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Abstract

The present paper provides a numerical investigation of the decoherence effect
induced on a quantum heavy particle by the scattering with a light one. The
time dependent two-particle Schrödinger equation is solved by means of a time-
splitting method. The damping undergone by the non-diagonal terms of the heavy
particle density matrix is estimated numerically, as well as the error in the Joos-
Zeh approximation formula.
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1 Introduction

Quantum decoherence is nowadays considered as the key concept in the description of
the transition from the quantum to the classical world (see e.g. [6, 7, 9, 19, 20, 22, 24]).

As it is well-known, the axioms of quantum mechanics allow superposition states,
namely, normalized sums of admissible wave functions are once more admissible wave
functions. It is then possible to construct non-localized states that lack a classical
interpretation, for instance, by summing two states localized far apart from each other.
The observable mark of such a quantum mechanical superposition state is the presence of
interference fringes in the probability distribution associated to the state (see e.g. [11]).
We stress that this phenomenon does not have a classical explanation: classically, a
probability distribution evolving freely in the phase space of a single particle follows
the free Liouville equation, so, by linearity, two colliding probability densities sum up
without creating an interference pattern.

Nonetheless, at human scale no interference is revealed, so the question arises, on how
does the interference pattern disappear. Such a phenomenon is called decoherence and
its explanation lies in the fact that macroscopic objects undergo a continuous interaction
with an external environment (such as air molecules, fields), which causes the loss of
the phase relations between the different states in the superposition. Thus, the state of
the system becomes a statistical mixture in which the quantum effects are suppressed.
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In this sense, the system loses its quantum nature and then its state admits a classical
interpretation.

Understanding decoherence is important not only in the foundations of quantum me-
chanics, but also in applied physics. For example, in quantum computation (QC), elec-
tron spin resonance (ESR), and nuclear magnetic resonance (NMR) it is of paramount
importance to preserve the quantum behaviour, so decoherence is not desired and efforts
are made in order to avoid it [27,29]. On the other hand, in quantum interference effect
transistors (QuIET) decoherence is exploited to control the quantum current flow [28].
In such devices, decoherence acts like a switch to modulate the current flow, the de-
vice being switched “off” in the completely coherent state and “on” when interference
disappears.

We remark that the transition from the quantum to the classical regime due to
decoherence is different from the semi-classical limit, where the classical behaviour is
recovered exploiting the smallness of Planck’s constant. Let us stress three main dif-
ferences to this regard: first, decoherence requires an open system, i.e. a system that
interacts with an environment; second, decoherence acts at the length-scale of the in-
terference pattern, whereas a typical semi-classical procedure consists in evaluating a
macroscopic observable on a fast oscillating probability distribution; third, decoherence
is a dynamical effect: it grows with time, whereas the semi-classical limit can be per-
formed in the stationary framework too. Furthermore, at least qualitatively, ~ plays no
role in the mechanism of decoherence: nevertheless, from a quantitative point of view, in
many models of physical relevance the time-scale of the decoherence owes its shortness
to the smallness of ~ (see e.g. [24]). Even though in this paper ~ acts as a constant, we
keep writing it explicitly in formulas, in view of possible future investigation on a more
precise determination of the decoherence rate.
In spite of its recognized relevance, there are still few rigorous results on decoherence,
both from the analytical ( [1–3, 8, 10, 12, 14, 15]) and the numerical ( [5]) point of view.

The aim of this paper is to investigate numerically the mechanism of decoherence
on the simplest model in which it takes place, namely a heavy particle that scatters a
light one. Therefore, the system we monitor is a quantum particle and the environment
is another quantum particle, considerably lighter than the first one. The two particles
interact with each other via a repulsive potential and, due to the low mass-ratio, the
light particle is scattered away while the heavy particle remains almost unperturbed. It
turns out that, at leading order in the mass ratio, the only effect of the interaction on
the heavy particle is the destruction of the interference pattern.

We would like to point out here that, even though the small mass ratio had already
been employed in the well-known Born-Oppenheimer approximation ( [18]), a different
physical situation is described in the present study, as no bound states are present and
the interaction between the particles can be described as an instantaneous scattering
process.

The analytical study of the one dimensional, two-body problem in the small mass
ratio and with a zero-range potential was performed in [14]. In [2] the analysis was
extended to the three-dimensional case in the presence of a fairly general interaction,
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and in [3] a model with an arbitrary number of heavy particles interacting with an
arbitrary number of light ones was investigated.

The present paper provides a numerical resolution of the 2D time-dependent Schrödinger
equation. As a further step, such a resolution is exploited in order to describe the dy-
namics of the two-particle system in the hypothesis of small mass ratio.

In order to summarize our results, we need to be more specific and to anticipate
the content of Section 2. Consider the case of a particle of mass M , initially lying in
the quantum superposition of two localized and separated “bumps”, i.e. described by a
wave function like

φ0(X) := ϕ0(X −X0) e
−iPHX

~ + ϕ0(X +X0) e
iPHX

~ ,

where PH > 0, X0 > 0. The function ϕ0 can be thought of as a Gaussian (as we shall
do in (2.6)). The two bumps are moving against each other.
If the particle does not interact with the external environment, then at time t̄ =
MX0/PH (corresponding to the time when the two bumps completely overlap) the
probability of finding the particle at a position X reads

ρfree
H (t, X) = 2

(
1 + cos

(
2
PH

~
X

)) ∣∣[UM(t)ϕ0

]
(X)

∣∣2 , (1.1)

where UM represents the free Schrödinger evolution for the heavy particle (the precise
definition will be given in (2.9)). The presence of opposite phases in the two components
yields an oscillating term that describes an interference pattern composed of alternating
fringes of high and low probability density, embodied in the term cos

(
2PH

~
X

)
.

