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Outline

Distribution regression, Hilbertian embedding and two-stage sampling

Near-unbiased condition and improved rates
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Distribution regression

We observe i.i.d. pairs

(Miv%)? izla"'?”'

m Y;eR
m u; is a probability distribution on Q.

m Q is compact in RY.
Goal: constructing a regression function

£:P(Q) =R,

m where P(Q) is the set of probability distributions on Q.

Application fields described in [Szabo et al., 2015, Szabé et al.,
2016, Meunier et al., 2022, Bachoc et al., 2023a].
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Hilbertian embedding

Hilbertian embedding

x:P(Q)—>H
[ X,

where H is a Hilbert space.

= In order to use kernels on Hilbert spaces (see later)!
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Hilbertian embedding 1: mean embedding

Consider a kernel k on .

Very quick introduction to kernels and RKHS

B k:QxQ—R
m Forany L €N, t1,...,t; € Q, the £ x £ matrix [k(t;, t;)] is
symmetric non-negative definite.
m There is a (unique) Hilbert space Hy of functions from 2 to R,
m with inner product (-, )7,
m with norm || - ||%,
such that
m Hy contains all functions k; := k(t,-) for t € Q,
m for all g € Hy, for all t € Q, g(t) = (g, k)3, reproducing property.

—> H is the reproducing kernel Hilbert space (RKHS) of k.

Then mean embedding

X0 = (m /Q k(t,x)du(x)) - /Q (),

[Szabd et al., 2015, Szabé et al., 2016, Muandet et al., 2017].
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Hilbertian embedding 2: sliced Wasserstein

The sliced Wasserstein distance [Kolouri et al., 2018, Manole et al.,
2022, Meunier et al., 2022]

SW(p,v)? = /5 /0 (FA0) - F () den),

with two distributions u, v € P(Q),

where 891 is the unit sphere ,

where A is the uniform distribution on S9!,

where pg is the univariate distribution of (8, X) for X ~ u,

where F, 1 is the quantile function of 1.
Hilbert distance of a Hilbertian embedding

B H =891 x[0,1],

mx,(0,t) = F_ ().

1229
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Hilbertian embedding 3: Sinkhorn distance and dual potential

Dual formulation of entropic-regularized (Sinkhorn) optimal transport
[Genevay, 2019]

sup / hx)du(x) + / £(y)dU(y)
hell(n),gcli) Ja Q
. / & 2(H+80)=H =Y IE) 4 )t ().
QxQ

m ¢ > 0 regularization parameter.
m Fixed U € P(Q) called reference measure.

m For any € P(Q).

Hilbertian embedding
There is a unique optimal (h*, g*) such that g* is centered w. r. t. U.
Also g* € L2(U).
[Bachoc et al., 2023a]:
m X, =g
m H = L2(U).
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Kernel ridge regression on Hilbert space

m Hilbertian covariates: for i =1,...,n, let

Xi 1= Xy,

m Squared exponential kernel on H: for u,v € H,
K(u,v) := e llu=vili,
= Yields the RKHS Hx of functions from H to R.

m Ridge regression

f, = argmax R,(f)
fEHK

with
1 n
Ra(F) := — 3 (F(x) = Y0 + Al
i=1

m where X\ > 0 is a regularization parameter.
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Two-stage sampling

Studied in [Szabé et al., 2015, Szabd et al., 2016, Meunier et al., 2022].

m Fori=1,...,n, p;is unobserved.
m We observe i. i. d. (X,'yj)jzl _____ n with X,'yj ~ ;.
m We let

1 N
N _
Hi = N E 6Xi,j
Jj=1

and

XN,i = XMfV'

Ridge regression with approximate covariates

E,,N = argmax R, n(f)
feHk

with
n

1
Ron(f) =~ > (Foma) = Vi) + MFIB,,-
i=1
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Near-unbiased condition and improved rates



~

Existing error bounds on f,, — fan

m [Szabd et al., 2015, Szabé et al., 2016, Meunier et al., 2022] address
their respective distribution regression settings.

m But their results are naturally made general.

