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Motivation : computer models

Computer models have become essential in science and industry !

For clear reasons : cost reduction, possibility to explore hazardous or extreme
scenarios...
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Computer models as expensive functions

A computer model can be seen as a deterministic function

f:XCcRY SR
x — f(x).

m x : tunable simulation parameter (e.g. geometry).

m f(x) : scalar quantity of interest (e.g. energetic efficiency).

The function f is usually

m continuous (at least)

m non-linear

m only available through evaluations x — f(x).
== Black box model.
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Follow-along example : coastal flooding

Figures from [Azzimonti et al., 2019].
Hydrodynamic numerical simulations made by BRGM [Rohmer et al., 2018].
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m Input x with d = 5.

: Tide (meter).

: Surge peak (meter).

: Phase difference between surge peak and high tide (hour).
: Time duration of raising part of surge (hour).

e : Time duration of falling part of surge (hour).

m Output f(x).

e Maximal flooding area (m?).
e 1 hour simulation time.
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Gaussian process

Gaussian processes (Kriging model)

Modeling the black box function as a single realization of a Gaussian process
x — £(x) on the domain X C RY.

Usefulness

Predicting the continuous realization function, from a finite number of observation
points.

Remark : Gaussian processes are widely used in geostatistics as well.
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Gaussian processes

A stochastic process ¢ : X — R is Gaussian if for any xq, ..., Xn € X, the vector
(&(x1), .-, &(xn)) is a Gaussian vector.

Mean and covariance functions

The distribution of a Gaussian process is characterized by :
m Its mean function :
x — m(x) = E(&(x)).
e Can be any function X — R.
o Will be the zero function throughout this talk !
m lts covariance function :

(%1, X2) = K(x1,x2) = Cov(§(x1),€(X2))-

e Must be symmetric non-negative definite (to provide “valid” covariance matrices).
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Conditional distribution

Gaussian process £ observed at xq, ..., Xp, without noise.

my= (§(X1)7 "'7E(Xf7))T'

m Ris the n x n matrix [k(x;, X;)].
m r(x) = (k(x, 1), -, kK(X, xn)) T

Conditional mean

The conditional mean is mu(x) = E(£(X)|€(X1), -, €(Xn)) = r(x) TR~ 1y.

Conditional variance

The conditional variance is kn(x, x) = var(&(x)[&(x1), ---, £E(Xn)) =
E [(£(x) — mn(x))?] = k(x,x) — r(x) T R~ r(x).

Conditional distribution

Conditionally to £(xq), ..., £(Xn), £ is @ Gaussian process with (conditional) mean
function mp and (conditional) covariance function
(u, v) = kn(u,v) = k(u,v) — r(u)TR="r(v).
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Illustration of conditional mean and variance

— (Gaussian process realization
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Illustration of the conditional distribution
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Parametric covariance function estimation

Parameterization

Covariance function model {ky, 6 € ©} for the Gaussian process &.
m © CRP.
m 0 is the multidimensional covariance parameter.
B ky is a covariance function.

¢ is observed at xq, ..., o € X, yielding the Gaussian vector y = (£(x), ..., &€(xn)) T

Objective : build estimator 4(y).
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Maximum likelihood (ML) for estimation

Explicit Gaussian likelihood function for the observation vector y.

Maximum likelihood

Define Ry as the covariance matrix of y = (£(x1), ..., £(Xn)) T with covariance function
Ko : Ro = [Ko(Xi, X)1i j=1,....n-
The maximum likelihood estimator of 8 is

O € argmax L,(6)
00O

with ;
_ _ ~3yTR 'y
ﬁn(e)—k’g(l)e(}’))—Iog<(27r)n/2|R9‘e 57 R )
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Gaussian processes (without inequality constraints)

Gaussian processes under inequality constraints

Theory : maximum likelihood under inequality constraints

Computation : finite-dimensional approximation and MaxMod algorithm

Theory : convergence of the MaxMod algorithm



Inequality constraints

We consider a Gaussian process £ on X = [0, 1]¢ for which we assume that additional
information is available.

m £(x) belongs to [¢, u] for x € [0,1]¢ (boundedness constraints).

m 9¢(x)/0x; > 0for x € [0,1]9 and i = 1, ..., d (monotonicity constraints).
m ¢ is convex on [0, 1]¢ (convexity constraints).

m Modifications and/or combinations of the above constraints.