On the other hand, according to a widely accepted heuristics, if the same particle
interacts with another particle of smaller mass, then the dynamics becomes more com-
plicated and the quantity given in (1.1) can be replaced (in a suitable approximation)
by

ρinteracting
H (t, X) = 2

(
1 + Λ cos

(
2
PH

~
X

)) ∣∣[UM (t)ϕ0

]
(X)

∣∣2 , (1.2)

where the presence of a constant factor 0 < Λ < 1 shows that the interference fringes
are damped. We stress that Λ depends on the chosen interaction potential and on all
parameters in the model and in the initial data. The rigorous results in [2, 3, 14] show
that formula (1.2) is a correct approximation up to an error

Error ≤ C(
√
ε+ σH),

where the small parameter ε is the ratio between the mass of the light particle and the
mass of the heavy one and σH is the width of the bumps in the initial state of the heavy
particle (see eq. (2.6)).

We stress that the small mass ratio hypothesis is the key assumption in order to
get a density distribution like in (1.2), in which decoherence is the only physical effect.
This means that, due to such a hypothesis, one can completely neglect energy exchange
between the two particles and other effects of deformation and of repulsion of the wave
packets. In other words, dissipative phenomena occur on a longer time scale, typical of
decoherence of Brownian particles (see e.g. [7]).
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Our numerical results complete the cited theoretical analysis, in the sense that we ex-
plicitly evaluate the decoherence coefficient Λ, analyze its dependence on the strength
of the interaction, and estimate the constant C in the error, up to now only implicitly
known.
To this aim, we extract numerically a regime in which decoherence is the dominating
effect, while dissipation can be neglected. Furthermore, we show that, at least with our
choice of a potential, this purely decoherent regime is already reached when the mass
ratio is of the order of 10−3. The result in [3], although rigorous, does not permit such
evaluation due to the presence of an unknown constant in the error estimate.

Our results can be summed up as follows: first, we show that, at least for our model,
the Joos-Zeh approximation is effective for values of the mass ratio of the order of 10−3

(small, but not extremely small), which is the order of magnitude of the mass ratio of
nucleons and electrons. Second, we found that such approximation is no longer valid
as the interaction becomes too strong. Third, we found that, as the strength of the
interaction increases the most important effect beyond decoherence lies in the repulsion
of the two bumps: quite surprisingly, we hardly see a deformation of the probability
profile in our experiments.

The strongest limitation of our results is that, at this stage, they correspond only to
a particular two-body model. A further step shall be to extract the physical relevant
parameters from the interaction potential and to extend the present results to a wider
class of models.

In particular, the theoretical analysis can be extended to the case of an environment
made of many light particles. In this case, the physics involved would remain basically
unchanged, but the resulting coefficient Λ would increase with the number of light
particles, and thus of interactions. Roughly speaking, in the presence of an environment
made of N light particles lying initially in the same state and interacting with the heavy
particle in the same fashion, a coefficient ΛN = ΛN is expected to be found instead of
Λ in (1.2) (see [3]).

However, with the present numerical model the possibility of considering several
light particles is definitely out of reach. This is due to the fact that the wave function
depends on the position variable of all particles, which leads to high dimensional systems
as the number of particles significantly increases. In the forthcoming paper [4] a different
and efficient model will be considered, permitting to treat multiple collisions with no
additional numerical effort.

Anyway, the physics involved in this simple model is by no way different from the
physics of a heavy particle in an environment of many light particles: the amount of
decoherence yielded by many collisions is nothing but the resultant of the amount of de-
coherence produced by any single collision. So, any theoretical analysis of the so-called
collisional decoherence must start from the analysis of a two-body problem and involves
the study of a two-particle scattering (see e.g. [19], [21]).

The outline of this paper is the following. In Section 2 we state the mathematical
problem and introduce the Joos-Zeh approximation for the two-body wave function,
that holds in the small mass-ratio regime. Furthermore, we define the decoherence
coefficient Λ. In Section 3 we present the numerical scheme employed for the resolution
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of the 2D time-dependent Schrödinger equation and comment on the obtained numerical
results. In particular, we investigate the behaviour of the decoherence coefficient Λ as a
function of the strength of the interaction. In Section 4 we sketch, at a qualitative level,
a different insight on decoherence, as suggested by the analysis of the dynamics in the
classical two-particle configuration space. A detailed numerical analysis of the chosen
numerical scheme will be given in the forthcoming paper [23] .

2 Model problem and mathematical study

2.1 The dynamics

We analyze the dynamics of a quantum system composed of a heavy and a light particle,
interacting with each other. We consider the heavy particle as the “system”, and monitor
the decoherence induced on it by the light one, that plays the role of the “environment”.
According to the axioms of non-relativistic quantum mechanics, the evolution of the two-
particle wave function ψ(t, x,X) is driven by the time-dependent Schrödinger equation

i~ ∂tψ(t, x,X) = − ~
2

2M
∆Xψ(t, x,X)− ~

2

2m
∆xψ(t, x,X)+αV (|x−X|)ψ(t, x,X) , (2.3)

where t denotes the time variable, x is the spatial coordinate of the light particle, and
X is the spatial coordinate of the heavy particle. The symbols M and m represent the
masses of the heavy and the light particle, respectively, so m≪M , and ~ is the reduced
Planck’s constant. The parameter α ∈ R

+ shall in the sequel modulate the strength of
the particle interaction.

The potential V is chosen in Gaussian form, namely

V (r) :=
1√
2π σ

e−
r
2

2σ2 , σ ∈ R
+ and r ∈ R . (2.4)

Notice that V is positive and regular; such a choice implies that we are analyzing a
scattering regime, i.e. the interaction is repulsive and no bound states are present.

