Improved learning theory for kernel distribution regression with two-stage sampling

François Bachoc

Institut de Mathématiques de Toulouse Université Paul Sabatier

Joint work with Louis Béthune (Apple Paris), Alberto González-Sanz (Columbia University) and Jean-Michel Loubes (IMT Toulouse)

> Journée *Méthodes à noyaux à grande échelle* GdR IASIS / RT MAIAGES Novembre 2024

Outline

1 Distribution regression, Hilbertian embedding and two-stage sampling

2 Near-unbiased condition and improved rates

Distribution regression

We observe i.i.d. pairs

$$(\mu_i, Y_i), \quad i = 1, \ldots, n.$$

- $Y_i \in \mathbb{R}$.
- $\blacksquare \mu_i$ is a probability distribution on Ω .
- lacksquare Ω is compact in \mathbb{R}^d .

Goal: constructing a regression function

$$\widehat{f}_n: \mathcal{P}(\Omega) \to \mathbb{R},$$

• where $\mathcal{P}(\Omega)$ is the set of probability distributions on Ω .

Illustration with d = 1

Illustration with d=1

Illustration with d=1

Applications

For instance.

- From $\mu \in \mathcal{P}(\Omega)$, regressing entropy $(\mu) \in \mathbb{R}$.
- **\blacksquare** From a Gaussian mixture μ , regressing the number of components.
- Seeing images/textures as grids of PDF values (after renormalization) [Bachoc et al., 2023a].
- Multiple-instance learning: a label is associated to a bag of vectors [Dietterich et al., 1997, Ray and Page, 2015].
 - E.g. for drug design.
- Ecological inference: "learning individual-level associations from aggregate data" [Flaxman et al., 2015].
 - E.g. percentage of vote of men for Obama in 2012, county by county.

Hilbertian embedding

Hilbertian embedding

$$x: \mathcal{P}(\Omega) \to \mathcal{H}$$

 $\mu \mapsto \mathsf{x}_{\mu},$

where \mathcal{H} is a Hilbert space.

⇒ In order to use kernel regression on Hilbert spaces (see later)!

Illustration of Hilbertian embedding + kernel regression

Hilbertian embedding 1: mean embedding

Consider a kernel k on Ω .

Very quick introduction to kernels and RKHS

- $\mathbf{k}: \Omega \times \Omega \to \mathbb{R}.$
- For any $\ell \in \mathbb{N}$, $t_1, \ldots, t_\ell \in \Omega$, the $\ell \times \ell$ matrix $[k(t_i, t_j)]$ is symmetric non-negative definite.
- There is a (unique) Hilbert space \mathcal{H}_k of functions from Ω to \mathbb{R} ,
 - with inner product $\langle \cdot, \cdot \rangle_{\mathcal{H}_k}$
 - with norm $\|\cdot\|_{\mathcal{H}_k}$

such that

- \mathcal{H}_k contains all functions $k_t := k(t, \cdot)$ for $t \in \Omega$,
- for all $g \in \mathcal{H}_k$, for all $t \in \Omega$, $g(t) = \langle g, k_t \rangle_{\mathcal{H}_k}$ (reproducing property).
- $\Longrightarrow \mathcal{H}_k$ is the reproducing kernel Hilbert space (RKHS) of k.

Then mean embedding

$$x_{\mu} := \int_{\Omega} k_x \mathrm{d}\mu(x) = \left(t \mapsto \int_{\Omega} k(t,x) \mathrm{d}\mu(x)\right),$$

[Szabó et al., 2015, Szabó et al., 2016, Muandet et al., 2017].

Hilbertian embedding 2: sliced Wasserstein

The sliced Wasserstein distance [Kolouri et al., 2018, Manole et al., 2022, Meunier et al., 2022]

$$\mathcal{SW}(\mu,\nu)^2 := \int_{\mathcal{S}^{d-1}} \int_0^1 \left(F_{\mu_{\theta}}^{-1}(t) - F_{\nu_{\theta}}^{-1}(t) \right)^2 \mathrm{d}t \mathrm{d}\Lambda(\theta),$$

- with two distributions $\mu, \nu \in \mathcal{P}(\Omega)$,
- where S^{d-1} is the unit sphere,
- where Λ is the uniform distribution on S^{d-1} ,
- where μ_{θ} is the univariate distribution of $\langle \theta, X \rangle$ for $X \sim \mu$,
- where $F_{\mu_{\theta}}^{-1}$ is the quantile function of μ_{θ} .