Application examples in computer experiments.

= Boundedness : computer model output belongs to R* (energy) or [0, 1]
(concentration, energetic efficiency).

m Monotonicity : inputs are known to have positive effects (more input power —
more output energy).
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Coastal flooding : the constraints

m Input x.

: Tide (meter). Output increases when tide increases !

: Surge peak (meter). Output increases when surge increases !
: Phase difference between surge peak and high tide (hours).

: Time duration of raising part of surge (hours).

: Time duration of falling part of surge (hours).

m Output f(x).
e Maximal flooding area (m?).
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Impact of the constraints

Generic form of the constraints :
Eeé

where £ is a set of functions from [0, 1]¢ — R such that P(¢ € £) > 0.

Impact.
m New Bayesian model : The prior on the realization function is P(¢ € .|¢ € £).

m New conditional distribution : Conditional distribution of ¢ given

o £(X1) = Yi,...,&(Xn) = ya (data interpolation),
e ¢ € & (inequality constraints).

m New estimation of the covariance parameters 6 in the covariance model
{ko; 0 € ©}.
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Illustration of constraint benefits

Target function : bounded and monotonic.
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Unconstrained Gaussian process. Constrained Gaussian process.
M true function e training points

M predictive mean M confidence intervals
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Results on coastal flooding example

Gaussian process predictive score.
m Without constraints.
m With constraints.
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n
The @2 (< 1) measures the prediction quality,
m Q2 = 1 : perfect prediction,
m Q2 = 0 : no better than constant prediction.
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An application to nuclear engineering

Q@2 =0.077

Q2 =0.998

Figure — Two-dimensional nuclear engineering example.

Radius and density of uranium sphere = criticality coefficient.
Monononicity constraints.

e Left : unconstrained Gaussian process models.

o Right : constrained Gaussian process models.
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Gaussian processes (without inequality constraints)

Gaussian processes under inequality constraints

Theory : maximum likelihood under inequality constraints

Computation : finite-dimensional approximation and MaxMod algorithm

Theory : convergence of the MaxMod algorithm



Constrained maximum likelihood estimator

The constrained maximum likelihood estimator for 6 is

Ocmr € argmax L 7(0)
0€0

with

Len(0) = log(pe(yI€ € €))
= log(ps(y)) — log(Pe(§ € £)) + log(Py(§ € Ely)).

m The additional terms log(Py (£ € £)) and log(Py(& € £]y)) have no explicit
expressions.

m They need to be approximated by numerical integration or Monte Carlo :
[Genz, 1992, Botev, 2017].

m We do not address this approximation issue in this theory section (see next
computation section).

Main questions :

m Oy ignores the constraints. Is it biased conditionally to the constraints ?

e For instance if dy is the variance estimator, if the true variance is 4 and if the
constraints are £ € [—1, 1], does 6y underestimate the variance ?

m Does Oy improve over Ay, by taking the constraints into account ?
We address these questions asymptotically.
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Fixed-domain asymptotics with fixed constraints

m Asymptotics (number of observations n — 4o0) is an active area of research.
m Mostly without constraints.

m There are several asymptotic frameworks because there are several possible
location patterns for the observation points.