We assume that at the initial time t = 0 the wave function of the two-particle system
reads

ψ(0, x,X) = ψ0(x,X) =
(
ϕ0(X −X0) e

−iPHX

~ + ϕ0(X +X0) e
iPHX

~

)
χ0(x) . (2.5)

The initial condition (2.5) is taken in factorized form, i.e. at time zero the two particles
are assumed to be uncorrelated. The two functions ϕ0 and χ0 are Gaussian wave packets

ϕ0(X) :=
β

(2π)1/4
√
σH

e
−

X
2

4σ2
H , χ0(x) :=

1

(2π)1/4
√
σL
e
−

(x−x0)2

4σ2
L e

−iPLx

~ , (2.6)

with β ∈ R
+ chosen so that the initial condition satisfies ‖ψ0‖L2(R2) = 1.

Let us remark that −PL/m is the group velocity of the light particle wave function,
whereas −PH/M and PH/M are the group velocities of the two wave packets that com-
pose the state of the heavy particle.

5



2.2 Interference

As it is widely known, the physical interpretation of ψ(t, x,X), known as the Born’s
rule, states that the quantity |ψ(t, x,X)|2dxdX represents the probability to find at
time t the light particle in the volume dx around the position x, and the heavy particle
in the volume dX around X.

From the two-particle wave function ψ(t, x,X) one can get the physically significant
one-particle densities ρL(t, x) and ρH(t, X), related respectively to the light and to the
heavy particle, by an integration on the degree of freedom of the other particle, namely

ρL(t, x) :=

∫
∞

−∞

|ψ(t, x,X)|2 dX , ρH(t, X) :=

∫
∞

−∞

|ψ(t, x,X)|2 dx . (2.7)

In Figure 1 we show the initial density function of the heavy particle, i.e. ρH(0, X).
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Figure 1: Initially, the heavy particle is given under the form of two wave-packets moving against

each other. Here is plotted the corresponding probability density function.

If there is no interaction between the two particles (i.e. if α = 0 in (2.3)), then the
dynamics of the heavy particle is described by the free 1D Schrödinger equation






i~ ∂tϕ(t, X) = − ~
2

2M
∆Xϕ(t, X) , (t, X) ∈ (0, T ) × R

ϕ(t = 0, X) = ϕ0(X −X0) e
−iPHX

~ + ϕ0(X +X0) e
iPHX

~

,

whose solution reads

ϕ(t, X) = e−i
P

2
H

t

2M~ e
−iPHX

~ (UM(t)ϕ0)(X −X0 + PHt/M)

+e−i
P

2
H

t

2M~ e
iPHX

~ (UM(t)ϕ0)(X +X0 − PHt/M), (2.8)

where we introduced the unitary free Schrödinger group UM (t), whose action is

(UM(t)ϕ0)(X) =

√
M

2πi~t

∫ +∞

−∞

ei
M(X−X

′)2

2~t ϕ0(X
′) dX ′. (2.9)
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Applying the Born’s rule to (2.8) one finds the following evolution of the heavy particle
density function

ρH(t, X):=
∣∣(UM(t)ϕ0)(X −X0 + PHt/M)

∣∣2 +
∣∣(UM(t)ϕ0)(X +X0 − PHt/M)

∣∣2

+2Re
[
e−2i

PH

~
X(UM(t)ϕ0)(X −X0 + PHt/M)(UM(t)ϕ0)(X +X0 − PHt/M)

]
.

(2.10)
At time t = X0M

PH

, which corresponds to the complete overlap of the two heavy particle
bumps, the probability density reads

ρH(t, X) = 2

(
1 + cos(2

PH

~
X)

)∣∣[UM(t)ϕ0

]
(X)

∣∣2 . (2.11)

Let us stress that the last term in (2.10) as well as the term cos(2PH

~
X) in (2.11) describe

the appearance of the interference pattern in the density function of the heavy particle,
in the region where the two bumps overlap (see Figure 2 on the left). This is the fully
quantum mechanical picture.

It is not immediate to understand which is the classical counterpart of (2.11). Indeed,
it is well-known that no classical free evolution can reproduce the quantum evolution of
the probability densities of both the position and the momentum for the heavy particle
(see e.g. [17]). Nevertheless, there exists a classical distribution in the phase space that
reproduces the quantum evolution of a single Gaussian bump. We interpret the sum of
two such distributions as the classical counterpart of the quantum free evolution of our
two-bump initial data. Since it evolves by the free Liouville equation, that is linear, no
interference can arise and we can understand

ρH,C(t, X) :=
∣∣(UM(t)ϕ0)(X −X0 + PHt/M)

∣∣2 +
∣∣(UM(t)ϕ0)(X +X0 − PHt/M)

∣∣2 ,
(2.12)

as the classical correspondent of (2.11). Eq. (2.12) implies ρH,C(t, X) = 2
∣∣(UM (t)ϕ0)(X)

∣∣2,
as plotted in Figure 2, on the right.

We investigate numerically in this paper how the interaction with the light particle
induces the decay of the last term in (2.10) and, consequently, how the interference
pattern is lowered. This is the so-called “decoherence effect”.

2.3 Decoherence according to Joos-Zeh

The physical mechanism at the origin of decoherence has been described in a famous
paper by Joos and Zeh ( [22]). In this paper, the environment is modeled as a gas of
many light particles, and a repulsive force acts between the heavy particle and each light
particle. The dynamics of such many-particle system is then depicted as a sequence of
binary collisions.

Owing to the difference in the mass of the particles involved, in any such collision
the state of the heavy particle remains basically unchanged while the light particle is
scattered away. If the initial state of the heavy particle is the superposition of two
localized “bumps”, as in (2.5), then the light particle is scattered separately by both
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Figure 2: Left: Interference pattern: quantum superposition of the two bumps in the probability

density of the heavy particle. Right: Classical superposition of the two bumps in the probability

density of the heavy particle. Notice the difference in the scale of the vertical axes.

bumps, giving rise to two scattered waves. Moreover, as the two bumps are localized at
different points, the respective scattered waves of the light particle cannot be equal.
As a net effect of the presence of two different scattered wave functions of the light
particle, associated each to the corresponding bump of the heavy particle, the collisions
provide a sensible modification of the probability density of finding the heavy particle
at a fixed point: in particular, the presence of the fringes becomes less evident, i.e.
decoherence occurs.

