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Institut de Mathématiques de Toulouse
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Distribution regression

We observe i.i.d. pairs

(µi ,Yi ), i = 1, . . . , n.

Yi ∈ R.
µi is a probability distribution on Ω.

Ω is compact in Rd .

Goal: constructing a regression function

f̂n : P(Ω) → R,

where P(Ω) is the set of probability distributions on Ω.

Application fields described in [Szabó et al., 2015, Szabó et al.,
2016, Meunier et al., 2022, Bachoc et al., 2023a].
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Hilbertian embedding

Hilbertian embedding

x : P(Ω) → H
µ 7→ xµ,

where H is a Hilbert space.

=⇒ In order to use kernels on Hilbert spaces (see later)!
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Hilbertian embedding 1: mean embedding

Consider a kernel k on Ω.

Very quick introduction to kernels and RKHS

k : Ω× Ω → R.
For any ℓ ∈ N, t1, . . . , tℓ ∈ Ω, the ℓ× ℓ matrix [k(ti , tj)] is
symmetric non-negative definite.

There is a (unique) Hilbert space Hk of functions from Ω to R,
with inner product ⟨·, ·⟩Hk

with norm ∥ · ∥Hk

such that

Hk contains all functions kt := k(t, ·) for t ∈ Ω,
for all g ∈ Hk , for all t ∈ Ω, g(t) = ⟨g , kt⟩Hk reproducing property.

=⇒ Hk is the reproducing kernel Hilbert space (RKHS) of k.

Then mean embedding

xµ :=

(
t 7→

∫
Ω

k(t, x)dµ(x)

)
=

∫
Ω

kxdµ(x),

[Szabó et al., 2015, Szabó et al., 2016, Muandet et al., 2017].
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Hilbertian embedding 2: sliced Wasserstein

The sliced Wasserstein distance [Kolouri et al., 2018, Manole et al.,
2022, Meunier et al., 2022]

SW(µ, ν)2 :=

∫
Sd−1

∫ 1

0

(
F−1
µθ

(t)− F−1
νθ

(t)
)2

dtdΛ(θ),

with two distributions µ, ν ∈ P(Ω),

where Sd−1 is the unit sphere ,

where Λ is the uniform distribution on Sd−1,

where µθ is the univariate distribution of ⟨θ,X ⟩ for X ∼ µ,

where F−1
µθ

is the quantile function of µθ.

Hilbert distance of a Hilbertian embedding

H = Sd−1 × [0, 1],

xµ(θ, t) = F−1
µθ

(t).
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Hilbertian embedding 3: Sinkhorn distance and dual potential

Dual formulation of entropic-regularized (Sinkhorn) optimal transport
[Genevay, 2019]

sup
h∈L1(µ),g∈L1(U)

∫
Ω

h(x)dµ(x) +

∫
Ω

g(y)dU(y)

−ϵ

∫
Ω×Ω

e
1
ϵ (h(x)+g(y)− 1

2∥x−y∥2)dµ(x)dU(y).

ϵ > 0 regularization parameter.
Fixed U ∈ P(Ω) called reference measure.
For any µ ∈ P(Ω).

Hilbertian embedding

There is a unique optimal (h⋆, g⋆) such that g∗ is centered w. r. t. U .
Also g∗ ∈ L2(U).
[Bachoc et al., 2023a]:

xµ := g∗.

H := L2(U).
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Kernel ridge regression on Hilbert space

Hilbertian covariates: for i = 1, . . . , n, let

xi := xµi .

Squared exponential kernel on H: for u, v ∈ H,

K (u, v) := e−∥u−v∥2
H .

=⇒ Yields the RKHS HK of functions from H to R.

Ridge regression

f̂n = argmax
f∈HK

Rn(f )

with

Rn(f ) :=
1

n

n∑
i=1

(f (xi )− Yi )
2 + λ∥f ∥2HK

,

where λ > 0 is a regularization parameter.
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Two-stage sampling

Studied in [Szabó et al., 2015, Szabó et al., 2016, Meunier et al., 2022].

For i = 1, . . . , n, µi is unobserved.

We observe i. i. d. (Xi,j)j=1,...,N with Xi,j ∼ µi .

We let

µN
i =

1

N

N∑
j=1

δXi,j

and
xN,i = xµN

i
.

Ridge regression with approximate covariates

f̂n,N = argmax
f∈HK

Rn,N(f )

with

Rn,N(f ) :=
1

n

n∑
i=1

(f (xN,i )− Yi )
2 + λ∥f ∥2HK

.
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1 Distribution regression, Hilbertian embedding and two-stage sampling

2 Near-unbiased condition and improved rates
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Existing error bounds on f̂n − f̂n,N

[Szabó et al., 2015, Szabó et al., 2016, Meunier et al., 2022] address
their respective distribution regression settings.

But their results are naturally made general.

Existing bounds

For all s ≥ 1, conditionally to (xi ,Yi )
n
i=1,

E
[∥∥∥f̂n − f̂n,N

∥∥∥s
HK

]1/s
≤

constant
(
∥f̂n∥HK

+ Ymax,n

)
√
Nλ

with Ymax,n = maxi=1,...,n |Yi |.
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Existing proofs are improvable?

Proofs based on explicit expressions of f̂n and f̂n,N .