Fixed-domain asymptotics

The observation points X1, . .., X, are dense in a bounded domain.
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Fixed constraints

Fixed constraint set £ with
P e€&)>0.
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Microergodic parameters

m Consistent estimation is impossible for some covariance parameters (identifiable
in finite-sample), see e.g. [Zhang, 2004, Stein, 1999].

m Covariance parameters that yield equivalent Gaussian measures are called
non-microergodic. They cannot be estimated consistently.

m Covariance parameters that yield orthogonal Gaussian measures are called
microergodic. They can be estimated consistently.

m For instance, consider the set of covariance functions {kg, 0 € (0, c0)?} on [0, 1]
given by 0 = (62, a) and ky(t;, &) = o2e— il

m o2 is non-microergodic.
B « is non-microergodic.
m o2a is microergodic.
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Some initial properties

Let 6y € © such that k = kg, (true covariance parameter).

m A non-microergodic parameter cannot be estimated consistently conditionally to
the constraints.

m Has a short proof using that P (¢ € £) > 0 is fixed.
m If Q. — 0 = Op(n~1/2) then By — 0o = Opjcce (n~1/2) which means

lim sup P (ﬁuém — 6ol > M} ce s) — 0.
n—oo M— oo

m Holds because

P (VA — 0]l > M| ¢ € €) ! (VA — 6oll = M.¢ € )

P e&

1 A
< mp (\/EHHML - 90” > M)

and P (¢ € £) > 0is fixed.

— Rate of convergence is preserved with constraints.
— What about asymptotic distribution ?
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Asymptotic normality result 1 : variance estimation

Setting :
m Gaussian process ¢ on [0, 1]¢.
m Monotonicity, boundedness or convexity constraints.
m Observation point sequence (x;)en is dense in [0, 1]7.
m 0 =02 and ky(uy, Uz) = o2k(uy, up), for some fixed k.
m True covariance function k = o2k.

Asymptotic normality without constraints
m |t is well-known that in this case

Vi (6% — a8) =5 N(0,208).

n—
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Asymptotic normality result 1 : variance estimation

Notation (convergence in distribution given the constraints) : we write

Xo FESE L
n— oo

when for all bounded measurable function f :
E(f(Xa)l€ € £) — / F(x)dL(x).

Theorem [Bachoc et al., 2019

Under technical conditions on k and the sequence (x;);cn (see paper), we have
LlecE
Vi (83, - 08) 557 A(0,208)

and
/Z £
Vi (62— o8) “ES° M(0,29).

n—

m Same asymptotic distribution as the (unconstrained) maximum likelihood
estimator, in the unconstrained case.

m No asymptotic impact of the constraints.
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Asymptotic normality result 2 : Matérn model

Setting :
m Gaussian process ¢ on [0, 1]9, d = 1, 2, 3, with covariance function k.
m Monotonicity, boundedness or convexity constraints.
m Observation point sequence (x;)ex is dense in [0, 1]
m 0= (02 p) € (0,00)% and

_ x/ 2 ! v !
Koo (x,X') = 02K, (HX X II) __ : (IIX X H) . (IIX X II).
p r(v)2r- P p

e [ is the Gamma function.

e k, is the modified Bessel function of the second kind.

e v > 0 (assumed known) is the smoothness parameter : v > r = corresponding
Gaussian process if r times differentiable.

m True covariance function k = kg, ,,, 0p = (0'(2), £0)-

In this case :
m o2 is non-microergodic
® p is non-microergodic
m o2 /p? is microergodic and

~2 2 2.2
v % £ %0

\/E( P N—+oo N 0,2 2v )
Pue Po o

This is shown in [Kaufman and Shaby, 2013] using results from
[Du et al., 2009, Wang and Loh, 2011].
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Asymptotic normality result 2 : Matérn model

Theorem [Bachoc et al., 2019

Under technical conditions on v and the sequence (x;);cn (see paper), we have

~2 2 2\ 2
(on g, g,
ﬁ(% - 2?/) Cfei N<0’2( ZOV) )
Pm. Py / " Po

~2 2 2.2
o o L|E€E 0
ﬁ(éiﬂ - 20V> i ’N(O’Z( 2?/) )
P Po /M Po

m Same conclusions as for the estimation of a variance parameter.