Applying the Joos-Zeh hypothesis to our model translates into assuming that, at
time t = X0M

PH

, the probability density of the heavy particle reads

ρH,JZ(t, X) = 2

(
1 + Λ cos(2

PH

~
X)

) ∣∣[UM(t)ϕ0

]
(X)

∣∣2 , (2.13)

where Λ is the decoherence coefficient that measures the attenuation of the interference
fringes. Indeed, by (2.13), it appears that for Λ = 1 the approximation coincides with
the fully quantum case, while for Λ = 0 the purely classical case is recovered. The case
0 < Λ < 1 corresponds to an intermediate situation, where interference is only partially
suppressed.

The mathematical derivation of the approximation (2.13) was provided in [3]. Fol-
lowing the line of this paper, we introduce the “mass ratio” parameter ε := m

M
≪ 1 and

modify the problem defined in (2.3)-(2.6) rescaling the potential by the factor ε−1. The
rescaled Schrödinger equation writes now

i~ ∂tψ
ε(t, x,X) = − ~

2

2M
∆Xψ

ε(t, x,X) − ~
2

2Mε
∆xψ

ε(t, x,X) +
α

ε
V (|x−X|)ψε(t, x,X).

(2.14)
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Theorem 1.1. in [3] establishes that, for fixed T > 0, the solution ψε(t, x,X) of
(2.14),(2.4)-(2.6) can be approximated for all times t ∈ [0, T ] by

ψε
a(t, x,X) =

M
√
ε

2πi~t

[∫ +∞

−∞

ei M(X−X
′)2

2~t ϕ0(X
′ −X0)e

−i
PHX

′

~

×
∫ +∞

−∞

ei
Mε(x−x

′)2

2~t Ω−1
+ (X ′)χ0(x

′) dx′ dX ′

+

∫ +∞

−∞

ei M(X−X
′)2

2~t ϕ0(X
′ +X0)e

i
PHX

′

~

×
∫ +∞

−∞

ei
Mε(x−x

′)2

2~t Ω−1
+ (X ′)χ0(x

′) dx′ dX ′

]
, (2.15)

and the error can be estimated as follows

‖ψε(t) − ψε
a(t)‖L2(R2) ≤ CT

√
ε , ∀t ∈ [0, T ] , (2.16)

where the constant CT > 0 depends on T , on the initial data (2.5) and on a suitable
norm of the interaction potential αV .

In (2.15) the symbol Ω+(X ′) denotes the Møller wave operator for the interaction
given by a potential V centered at the point X ′, defined by (for more details see [26])

Ω+(X ′)ψ := lim
ε→0

e
it

ε
[− ~

2M
∂2

x+ α

~
V (·−X′)]e

it

ε

~

2M
∂2

x ψ, (2.17)

where we used the small mass ratio, namely m = εM .
Roughly speaking, the role of Ω−1

+ (X ′) is to map the initial wave function of the light
particle into the corresponding “scattered” state. In other words, in the small mass ratio
approximation the whole interaction between the two particles occurs at time zero, and
is completely described by the action of Ω+(X ′). The motion of the heavy particle is
then governed by the free Hamiltonian, but the initial state must be replaced by the
scattered state.

A further approximation can be introduced, that consists in neglecting the width of
the bumps of the initial wave function of the heavy particle. To this aim, assume that
the wave packet ϕ0 is concentrated around its centre, i.e. σH in (2.6) is small. Then,
one can replace Ω+(X ′) by Ω+(X0) in the first summand of the r.h.s. of (2.15), and by
Ω+(−X0) in the second one. As a consequence, one can approximate ψε

a(t) by

ψε
b(t, x,X) =

M
√
ε

2πi~t

[∫ +∞

−∞

ei M(X−X
′)2

2~t ϕ0(X
′ −X0)e

−i
PHX

′

~ dX ′

×
∫ +∞

−∞

ei
Mε(x−x

′)2

2~t Ω−1
+ (X0)χ0(x

′) dx′

+

∫ +∞

−∞

ei M(X−X
′)2

2~t ϕ0(X
′ +X0)e

i
PHX

′

~ dX ′

×
∫ +∞

−∞

ei
Mε(x−x

′)2

2~t Ω−1
+ (−X0)χ0(x

′) dx′
]
, (2.18)
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and the related error reads

‖ψε
a(t) − ψε

b(t)‖L2(R2) ≤ CT α σH ‖V ′‖2 , ∀t ∈ [0, T ] , (2.19)

as one can easily prove refining Proposition 3.2 of [3] and applying it to the present
special case with initial data (2.5), (2.6) and potential (2.4).

Notice that the function ψε
b(t) is the sum of two factorized states, so it exhibits a

remarkably simpler structure than ψε
a(t).

Computing now the heavy particle probability density corresponding to (2.18), yields

ρε
b(t, X) :=

∣∣(UM (t)ϕ0)(X −X0 + PHt/M)
∣∣2 +

∣∣(UM (t)ϕ0)(X +X0 − PHt/M)
∣∣2

+2Re
[
Λe−2i

PH

~
X(UM(t)ϕ0)(X −X0 + PHt/M)(UM (t)ϕ0)(X +X0 − PHt/M)

]
,

(2.20)
where the decoherence coefficient Λ is given by

Λ :=

∫ +∞

−∞

Ω−1
+ (X0)χ0(x) Ω−1

+ (−X0)χ0(x) dx. (2.21)

Remark now that formula (2.20) at time t = t is nothing but the Joos-Zeh approximation
(2.13). By the definition (2.21) it appears that the decoherence coefficient Λ depends
on the initial wave function χ0 of the light particle, on the interaction potential V , and
on the initial distance 2X0 between the centres of the two bumps of the heavy particle.