Somewhere: ∥∥∥∥∥1n
n∑

i=1

(
f̂n(xi )Kxi − f̂n(xN,i )KxN,i

)∥∥∥∥∥
HK

≤ 1

n

n∑
i=1

∥∥∥f̂n(xi )Kxi − f̂n(xN,i )KxN,i

∥∥∥
HK

.

But f̂n(xi )Kxi − f̂n(xN,i )KxN,i
are independent conditionally on

(xi ,Yi )
n
i=1.

Do they have approximately zero mean?
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Near-unbiased condition

In [Bachoc et al., 2023b].

Near-unbiased condition

For i = 1, . . . , n, there are random aN,i and bN,i such that

xN,i − xi = aN,i + bN,i .

∥aN,i∥H has order 1√
N
.

E(aN,i |µi ) = 0 ∈ H.

∥bN,i∥H has order 1
N .

For the 3 examples of Hilbertian embedding

Mean embedding: bN,i = 0 (exactly unbiased).

Sinkhorn: indeed near unbiased, relying on [González-Sanz et al.,
2022].

Sliced Wasserstein: indeed near unbiased under conditions.
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Improved rates

In [Bachoc et al., 2023b].

Theorem

Up to constant√
En

[
∥f̂n − f̂n,N∥2HK

]
≤ Ymax,n + ∥f̂n∥HK

λN
+

Ymax,n + ∥f̂n∥HK

λ
√
n
√
N

+

(
1 +

√
N√
n

)−1(
Ymax,n + ∥f̂n∥HK

λn
+

Ymax,n + ∥f̂n∥HK

λ2n
√
N

)

with Ymax,n = maxi=1,...,n |Yi |,
where En denotes the conditional expectation given (µi ,Yi )

n
i=1.

The
√
n we gain comes from average of independent centered variables.

François Bachoc Kernel distribution regression 14 / 22



Proof ingredient 1

f̂n = argmin
f∈HK

1

n

n∑
i=1

(f (xi )− Yi )
2 + λ∥f ∥2HK

and

f̂n,N = argmin
f∈HK

1

n

n∑
i=1

(f (xN,i )− Yi )
2 + λ∥f ∥2HK

.

Then, exploiting convexity,

λ∥f̂n − f̂n,N∥2HK
≤1

n

n∑
i=1

{[
f̂n(xN,i )− f̂n,N(xN,i )

]
f̂n(xN,i )

−
[
f̂n(xi )− f̂n,N(xi )

]
f̂n(xi )

}
+

1

n

n∑
i=1

Yi

{[
f̂n(xi )− f̂n,N(xi )

]
−
[
f̂n(xN,i )− f̂n,N(xN,i )

]}
.
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Proof ingredient 2

We are led to bound (in R!) terms such as

E

(
1

n

n∑
i=1

Yi

{[
f̂n(xi )− f̂n,N(xi )

]
−
[
f̂n(xN,i )− f̂n,N(xN,i )

]})
.

By coupling arguments, we approximate by

E

(
1

n

n∑
i=1

Yi

{[
f̂n(xi )− f̃n,N(xi )

]
−
[
f̂n(xN,i )− f̃n,N(xN,i )

]})
,

with f̃n,N constructed from new independent (x̃N,i )
n
i=1.
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Application to sufficient N for minimax rate (1/2)

[Caponnetto and De Vito, 2007] provide minimax rates as n → ∞
with one-stage sampling (for f̂n).
Target: conditional expectation function

f ∗ = E (Yi |xi = ·) assumed to be in HK .

We let L be the distribution of xi .

Problem class on H
Hardness of (L,K , f ∗) measured by

b > 1 effective dimension of HK w. r. t. distribution L,
c ∈ (1, 2] complexity of f ∗.

Minimax rate√∫
H

(
f ⋆(x)− f̂n(x)

)2
dL(x) = OP

(
n−

bc
2(bc+1)

)
.

With λ = n−
b

bc+1 .

François Bachoc Kernel distribution regression 17 / 22



Application to sufficient N for minimax rate (2/2)

In [Bachoc et al., 2023b], from our bounds:

Sufficient N for minimax√∫
H

(
f ⋆(x)− f̂n,N(x)

)2
dL(x) = OP

(
n−

bc
2(bc+1)

)
.

With λ = n−
b

bc+1 .

With N = na,{
a = max(

b+ bc
2

bc+1 ,
2b−1
bc+1 ,

4b−bc−2
bc+1 ) (≤ 1) if b(1− c

2 ) ≤
3
4

a = max(
b+ bc

2

bc+1 ,
2b− 1

2

bc+1 ) (> 1) if b(1− c
2 ) >

3
4

.

In [Szabó et al., 2015, Szabó et al., 2016], same result for mean

embedding with N = n
b(c+1)
bc+1 ,

b(c+1)
bc+1 > a.
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Conclusion

Hilbertian embedding for (symmetric non-negative definite) kernels.

Two-stage sampling as an additional source of error.

Main contribution: tighter control of this error.

The paper [Bachoc et al., 2023b]: arXiv:2308.14335.

Paper [Bachoc et al., 2023a] on Sinkhorn kernel.

Public Python codes (links in papers).

Thank you for your attention!
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