and
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An illustration

0.15

0.05-

0.00

-10 0

0.05-

0.00-

-10 10

Figure — An example with the estimation of ag with boundedness constraints.
Distribution of n'/2(8% — ¢3). n = 20 (top left), n = 50 (top right) and n = 80 (bottom).
e Green : ML.

e Blue : cML.

e Red : Gaussian limit.
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Some proof ideas : ML for the variance

When kg = o2k and for boundedness constraint.
m Write the variance estimator as

o 05 N (Vi — Elilyss - yia])?
52, =
ML n Z Var(yily1,- .., Yi-1)

2 n

L Yi1])?

o Var(yilys, ..., Yi—1)

= Am+ Bm,n

i=m+1

with fixed mand as n — oo.
Approximate boundedness eventby {y; € [¢,u];i=1,...,m}.
Am is negligible as n — oo.

Conditioning by approximated boundedness does not affect Bm,n by
independence so /n(Bm,n — o2) — N(0,20¢) also conditionally.

Conclude by letting m = mp — oo as n — oo slowly enough.

Same method for monotonicity and convexity.
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Some proof ideas : ML for Matérn

m Introduce estimated variance with imposed correlation length

5(p) € argmax Lp(o?, p).
026(0,00)

m Then from [Kaufman and Shaby, 2013, Du et al., 2009, Wang and Loh, 2011], for
0 < p < pu < oo,

52(p1)  F3(p2)

v 2

4 r5

= ox(1/v/n).

sup
p1,P2€[p15pul

m We conclude with the previous result for

53(po)
P
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Some proof ideas : cML

For boundedness constraint.
m We show that the two added terms in the constrained likelihood are negligible.
m For the unconditional constraints :

llog(P(01€ € €)) — log(P(02€ € £))| < Constant ‘012 - 05’ )

Using Tsirelson’s theorem.
m For the conditional constraints :

sup [log(Pe(§ € E]y))| = opjece(1).
6co

Because conditional constraint probability — 1. More technical part. Using
Borel-TIS inequality, and RKHS arguments for the Matérn case.
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Computation : finite-dimensional approximation and MaxMod algorithm

Theory : convergence of the MaxMod algorithm



Handling the constraints computationally

m For boundedness constraints, it is possible to consider models of the form
yi = T(&(x;)) with T bijective from R to [¢, u] and £ a Gaussian process.

e No computational problem.

m For monotonicity and convexity constraints, the model P(¢ € .|¢ € £) has become
standard.

e But the constraint £ € £ needs to be approximated.
e ¢ € & isreplaced by a finite number of constraints on inducing points in
[Da Veiga and Marrel, 2012, Golchi et al., 2015].

(8i€)(s) > 0,5 € [0,1]° ~ (Bi€)(s) > 0,j=1,...,m.

e ¢ is replaced by a finite-dimensional approximation &5, in
[Lépez-Lopera et al., 2018, Maatouk and Bay, 2017].

In dimension 1, for x € [0,1] :

Em(x) =D &(t)i(x)

i=1

= &m(t)pi(x),

i=1

m0=*4 < - <tm=1:knots,
0.00 0.25 0.50 0.75 1.00

m ¢; : hat basis function centered at .
ti.
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Finite-dimensional linear inequalities for the constraints
m Boundedness
Emisbounded in [¢,ul on [0,1] <= &m(t) € [6,u] fori=1,...,m.
m Monotonicity

&m is non-decreasing on [0,1] <= &m(6) < E&m(fipq) fori=1,...,m—1.

In dimension d

m Finite-dimensional approximation, for u = (uy, . . ., ug) € [0, 119,

my mgy
Em(ur, - ug) =3 3 &m0 (W) 6 (ug),
=1 ig=1
° (ti:”, s00g t,.(dd)) : multi-dimensional knot,
° ¢>§1”(~) e ¢§:)(-) : multi-dimensional hat basis function.
m For boundedness, monotonicity, component-wise convexity :
ém € € <= finite number of linear inequalities on [gm(t,?), c téd))],-h_“’,'d.
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Mode and conditional distribution

In the frame of [Lopez-Lopera et al., 2018, Maatouk and Bay, 2017].