Let us observe here that the Cauchy-Schwarz inequality implies |Λ| ≤ 1, so the inter-
ference fringes are diminished as compared to the non-interacting case (2.10). Indeed,
for t = t̄ the probability density (2.20) gives the profile of Figure 3.
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Figure 3: Partially decoherent superposition of the two heavy particle bumps.

Before entering in the details of our numerical resolution, let us stress once again the
relevant difference between the evolution equations (2.3) and (2.14), i.e. the rescaling of
the potential by the factor ε−1. At a first glance this factor could seem quite unphysical.
Nonetheless, it plays a fundamental role in the occurrence of the decoherence effect,
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isolating it from other phenomena like dissipation, repulsion or deformation of the wave-
packet envelope. Notice that, without introducing such a rescaling, in the limit ε → 0
the scattering of the light particle would carry no effect on the heavy particle.
We stress once again that, on a qualitative level, there is no difference between this case
and the case with many light particles. In the latter, decoherence would arise stronger,
being dependent on the number of interactions between the heavy and the light particles.
As already explained in the introduction, due to the numerical difficulties in considering
several light particles, related to the dimensionality of the model, we shall focus on the
two-body problem.

3 Numerical resolution

This section is concerned with the numerical resolution of the two-particle time-dependent
Schrödinger problem






i~∂tψ = − ~2

2M
∆Xψ − ~2

2m
∆xψ + α

m
V (|x−X|)χ[0,Tint](t)ψ , for (x,X) ∈ Ω , t ≥ 0

∂xψ(t, x,X) = 0 on ∂Ωx × ΩX ; ∂Xψ(t, x,X) = 0 on Ωx × ∂ΩX

ψ(0, x,X) = ψ0(x,X) , for (x,X) ∈ Ω ,
(3.22)

where Ω = Ωx ×ΩX is a bounded simulation domain with boundary ∂Ω = ∂Ωx ×ΩX ∪
Ωx × ∂ΩX . The obtained numerical simulation results are presented and analyzed. In
particular, the decoherence coefficient Λ(α) is computed as a function of the strength of
the interaction between the particles and the resulting Joos-Zeh approximation formula
is compared with the numerical solution.

Before entering into the details of our numerical method, let us comment on some
relevant questions we had to face when performing the simulations.
Even though in the idealized physical experiment the two particles evolve in the whole
R × R position space, numerically we are forced to solve the two-particle Schrödinger
equation on a bounded simulation domain Ω. Thus, we are led to impose boundary
conditions. In order to simplify the numerical resolution of problem (3.22), we choose
homogeneous Neumann boundary conditions, the particles being thus reflected once
having reached the boundary ∂Ω. On the other hand, absorbing boundary conditions,
which would permit the particles to get in and out of the simulation domain, would
be more realistic from a physical point of view, but would considerably complicate the
numerical resolution. Furthermore, in this first work we choose to focus on the decoher-
ence effect produced by a single collision between the heavy and the light particle. This
fact shall permit us to avoid the implementation of artificial (or absorbing) boundary
conditions and to get precise results even when using Neumann boundary conditions.
Let us comment on this, in particular on the choice of Tint and of the other parameters.

According to Joos and Zeh, in the regime of pure decoherence the evolution of the
bumps in the heavy particle probability density is approximately free, as far as the
bumps do not overlap. Thus, the evolution consists of two phenomena: first, the centres
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of the bumps move with velocity ±PH/M ; second, each bump spreads at a time rate
proportional to M . Since we are interested in measuring the progressive disappearance
of the interference fringes, the width σH of the initial wave packet of the heavy particle
has to be chosen sufficiently large, in order to distinguish several fringes inside it, while
the mass M of the heavy particle must be chosen in such a manner that there is no
important diffusion within the simulation time [0, T ]. The final time T is fixed in such
a manner to permit one overlap of the heavy-particle bumps.

On the other hand, due to the small mass ratio hypothesis m = εM , the light particle
disperses on a time scale of order ε, thus in the time interval [0, T ] the light particle
should be pushed outside the simulation domain. Nonetheless, due to the choice of
homogeneous Neumann boundary conditions, the probability density of the light particle
is reflected when touching the boundary and remains inside the simulation domain,
where it keeps interacting with the heavy particle and perturbing its evolution. Clearly,
this phenomenon is an artefact of our choice of boundary conditions (2.3). In order to
face this problem, we notice that, due to the fast dispersion of the light particle, the
collision between the two particles is completed in a time interval of duration Tint ≃ ε.

This fact can be easily proved as follows: first, we fix a threshold δ of the acceptable
error. Then, we consider the following well-known identity involving the Møller operator
Ω−1

+ (X0) (see e.g. formula (2.24) in [2])

UM(− t

ε
)ei t

ε
(− ~

2M
∆+ α

~
V (·−X0))χ0−Ω−1

+ (X0)χ0 =

∫
∞

t/ε

UM (−s)V (·−X0)e
is(− ~

2M
∆+ α

~
V (·−X0))χ0 ds.

The previous identity shows that, if one considers the heavy particle as a fixed scatterer
located at X0, then the evolution of the light particle can be approximated by the action
of the operator Ω−1

+ (X0) for sufficiently large values of t/ε.
In other words, the interaction between the two particles can be considered as complete
after a time Tint if for any t > Tint one has

∥∥∥∥
∫

∞

t/ε

UM(−s)V (· −X0)e
is(− ~

2M
∆+ α

~
V (·−X0))χ0 ds

∥∥∥∥
2

≤ δ. (3.23)

Since in (3.23) the time t always appears with the factor ε−1, the interaction time Tint

must be of order ε.
Therefore, we shall switch the interaction potential on during a short time Tint ∼ ε

only, by introducing the factor χ[0,Tint](t) in (3.22). Thus, for t > Tint the evolution of
the probability density ρH associated to the heavy particle is free and hence unperturbed
by the further presence of the light particle within the simulation domain. We observe,
by the way, that the evolution of the light particle after the collision is of no interest for
us.