Existing bounds

For all s > 1, conditionally to (x;, Y;)7_,,

?|

m with Yiax, = maxj—1

s 1Y/s  constant <||ﬁ,||HK + Ymax,n)
fo—fan :| <
K

VN

,,,,,
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Existing proofs are improvable?

m Proofs based on explicit expressions of f,, and ﬁ,,N.
m Somewhere:

n

23 (ks — oK)
i=1

n

Hr
»

m But 7(x;) Ky — f,,(xM,-)KXNJ are independent conditionally on

(Xi’ Yl)?:l
m Do they have approximately zero mean?

~

ﬁv(Xi)Kx,- - fn(XN,i)KXN,i

i=1
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Near-unbiased condition

In [Bachoc et al., 2023b].

Near-unbiased condition

m For i =1,...,n, there are random ap ; and by ; such that
XN,i — Xi = an,i + bw,j.

B ||ay,i||# has order \%N
[ ] ]E(aN7,-|u,-) =0¢eH.
® | byl has order £.

For the 3 examples of Hilbertian embedding

m Mean embedding: by ; = 0 (exactly unbiased).

m Sinkhorn: indeed near unbiased, relying on [Gonzélez-Sanz et al.,
2022].

m Sliced Wasserstein: indeed near unbiased under conditions.
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Improved rates

In [Bachoc et al., 2023b].

Up to constant

7 7 Ym xn"’”f,;”’H Ymaxn“‘”ﬁn”’H
E |: f. — f 2 ] < ax, K ) K
\/ o (o= ol < =R TR

—1 A A
aF ( \/N> (Ymaxv" + ”fn”HK n YmaX,n + ||fn||?-l;<>

]_ -
T Xn NV

B With Yimaxn = maxj=1,._,|Yil,

m where E, denotes the conditional expectation given (u;, Yi)!;.

The \/n we gain comes from average of independent centered variables.
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Proof ingredient 1

n

~ 1
f, = argmin — (f(xi) — Yi)2 + )‘Hf”%[,(
feHk n<

and

feHxk n i

Then, exploiting convexity,

Al = FonlBy <5 Z{[f ) = )] Falon.)
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Proof ingredient 2

We are led to bound (in R!) terms such as

< Z Y; {[f x;) — nN(x,)} - [fn(XN,;) - ’?n,N(XN,i)]}> :

By coupling arguments, we approximate by

< Z Yi Hf (xi) = o, N(X')} - [f"(XN’i) - FH’N(XNJ)} }> ,

m with £, y constructed from new independent (Rn,i)Pyq.
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Application to sufficient N for minimax rate (1/2)

m [Caponnetto and De Vito, 2007] provide minimax rates as n — oo
with one-stage sampling (for f,).
m Target: conditional expectation function

*=E(Yix=") assumed to be in Hg.
m We let £ be the distribution of x;.

Problem class on H
Hardness of (£, K, f*) measured by
m b > 1 effective dimension of Hx w. r. t. distribution £,

m ¢ € (1,2] complexity of *.

Minimax rate

\//H (F(x) = ()" dL(x) = Op (0~ 57).

m With \ = n— &1,
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Application to sufficient N for minimax rate (2/2)

In [Bachoc et al., 2023b], from our bounds:

Sufficient N for minimax
. 2 )
\// (f*(x)— n,N(x)) dL(x) = Op (n—ﬁ)
H

m With \ = n— &1,

m With N = n?,
. (b+% 2b—1 4b=bc—2) (< 1) ifp(1-5)< 3
a4 = maxXx gctl, bg+117 bc+1 = l 2/ — 4
5 2b—3 i |
S max(E 2R if b(1—5)> 3

In [Szabd et al., 2015, Szab¢ et al., 2016], same result for mean

. . b(c+1)
embedding with N = neei1 |
b(c+1)
beri -~ @
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Conclusion

Hilbertian embedding for (symmetric non-negative definite) kernels.
Two-stage sampling as an additional source of error.

Main contribution: tighter control of this error.

The paper [Bachoc et al., 2023b]: arXiv:2308.14335.

Paper [Bachoc et al., 2023a] on Sinkhorn kernel.

Public Python codes (links in papers).

Thank you for your attention!
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