— Boils down to optimizing/sampling w.r.t. the Gaussian vector
USRI L) e

i ? Yy

m The mode is the “most likely” function for £m,, obtained by quadratic optimization
with linear constraints.

m Conditional realizations of £, can be sampled approximately, for instance by
Hamiltonian Monte Carlo for truncated Gaussian vectors
[Pakman and Paninski, 2014].

monotone GP sample paths
+ = unconstrained Kriging mean
== increasing Kriging mean
4 inequality mode

monotone GP
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The MaxMod algorithm in 1d

Introduced in [Bachoc et al., 2022].

1.00

.50

y(@)

o

0.00

0.00 0.25 0.50 0.75 1.00
T

m Let Y be the mode function with an ordered set of knots :
{ti,...,tm}, with 0=H < - <tm=1.

m Here, we aim at adding a new knot t (where ?).
m To do so, we aim at maximising the total modification of the mode :

N - 2
I(t) = / (Y+,(x) - Y(x)) dx. )
[0,1]
The integral in (1) has a closed-form expression.
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1D example under boundedness and monotonicity constraints

We write the mode ¥ = YMAP,

Conditional sample-path

0.0C *
1.00 0.00 0.25

0.00 0.25 0.50 0.75
x x
(=) (=Jeel(+)

e Observation points  + Knots Mode
B Predictive mean 90% confidence intervals

¥
0.50 0.75 1.00

Francois Bachoc Inequality constraints 38/54



2D example under monotonicity constraints

MaxMod in multiD

m Adding new active variables or adding new knots to active variables

Figure — Evolution of the MaxMod algorithm using f(x) = $x; + arctan(10x2)

YMaxMod (%)

YMaxMod ()

™ 100 050
E2

5 o Lo
(a) iteration 0

(b) iteration 1

(@PI T
RRIN

AL
()P

LA

(c) iteration 2

) iteration 3

(e) iteration 4
e training points  + knots M mode
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MaxMod results on coastal example

m Eq(Y, V) : relative square error.

[ ] ?square : regularly spaced knots, identical number per variable.

| VMaxMod,red : regularly spaced knots, numbers per variable given by MaxMod.
m V. : optimized by hand in a previous study.

L YR Y R I Y R TV R S VY Y Y
i <@ Piquare
,\()‘()20 3 “0- PtaxModrect
& ! -
> i 0 YMaxMod
5 0.015 1 ?.
0.010
e
~ v w2z g pg® 3% 38 R S
total number of multi-dimensional knots per iteration
s CPU time [s
Approach | m En(Y,Y) Computation d Sampling step
[1 x 107%] | Training step ~ . o
of Y with 100 realizations
Yaquare 1024 8.72 49.1 8.03 non converged after 1 day
YMaxMod | 432 8.81 949.5 0.58 108.72
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Theory : convergence of the MaxMod algorithm



When the sequence of knots is fixed and dense

Setting :
m Fixed data set from now on.
m 7 : set of functions interpolating the data set.

m Forvariable j € {1,...,d} : sequence of one-dimensional knots t(/), R tgj) and
m; — oo. The sequence is dense in [0, 1].
m The mode Y, . m, :[0,1]9 = R.

m Kernel k with corresponding RKHS 7 of functions from [0, 1]¢ to R.
m Inequality set C of functions from [0, 1]9 to R.

Theorem [Bay et al., 2017, Bay et al., 2016
Under some technical conditions

?m1,.,.,md — Yoph
uniformly on [0, 119, with

Yopt = argmin |[[f[j3.
feHNCNZT
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Multiaffine extension

Definition

Let Fq, ..., Fg be (general) closed subsets of [0, 1] containing 0 and 1.

Let f be a continuous functionon F = F; x - -- x Fy.