It remains to discuss the role of the Neumann boundary conditions. As already
stressed, they make our numerical model different from the starting problem (2.3). The
choice was dictated by the fact that absorbing or transparent boundary conditions on
the variable x of the light particle would make the norm of the two-particle wave function
vanishes as the light particle is spreading out of the simulation domain, leading to the
loss of all information concerning the heavy particle.
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Besides, in order to preserve the symmetry between the two bumps we chose as ini-
tial data χ0 of the light particle a Gaussian wave packet whose centre does not move,
endowed with a width σL small enough to ensure that it is scattered in a sensitively
different way by the two bumps of the heavy particle. As a consequence, the Fourier
transform χ̂0 of χ0 is quite spread around the origin, so unavoidably there are fast
components of χ0 that have the time to be reflected by the boundary and therefore to
interact more than once with the heavy particle. On the other hand, the low frequency
components of χ0 do not meet the heavy particle at all during the time interval [0, Tint].
Therefore, the numerical experiments do not reproduce a single scattering event between
the two particles, but rather a complicate interaction of duration Tint where the role of
the boundaries is relevant. We evaluate such a role in the forthcoming paper [4], where
a faster numerical scheme shall allow repeated experiments on larger domains.

Anyway, the Joss-Zeh hypothesis remains effective, for it requires the validity of
the scattering regime, which is true for our numerical model too since the asymptotic
evolution of the system is free.

3.1 Time-splitting method

The resolution of the Schrödinger equation (3.22) is rather delicate due to multi-scale
effects. As stressed in Sections 1 and 2, we can single the decoherence effect out as far
as we push the quantity ε := m/M towards zero. However, for too small values of ε,
problem (3.22) becomes highly anisotropic, implying severe numerical problems. Two
different time scales occur, the slow time scale of the heavy particle and the fast time
scale of the light one. Very fine space and time meshes are then required in order to
catch the rapid evolution and guarantee good numerical approximations. These fine
grids lead then necessarily to high numerical costs, making the choice of the numerical
method an essential step in the resolution of (3.22).

Three different methods to solve (3.22) are compared in detail in [23] from the point
of view of the numerical analysis, including issues like error estimates and convergence.
It turns out that that the most advantageous method, the one we employ here, is the
Peaceman-Rachford splitting method, which is second order accurate in both time and
space and furthermore unconditionally stable in the L2-norm. Let us now present this
method. For more details, we refer the reader to [23].

Let Ω = Ωx×ΩX = [−L,L]× [−H,H ] be the simulation domain, [0, T ] the time interval
and let us discretize these spaces as follows

−L = x1 ≤ · · · ≤ xi ≤ · · ·xN = L , −H = X1 ≤ · · · ≤ Xj ≤ · · ·XM = H ,

0 = t1 ≤ · · · ≤ tn ≤ · · · tK = T .

Let us moreover suppose, for simplicity, that the chosen discretizations are homogeneous,
with the corresponding space/time steps hx > 0, hX > 0, ∆t > 0. In the following, ψn

ij

shall denote the approximation of ψ(tn, xi, Xj).
Then, starting from the initial condition ψ0, the idea is to treat the two directions

separately. We advance first a half-time step τ = ∆t
2

and solve for each fixed x ∈ Ωx the
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1D stationary equation

{
~
2

2M
∆Xψ

n+1/2 + i~

τ
ψn+1/2 =

(
i~

τ
+ α

m
V

)
ψn − ~

2

2m
∆xψ

n , for all X ∈ ΩX ,

∂Xψ
n+1/2(x,X) = 0 , for all X ∈ ∂ΩX ,

(3.24)

in order to get ψn+1/2(x, ·). Afterwards, we advance a further half-time step to find
ψn+1(·, X), for each fixed X ∈ ΩX , via

{
~
2

2m
∆xψ

n+1 +
(

i~

τ
− α

m
V

)
ψn+1 = i~

τ
ψn+1/2 − ~

2

2M
∆Xψ

n+1/2 , for all x ∈ Ωx ,

∂xψ
n+1(x,X) = 0 , for all x ∈ ∂Ωx .

(3.25)
One of the advantages of this procedure is that it decomposes the initial 2D Schrödinger
problem (3.22) in two 1D sub-problems (3.24)-(3.25), which significantly accelerates the
numerical resolution of our problem. Indeed, instead of solving (for example with a
Crank-Nicolson scheme) one very large linear system (corresponding to a 2D problem),
we shall solve several small linear systems via the Peaceman-Rachford scheme. This
shall also permit considerable savings in memory. Moreover, another crucial advantage
is that this procedure separates the two different time-scales, permitting thus different
treatments for the two sub-problems.

Introducing now the following operators

A := − ~

2M
∆X , A : D(A) ⊂ L2(Ω) → L2(Ω) ,

B := − ~

2m
∆x +

α

m~
V , B : D(B) ⊂ L2(Ω) → L2(Ω) , G := A+B ,

with D(A) and D(B) their definition domains, we can rewrite the semi-discrete system
(3.24)-(3.25) as follows

{
(I + iτA)ψn+1/2 = (I − iτB)ψn ,

(I + iτB)ψn+1 = (I − iτA)ψn+1/2 .
(3.26)

Discretizing now the continuous, unbounded operators A and B in space, by means of a
standard second order method, leads to a set of tridiagonal linear systems to be solved in
order to get the unknowns ψn

ij . Denoting by ANM resp. BNM the matrices approximating
respectively A and B, the fully numerical scheme, called Peaceman-Rachford scheme,
simply writes

ψn+1 = (I + iτBNM )−1(I − iτANM )(I + iτANM )−1(I − iτBNM )ψn , ∀n ∈ N . (3.27)

The choice of the time and space discretization steps hx, hX , τ is guided by the next
convergence result, proved in [23].