Hilbert distance of a Hilbertian embedding

$$\mathcal{SW}(\underline{\mu}, \underline{\nu})^2 = \|x_{\underline{\mu}} - x_{\underline{\nu}}\|_{\mathcal{H}}^2.$$

- $\blacksquare \mathcal{H} = \mathcal{L}^2 (\bigwedge \times \mathcal{U}([0,1])),$
 - where $\mathcal{U}([0,1])$ is the uniform distribution on [0,1].
- $x_{\mu}(\theta, t) = F_{\mu \rho}^{-1}(t).$

Hilbertian embedding 3: Sinkhorn distance and dual potential

Dual formulation of entropic-regularized (Sinkhorn) optimal transport [Cuturi, 2013, Genevay, 2019]

$$\begin{split} \sup_{\boldsymbol{h} \in L^1(\boldsymbol{\mu}), \boldsymbol{g} \in L^1(\boldsymbol{\mathcal{U}})} & \int_{\Omega} \boldsymbol{h}(\boldsymbol{x}) \mathrm{d}\boldsymbol{\mu}(\boldsymbol{x}) + \int_{\Omega} \boldsymbol{g}(\boldsymbol{y}) \mathrm{d}\boldsymbol{\mathcal{U}}(\boldsymbol{y}) \\ & - \epsilon \int_{\Omega \times \Omega} e^{\frac{1}{\epsilon} \left(\boldsymbol{h}(\boldsymbol{x}) + \boldsymbol{g}(\boldsymbol{y}) - \frac{1}{2} \|\boldsymbol{x} - \boldsymbol{y}\|^2\right)} \mathrm{d}\boldsymbol{\mu}(\boldsymbol{x}) \mathrm{d}\boldsymbol{\mathcal{U}}(\boldsymbol{y}). \end{split}$$

- \bullet $\epsilon > 0$ regularization parameter.
- Fixed $\mathcal{U} \in \mathcal{P}(\Omega)$ called reference measure.
- For any $\mu \in \mathcal{P}(\Omega)$.

Hilbertian embedding

There is a unique optimal (h^*, g^*) such that g^* is centered w. r. t. \mathcal{U} . Also $g^* \in L^2(\mathcal{U})$.

[Bachoc et al., 2023a]:

- $x_{\mu} := g^*.$
- $\mathcal{H} := L^2(\mathcal{U}).$

Illustration of Sinkhorn embedding

Kernel ridge regression on Hilbert space

■ Hilbertian covariates: for i = 1, ..., n, let

$$x_i := x_{\mu_i}$$
.

■ Kernel K on \mathcal{H} . E.g. squared-exponential, for $u, v \in \mathcal{H}$,

$$K(u, v) := e^{-\|u-v\|_{\mathcal{H}}^2}.$$

 \Longrightarrow Yields the RKHS \mathcal{H}_K of functions from \mathcal{H} to \mathbb{R} .

■ Ridge regression

$$\widehat{f}_n = \underset{f \in \mathcal{H}_K}{\operatorname{argmin}} \ R_n(f)$$

with

$$R_n(f) := \frac{1}{n} \sum_{i=1}^n (f(x_i) - Y_i)^2 + \lambda ||f||_{\mathcal{H}_K}^2,$$

• where $\lambda > 0$ is a regularization parameter.

Two-stage sampling

Studied in [Szabó et al., 2015, Szabó et al., 2016, Meunier et al., 2022].

- For i = 1, ..., n, μ_i is unobserved.
- We observe i. i. d. $(X_{i,j})_{j=1,...,N}$ with $X_{i,j} \sim \mu_i$.
- We let

$$\mu_i^{N} = \frac{1}{N} \sum_{j=1}^{N} \delta_{X_{i,j}}$$

and

$$x_{N,i} = x_{\mu_i^N}$$
.

Ridge regression with approximate covariates

$$\widehat{f}_{n,N} = \underset{f \in \mathcal{H}_K}{\operatorname{argmin}} \ R_{n,N}(f)$$

with

$$R_{n,N}(f) := \frac{1}{n} \sum_{i=1}^{n} (f(x_{N,i}) - Y_i)^2 + \lambda ||f||_{\mathcal{H}_K}^2.$$

1 Distribution regression, Hilbertian embedding and two-stage sampling

2 Near-unbiased condition and improved rates

Existing error bounds on $\widehat{f}_n - \widehat{f}_{n,N}$

- [Szabó et al., 2015, Szabó et al., 2016, Meunier et al., 2022] address their respective distribution regression settings.
- But their results are naturally made general.