Then, there exists a unique continuous extension of f on [0,1]9 such that any 1D
marginal cut functions u; — f(u;, t;) is affine on intervals of [0, 1] \ F;.

Denoted Pr_, | 4;0(f), it is obtained by sequential 1D affine interpolations.

— PF_)[OJ]d(f) is called the multiaffine extension of f.

Figure — Sequential construction of the multiaffine extension (2D case).
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Multiaffine extension

m The multiaffine extension is expressed with 29 neighbours as
d
PF~>[071]d(f)(u17---7ud): Z <Hw6/(uj)> f(u1517"-7u¢61d )
€1,-.,6g€{—,+} \j=1
where u, uj+ are the closest left and right neighbours of u; in F,
wi(u) = % if ¢ Fjand § otherwise, and w_ () = 1 — w (y)).
/i

m |t preserves boundedness, monotonicity and componentwise convexity.
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The multiaffine extension for a fixed sequence of knots that is not dense

Setting :

m Forvariable j € {1,...,d} : sequence of one-dimensional knots t(/), cee tgj) and
m; — oo. The sequence has closure F; C [0, 1].

First approach : can we still find a limit function from [0, 1]9 to R ?
— Not successful to stay on [0, 1]¢ here.

Instead : Work on F := F; x --- x F4 and define
m Hr RKHS of k restricted to F x F.

m Cr : set of functions from F to R which multi-affine extensions satisfy inequality
constraints.

m Zr : set of functions from F to R which multi-affine extensions interpolate the data
set.
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The multiaffine extension for a fixed sequence of knots that is not dense

Theorem [Bachoc et al., 2022

Under some technical conditions
Ymy,....mg = YoptF
uniformly on F, with
Yopt,F = argmin Hf”’HF-
feHFNCFNZIF
As a consequence
Ym1,..4,md — PF_>[0,1]d (Yopt,F) >

uniformly on [0, 1]9.
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Application to convergence of MaxMod

= Mode \A/MaxMod,m at iteration m of MaxMod.
m We add an exploration reward to MaxMod.

Theorem [Bachoc et al., 2022

Under some technical conditions, as m — oo,
YMaxMod,m — Yopt,
uniformly on [0, 1]9, with

Yopt = argmin [|f|3.
fernenz
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Application to convergence of MaxMod

Proof arguments :

— let us show that sequence of knots is dense.
m As is common for algorithms maximizing acquisition functions (EGO....), two
ingredients :
— Show that acquisition function is small at points close to existing ones.
— Show that acquisition function is large at points away from existing ones.
m Here:

— Show that mode perturbation vanishes from VMaxMod,m to VMaxMcd,mH — previous
convergence result.

— Acquisition function is large at points away from existing ones — the exploration
reward.
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Conclusion

Summary.

m Inequality constraints correspond to additional information (e.g. physical
knowledge).

m Taking them into account can significantly improve the predictions.

m With a computational cost (explicit = Monte Carlo).

m Asymptotically, we do not see an impact of the constraints and ML =~ cML.
m MaxMod algorithm for higher dimension.

Main open question on likelihood theory.
m How to analyse asymptotically n-dependent constraints £ € £, with

e For instance boundedness with tighter and tighter bounds or monotonicity over larger
and larger domains.

e Should yield more impacts of the constraints ?

e Previous proof techniques do not apply.

Subsequent and ongoing work on computation.
m Additive model and corresponding MaxMod : [Lopez-Lopera et al., 2022].
m Block additive models and corresponding MaxMod : in preparation.
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Main references

References.
m Constrained Gaussian processes : [Lopez-Lopera et al., 2018].
m Constrained Maximum Likelihood : [Bachoc et al., 2019].
m MaxMod : [Bachoc et al., 2022].
m Extension of MaxMod for additive models : [Lopez-Lopera et al., 2022].
m R package LineqGPR : https://github.com/anfelopera/lineqGPR.

Thank you for your attention !
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