Theorem 1 (Convergence)
The scheme (3.27) is unconditionally stable and second order accurate in time and space.

14



In particular the error between the exact solution ψ and the numerical solution is given
by

||PNM(ψ(tn)) − ψn||2 ≤ Ctn

[
(∆t)2

ε3
+

(
(∆X)2 +

(∆x)2

ε

)
||ψ0||H4(Ω)

]
, (3.28)

where PNM is the projection of the exact solution on the space grid and ε = m/M .
Moreover, this scheme is conserving the probability density up to a small error, which
means

||ψn||2 = ||ψ0||2
(

1 + O
(

(∆t)2

ε2

))
, ∀n ∈ N .

As one can observe from the error estimate (3.28), if we let m → 0, then we are forced
to chose more and more refined meshes, in particular ∆x → 0 and ∆t → 0, in order
to get accurate results. This is rather restrictive from a numerical point of view and
alternative methods have to be adopted. From a mathematical point of view, the 2D
time-dependent Schrödinger equation is singularly perturbed for m → 0. Boundary
layers or multiple scale problems may occur, such that adapted methods have to be
used to compute the solution in a precise manner. Work in this direction is for the
moment in preparation [4].

3.2 Numerical results

In this section we present the numerical results obtained with the Peaceman-Rachford
splitting method (3.27) for the resolution of (3.22). In Table 1 we summarize the pa-
rameters we used. The performed numerical experiment show that the chosen grid is
sufficiently fine to capture the decoherence effect accurately, as further refinements do
not change significantly the evaluation of the decoherence coefficient Λ (see Fig. 6).
Moreover, we found a range of values of m and α for which the limit ε → 0 is likely
to be found, in the sense that, for fixed α, varying m in this range leaves Λ essentially
untouched. Let us go into more details.

L = H 2 ∗ 10−1 N = M 401
T 1.92 ∗ 10−2 K 120 ∗ 400 + 1
~ 1 PH 3.4 ∗M
M 100 X0 5 ∗ 10−2

ml l ∗ 10−3 , l = 1, · · · , 6 PL, x0 0
Tint l ∗ 48 ∗ 10−7 , l = 1, · · · , 6 σH = σL 10−2

t 1.47 ∗ 10−2 α 0, · · · , 40 ∗ 102

Table 1: Parameters used in the numerical simulations.

The different curves of Figure 4 portray the interference pattern of the probability
density ρH(t, X) of the heavy particle at collision time t := X0M/PH , for m = 2 ∗ 10−3

and different values of the strength α ∈ R
+ of the potential (2.4). The decoherence

effect can be clearly observed in the figures, as the interference pattern is more and
more reduced.
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Figure 4: Decoherence effect on the heavy particle due to the interaction with the light particle. We

plot the probability density of the heavy particle at t := X0M/PH for different values of the strength

α > 0 of the interaction. In correspondence to the largest tested value of α, i.e. α = 4000, the

maximal overlap between the two bumps is attained at a time significantly larger than t̄. This means

that for such a strong interaction the Joos-Zeh approximation fails.
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In Figure 5 (on the left), we plotted the decoherence coefficient Λ(α) as a function of
the interaction strength for three different masses m. The values of Λ(α) are obtained
as follows: first, we solved the Schrödinger equation (3.22) up to time t = t and evalu-
ated ψnum(t, x,X). Then, we computed ρH,num(t, X), integrating over the light particle
variable x. At this stage, as we are in the small mass ratio regime 0 < m/M ≪ 1, we
assume that ρH,num can be approximated by the Joos-Zeh formula (2.13) and evaluating
at X = 0 we compute

Λ(α) =
ρH,num(t, X = 0)

2
∣∣[UM (t)ϕ0

]
(X = 0)

∣∣2 − 1 .

Now, inserting the quantity Λ(α) in the Joos-Zeh approximation (2.13), we compare in
Figure 5 (on the right) ρH,num(t, X) and ρH,JZ(t, X) over the whole domain ΩX .
We plotted the curve Λ(α) for three different value of the mass m -i.e. for three dif-
ferent values of ε- in order to verify whether the asymptotic regime ε → 0 had been
singled out. If so, then the decoherence would remain the same as the mass becomes
smaller and smaller. This is indeed the case for m = 2 ∗ 10−3 and m = 3 ∗ 10−3, but the
curve corresponding to m = 10−3 is rather different. The reason for this disagreement is
made clearer by Figure 6, where we plotted the L2-relative error between ρH(t̄, ·) and a
reference solution ρH,ref(t̄, ·) obtained by an implementation on a much finer space-time
grid. What can be observed is that for the chosen grid of N = M = 401 space points
and K = 120 ∗ 400 + 1 the test cases with ml = 10−3 are not precise. In fact, as ε→ 0,
one has to choose finer and finer grids in order to keep the same accuracy, as we have
to cope with a highly anisotropic or multi-scale problem. As a consequence, the plots
presented in Figure 4 correspond to ml = 2 ∗ 10−3.

One can also observe that. as α increases, the three curves become more distant from
one another. In order to explain this phenomenon, we recall that in the approximation
ψε

b introduced in (2.18) there is a source of error which is increasing in α and independent
of ε, as estimate (2.19) shows. This means that for large values of α we cannot expect
to remain in the asymptotic regime, nor even that such a regime exists.
In order to investigate the actual existence of such a regime one should push ε further
towards zero, but then numerical errors would arise and possibly take the overhand, as
detailed above. As a consequence, we can argue that this source of numerical error plays
a role also in the straight curve in Figure 5 for α around 3000. In this range of values
of the interaction such error adds to the Joos-Zeh approximation error.