Existing bounds

For all $s \ge 1$, conditionally to $(x_i, Y_i)_{i=1}^n$,

$$\mathbb{E}\left[\left\|\hat{f}_{n} - \hat{f}_{n,N}\right\|_{\mathcal{H}_{K}}^{s}\right]^{1/s} \leq \frac{\operatorname{constant}\left(\|\hat{f}_{n}\|_{\mathcal{H}_{K}} + Y_{\max,n}\right)}{\sqrt{N}\lambda}$$

• with $Y_{\max,n} = \max_{i=1,...,n} |Y_i|$.

Existing error bounds are improvable?

- Proofs based on explicit expressions of \hat{f}_n and $\hat{f}_{n,N}$.
- Somewhere:

$$\begin{split} & \left\| \frac{1}{n} \sum_{i=1}^{n} \left(\hat{f}_{n}(x_{i}) K_{x_{i}} - \hat{f}_{n}(x_{N,i}) K_{x_{N,i}} \right) \right\|_{\mathcal{H}_{K}} \\ & \leq \frac{1}{n} \sum_{i=1}^{n} \left\| \hat{f}_{n}(x_{i}) K_{x_{i}} - \hat{f}_{n}(x_{N,i}) K_{x_{N,i}} \right\|_{\mathcal{H}_{K}}. \end{split}$$

But

$$\left(\hat{f}_{n}(x_{i})K_{x_{i}}-\hat{f}_{n}(x_{N,i})K_{x_{N,i}}\right)_{i=1}^{n}$$

are independent conditionally on $(x_i, Y_i)_{i=1}^n$.

- Do they have approximately zero mean (in \mathcal{H}_K)?
- If yes, we could gain an order \sqrt{n} in the upper bound.

Near-unbiased condition

In [Bachoc et al., 2023b].

Near-unbiased condition

■ For i = 1, ..., n, there are random $a_{N,i}$ and $b_{N,i}$ such that

$$x_{N,i}-x_i=a_{N,i}+b_{N,i}.$$

- $||a_{N,i}||_{\mathcal{H}}$ has order $\frac{1}{\sqrt{N}}$.
- $\blacksquare \mathbb{E}[a_{N,i}|\mu_i] = 0 \in \mathcal{H}.$
- $||b_{N,i}||_{\mathcal{H}}$ has order $\frac{1}{N}$.

For the 3 examples of Hilbertian embedding

- Mean embedding: $b_{N,i} = 0$ (exactly unbiased).
- Sinkhorn: indeed near unbiased, relying on [González-Sanz et al., 2022].
- Sliced Wasserstein: indeed near unbiased under conditions.

Improved rates (1/2)

Main result in [Bachoc et al., 2023b].

Theorem

Up to constant

$$\begin{split} \sqrt{\mathbb{E}_n \left[\| \hat{f}_n - \hat{f}_{n,N} \|_{\mathcal{H}_K}^2 \right]} &\leq \frac{Y_{\mathsf{max},n} + \| \hat{f}_n \|_{\mathcal{H}_K}}{\lambda N} + \frac{Y_{\mathsf{max},n} + \| \hat{f}_n \|_{\mathcal{H}_K}}{\lambda \sqrt{n} \sqrt{N}} \\ &+ \left(1 + \frac{\sqrt{N}}{\sqrt{n}} \right)^{-1} \left(\frac{Y_{\mathsf{max},n} + \| \hat{f}_n \|_{\mathcal{H}_K}}{\lambda n} + \frac{Y_{\mathsf{max},n} + \| \hat{f}_n \|_{\mathcal{H}_K}}{\lambda^2 n \sqrt{N}} \right) \end{split}$$

- with $Y_{\max,n} = \max_{i=1,...,n} |Y_i|$,
- where \mathbb{E}_n denotes the conditional expectation given $(\mu_i, Y_i)_{i=1}^n$.

The \sqrt{n} we gain comes from average of independent centered variables.

Improved rates (2/2)

From previous theorem.

Corollary

- Let $n, N \to \infty$ and $\lambda \to 0$.
- Assume $1/\lambda = \mathcal{O}(\sqrt{N})$.
- Assume $n = \mathcal{O}(N)$.
- Assume $\mathbb{E}[\|\hat{f}_n\|_{\mathcal{H}_{\nu}}^2]$ and $\mathbb{E}[Y_{\max,n}^2]$ are bounded.

