etc.

Inserting the expansion of the macroscopic quantities (6.55) into Eqs. (4.36) permits to

get the corresponding infinite fluid hierarchy, for i ≥ 0,


















∂tni +∇ · (nu)i = 0 ,

∂t(nu)i−2 +∇ · (nu⊗ u)i−2 +∇ · Pi = −niE− (nu)i ×B ,

∂twi−1 +∇ · [(w u)i−1 + (P · u)i−1] +∇ · qi = −(nu)i−1 · E ,

(6.56)



24 C. NEGULESCU

where the energy at order i is given by

wi =
3

2
pi + (n|u|2/2)i−2 =⇒ w0 =

3

2
p0 , w1 =

3

2
p1 , w2 =

3

2
p2 + (n|u|2/2)0 ,

and where we employed the convention that quantities with a negative index are not taken

into account.

6.3. Expansion of the pressure and heat flux in powers of ε. Writing the power

series of the stress tensor (4.34) and the heat flux (4.35) as

P
ε = P0 + εP1 + ε2P2 +O(ε3) , qε = q0 + εq1 + ε2q2 +O(ε3) , (6.57)

one obtains using (4.40) and f0 = M0 that

P0 =

∫

R3

v ⊗ vf0dv = p0I , (6.58a)

P1 =

∫

R3

v ⊗ vf1dv−

∫

R3

(u0 ⊗ v + v ⊗ u0)f0dv =

∫

R3

v ⊗ vf1dv , (6.58b)

P2 =

∫

R3

v ⊗ vf2dv−

∫

R3

(u0 ⊗ v + v ⊗ u0)f1dv−

∫

R3

(u1 ⊗ v + v ⊗ u1)f0dv (6.58c)

+ u0 ⊗ u0

∫

R3

f0dv

=

∫

R3

v ⊗ vf2dv−

∫

R3

(u0 ⊗ v + v ⊗ u0)f1dv + n0 u0 ⊗ u0 , (6.58d)

as well as

q0 =
1

2

∫

R3

|v|2vf0dv = 0 , (6.59a)

q1 =
1

2

∫

R3

|v|2vf1dv − u0
1

2

∫

R3

|v|2f0dv − u0 ·

∫

R3

v⊗ vf0dv (6.59b)

=
1

2

∫

R3

|v|2vf1dv −
5

2
u0 p0 , (6.59c)

q2 =
1

2

∫

R3

|v|2vf2dv − u0
1

2

∫

R3

|v|2f1dv − u1
1

2

∫

R3

|v|2f0dv (6.59d)

− u0 ·

∫

R3

v ⊗ vf1dv − u1 ·

∫

R3

v ⊗ vf0dv + |u0|
21

2

∫

R3

vf0dv + u0 ⊗ u0

∫

R3

vf0dv

(6.59e)

=
1

2

∫

R3

|v|2vf2dv −
5

2
u1p0 − u0

1

2

∫

R3

|v|2f1dv− u0 ·

∫

R3

v ⊗ vf1dv .
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6.4. Shifted fluid hierarchy. The fact that q0 = 0 entails that the energy equation in

(6.56) at order i = 0 contains no information for the fluid variables (it is identically zero).

We thus shift the index in the energy equation, i → i + 1, such that a more meaningful

fluid hierarchy reads


















∂tni +∇ · (nu)i = 0 ,

∂t(nu)i−2 +∇ · (nu⊗ u)i−2 +∇ · Pi = −niE− (nu)i ×B ,

∂twi +∇ · [(w u)i + (P · u)i] +∇ · qi+1 = −(nu)i · E .

(6.60)

For a given i ≥ 0 we recall that terms with negative subscripts are not taken into account.
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Université de Toulouse & CNRS, UPS, Institut de Mathématiques de Toulouse UMR
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