Besides, it is worth remarking that for α ≥ 3000 the maximal overlap of the two
bumps in the probability density of the heavy particle is not verified for t = t̄, but
later. Furthermore, the time of maximal overlap increases with the strength α of the
interaction, even though the overall profile of the probability density remains close to the
one of a purely decoherent state. This phenomenon can be explained as follows: first, as
already noticed, if the interaction is not too strong, then the Joos-Zeh approximation is
effective and thus the only effect of the interaction on the heavy particle is the occurrence
of decoherence. Second, if the strength of the interaction overcomes a certain threshold,
then the Joos-Zeh approximation is no longer valid, but the shape of the probability
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density is not lost: what happens is that the two heavy bumps are slowed down, so that
it results that the main effect beyond decoherence is the repulsion between the bumps.
This is not a trivial point, as repulsion could be expected to emerge together (or later
than) the destruction of the shape of the probability density.

We then conclude that we verified the validity of an approximation of the type Joos-
Zeh for the model (3.22) in the regime α ≤ 10, m ≤ 3 · 10−3, neglecting the numerical
errors which arise for m ≤ 10−3.
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Figure 5: Left: The decoherence coefficient Λ(α). Right: The relative error between the numerical

solution ρH(t,X) and the Joos-Zeh approximation ρJZ(t,X).
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solution computed on a refined grid.
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4 Understanding decoherence in the configuration

space of the two-particle system

In order to analyze the occurrence of decoherence, in the previous sections we followed
the traditional approach that consists in computing the decrease of the non-diagonal
terms of the density matrix of the heavy particle. As shown in Section 2.3, this is
equivalent to describing the disappearance of the interference fringes. In other words,
we focused on the open system “heavy particle”.

On the other hand, decoherence can be discerned also by following the evolution of
the two-body wave function ψ(t, x,X), namely, analyzing the dynamics of the closed
system given by the heavy and the light particle together. Quite surprisingly, in such
a framework the occurrence of decoherence has a clear origin and an effective pictorial
representation.

The two plots in Figure 7 portray the real part and the square of the modulus of
the two-particle initial data ψ0. Notice that the probability density concentrates in two
bumps near the points x = 0, X = ±X0. Notice also that as the light particle has no
velocity, no oscillations occur in the x-direction on the left figure.

Let us first consider the non-interacting (free) evolution (i.e. V ≡ 0). The two heavy
bumps start moving towards each other along the vertical direction. Obviously, such
a dynamics preserves the “left-right symmetry” ψ(t, x,X) = ψ(t,−x,X) inherited by
the initial wave function, as shown in the two lower plots of Figures 8 and 9. As a
consequence, at time t̄ = MX0/PH , the overlap between the two components of the
wave function is perfect, so that the effect of the composition of the phases becomes
maximal: in particular, the peaks of the modulus squared of the wave function are
emphasized and there are regions where the same modulus squared is zero (namely, the
dark regions in the fourth picture in Figure 9).

Figure 7: Left: 2D Plot of the real part of the initial condition ψ0(x,X) = χ(x)ϕ(X) (uncorrelated).

Right: Squared absolute value of the same initial condition.

Let us now consider the interacting case. The upper part of Figures 8 and 9 shows
that the left-right symmetry is broken. Such an effect is put in best evidence in Figure
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Figure 8: Left: 2D Plot of the real part of the 2-body interacting wave fct. ψV (t, x,X) resp.

non-interact. ψfree(t, x,X) at time t ∈ [0, Tint]. Right: Squared absolute value of the same wave fct.

10, where the difference between the real part of the wave function in the interacting
case and in the non-interacting case is plotted. Notice in particular that, due to the
repulsive character of the interaction, the “upper” bump is moved towards the right
region of the picture, while the “lower” bump is shifted to the left. The same comments
apply to Figure 11.

As a consequence, at time t̄ the two bumps cannot overlap perfectly, therefore the
composition of the phases of the two bumps is not so effective and, as a result, the in-
terference is attenuated. In particular, a comparison between the second and the fourth
picture in Figure 9 shows that the maxima of the modulus squared of the wave function
are lower and the dark regions are less extended than in the non-interacting case. In
other words, decoherence has occurred.

In order to better underline the relationship between this insight of decoherence and
the attenuation of the interference computed in Section 3, we recall that the plots in
Figure 4 correspond to a one-particle representation, that is obtained integrating the
two-particle probability density over the light-particle variable x. Therefore, the plots
in Figure 4 can be interpreted as follows: if one considers the heavy particle variable X
only, then the two bumps seem to overlap completely. In fact, the presence of the light
particle introduces another degree of freedom, represented by the variable x. If the two
particles interact with each other, then the two bumps becomes far apart along such
variable x, so their overlap is only apparent. We remark that this description of the
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Figure 9: Same plots at the complete overlap time t = X0M
PH

Figure 10: Dephasing effect. Left: Plot of the difference Re(ψ(t, x,X)) −Re(ψfree(t, x,X)) for

t ∈ [0, Tint]. Right: Plot of the difference |ψ(t, x,X)|2 − |ψfree(t, x,X)|2 for t ∈ [0, Tint].
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Figure 11: Dephasing effect. Left: Plot of the difference Re(ψ(t, x,X)) −Re(ψfree(t, x,X)) for

t = t. Right: Plot of the difference |ψ(t, x,X)|2 − |ψfree(t, x,X)|2 for t = t.

phenomenon of decoherence coincides with the mechanism singled out in the context of
the Bohmian interpretation of quantum mechanics [13], [16].

5 Conclusion

We presented in this paper the results of numerical simulations that show the decoher-
ence effect induced on a heavy particle by the repulsive interaction with a light one.
To this aim, the 2D time-dependent Schrödinger equation has been solved via a time-
splitting scheme. The obtained results are helpful to complete the analytical study,
presented in previous works [2, 3]. In particular, through the numerical exploration a
suitable range is found, where the approximations used in the cited papers holds true.
A more realistic model, describing multiple collisions, shall be the objective of a future
work.
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