Then

$$\sqrt{\mathbb{E}\left[\|\hat{f}_n - \hat{f}_{n,N}\|_{\mathcal{H}_K}^2\right]} = \mathcal{O}\left(\frac{1}{\lambda \sqrt{n}\sqrt{N}}\right).$$

In comparison the methods of [Szabó et al., 2015, Szabó et al., 2016, Meunier et al., 2022] yield

$$\sqrt{\mathbb{E}\left[\|\hat{f}_n - \hat{f}_{n,N}\|_{\mathcal{H}_K}^2\right]} = \mathcal{O}\left(\frac{1}{\lambda\sqrt{N}}\right).$$

One proof ingredient

Recall

$$\hat{f}_n = \underset{f \in \mathcal{H}_K}{\operatorname{argmin}} \quad \frac{1}{n} \sum_{i=1}^n \left(f(x_i) - Y_i \right)^2 + \lambda \|f\|_{\mathcal{H}_K}^2$$

and

$$\hat{f}_{n,N} = \underset{f \in \mathcal{H}_K}{\operatorname{argmin}} \quad \frac{1}{n} \sum_{i=1}^n \left(f(x_{N,i}) - Y_i \right)^2 + \lambda \|f\|_{\mathcal{H}_K}^2.$$

Then, exploiting convexity,

$$\lambda \|\hat{f}_n - \hat{f}_{n,N}\|_{\mathcal{H}_K}^2 \leq \text{scalar bound.}$$

Another proof ingredient

We are led to bound (in \mathbb{R} !) terms such as

$$\frac{1}{n}\sum_{i=1}^{n}Y_{i}\left\{\left[\hat{f}_{n}(x_{i})-\frac{\hat{f}_{n,N}(x_{i})}{-\left[\hat{f}_{n}(x_{N,i})-\frac{\hat{f}_{n,N}(x_{N,i})}{-\left[\hat{f}_{n,N}(x_{N,i})\right]}\right\}\right.$$

By coupling arguments, we approximate by

$$\frac{1}{n}\sum_{i=1}^{n}Y_{i}\left\{\left[\hat{f}_{n}(x_{i})-\tilde{f}_{n,N}(x_{i})\right]-\left[\hat{f}_{n}(x_{N,i})-\tilde{f}_{n,N}(x_{N,i})\right]\right\},$$

• with $\tilde{f}_{n,N}$ constructed from new independent $(\tilde{x}_{N,i})_{i=1}^n$.

Hence

- conditionally to $(\tilde{x}_{N,i}, \mu_i, Y_i)_{i=1}^n$,
- letting $(x_{N,i})_{i=1}^n$ be the only remaining source of randomness,
- ⇒ we have a sum of independent variables.

Application to sufficient N for minimax rate (1/2)

- [Caponnetto and De Vito, 2007] provide minimax rates as $n \to \infty$ with one-stage sampling (for \hat{f}_n).
- Target: conditional expectation function

$$f^* = \mathbb{E}\left[Y_i|x_i = \cdot\right]$$
 assumed to be in \mathcal{H}_K .

■ We let \mathcal{L} be the distribution of x_i .

Problem class on ${\cal H}$

Hardness of (\mathcal{L}, K, f^*) measured by

- b > 1 effective dimension of \mathcal{H}_K w. r. t. distribution \mathcal{L} ,
- $c \in (1,2]$ complexity of f^* .

Minimax rate

$$\sqrt{\int_{\mathcal{H}} \left(f^\star(x) - \hat{f}_n(x)\right)^2 \mathrm{d}\mathcal{L}(x)} = \mathcal{O}_{\mathbb{P}}\left(n^{-\frac{bc}{2(bc+1)}}\right).$$

With $\lambda = n^{-\frac{b}{bc+1}}$.

Application to sufficient N for minimax rate (2/2)

In [Bachoc et al., 2023b], from our bounds:

Sufficient N for minimax rate

$$\sqrt{\int_{\mathcal{H}} \left(f^{\star}(x) - \hat{\pmb{f}}_{n,N}(x)\right)^2 \mathrm{d}\mathcal{L}(x)} = \mathcal{O}_{\mathbb{P}}\left(n^{-\frac{bc}{2(bc+1)}}\right).$$

- With $\lambda = n^{-\frac{b}{bc+1}}$.
- With $N = n^a$,

$$\begin{cases} \mathbf{a} = \max(\frac{b + \frac{bc}{2}}{bc + 1}, \frac{2b - 1}{bc + 1}, \frac{4b - bc - 2}{bc + 1}) \ (\leq 1) & \text{if } b(1 - \frac{c}{2}) \leq \frac{3}{4} \\ \mathbf{a} = \max(\frac{b + \frac{bc}{2}}{bc + 1}, \frac{2b - \frac{1}{2}}{bc + 1}) \ (> 1) & \text{if } b(1 - \frac{c}{2}) > \frac{3}{4} \end{cases}.$$

In [Szabó et al., 2015, Szabó et al., 2016], same result for mean embedding with $N = n^{\frac{b(c+1)}{bc+1}}$,

$$\blacksquare$$
 $\frac{b(c+1)}{bc+1} > a$, for all b, c .

Numerical experiment: Gaussian mixtures (1/2)

- For i = 1, ..., n, μ_i is a Gaussian mixture with Y_i modes.
- For i = 1, ..., n we observe N samples $X_{i,j}$ from μ_i .

Numerical experiment: Gaussian mixtures (2/2)

- \Longrightarrow Score increases with n, N.
- \implies There is a saturation effect of increasing N (e.g. bottom-left).

Conclusion

- Hilbertian embedding for (symmetric non-negative definite) kernels.
- Two-stage sampling as an additional source of error.
- Main contribution: tighter control of this error.
- The paper [Bachoc et al., 2023b]: arXiv:2308.14335.
- Paper [Bachoc et al., 2023a] on Sinkhorn kernel.
- Public Python codes (links in papers).

Thank you for your attention!

Bibliography I

Bachoc, F., Béthune, L., González-Sanz, A., and Loubes, J.-M. (2023a).

Gaussian processes on distributions based on regularized optimal transport.

In International Conference on Artificial Intelligence and Statistics.

Bachoc, F., Béthune, L., González-Sanz, A., and Loubes, J.-M. (2023b).

Improved learning theory for kernel distribution regression with two-stage sampling.

arXiv:2308.14335.

Caponnetto, A. and De Vito, E. (2007). Optimal rates for the regularized least-squares algorithm. Foundations of Computational Mathematics, 7:331–368.

Cuturi, M. (2013).

Sinkhorn distances: Lightspeed computation of optimal transport. *Advances in Neural Information Processing Systems*, 26.

Bibliography II

- Dietterich, T., Lathrop, R., and Lozano-Pérez, T. (1997). Solving the multiple instance problem with axis-parallel rectangles. *Artificial Intelligence*, 89:31–71.
- Flaxman, S. R., Wang, Y.-X., and Smola, A. J. (2015). Who supported Obama in 2012? Ecological inference through distribution regression.

 In International Conference on Knowledge Discovery and Data Mining.
- Genevay, A. (2019).

 Entropy-regularized optimal transport for machine learning.
 PhD thesis, Paris Sciences et Lettres (ComUE).
- González-Sanz, A., Loubes, J.-M., and Niles-Weed, J. (2022). Weak limits of entropy regularized optimal transport; potentials, plans and divergences. arXiv preprint arXiv:2207.07427.

Bibliography III

- Kolouri, S., Rohde, G. K., and Hoffmann, H. (2018).
 Sliced Wasserstein distance for learning Gaussian mixture models.
 In IEEE Conference on Computer Vision and Pattern Recognition.
- Manole, T., Balakrishnan, S., and Wasserman, L. (2022). Minimax confidence intervals for the sliced Wasserstein distance. *Electronic Journal of Statistics*, 16(1):2252–2345.
- Meunier, D., Pontil, M., and Ciliberto, C. (2022).
 Distribution regression with sliced Wasserstein kernels.
 In International Conference on Machine Learning.
- Muandet, K., Fukumizu, K., Sriperumbudur, B., and Schölkopf, B. (2017).

 Kernel mean embedding of distributions: A review and beyond.
 - Foundations and Trends® in Machine Learning, 10(1-2):1–141.
- Ray, S. and Page, D. (2015).

 Multiple instance regression.

 In International Conference on Machine Learning.

Bibliography IV

- Szabó, Z., Gretton, A., Póczos, B., and Sriperumbudur, B. (2015). Two-stage sampled learning theory on distributions. In International Conference on Artificial Intelligence and Statistics.
- Szabó, Z., Sriperumbudur, B., Póczos, B., and Gretton, A. (2016). Learning theory for distribution regression.

 The Journal of Machine Learning Research, 17(1):5272–5311.