Improved learning theory for kernel distribution regression with two-stage sampling

François Bachoc

Institut de Mathématiques de Toulouse Université Paul Sabatier

Joint work with Louis Béthune (Apple Paris), Alberto González-Sanz (Columbia University) and Jean-Michel Loubes (IMT Toulouse)

> Journée Méthodes à noyaux à grande échelle GdR IASIS / RT MAIAGES Novembre 2024

2 [Near-unbiased condition and improved rates](#page-15-0)

Distribution regression

We observe i.i.d. pairs

$$
(\mu_i, Y_i), \quad i=1,\ldots,n.
$$

 $Y_i \in \mathbb{R}$.

 μ_i is a probability distribution on $\Omega.$

 Ω is compact in \mathbb{R}^d .

Goal: constructing a regression function

 $\widehat{f}_n : \mathcal{P}(\Omega) \to \mathbb{R},$

where $\mathcal{P}(\Omega)$ is the set of probability distributions on Ω .

Illustration with $d = 1$

Illustration with $d = 1$

Illustration with $d = 1$

For instance.

- From $\mu \in \mathcal{P}(\Omega)$, regressing entropy $(\mu) \in \mathbb{R}$.
- From a Gaussian mixture μ , regressing the number of components.
- Seeing images/textures as grids of PDF values (after renormalization) [\[Bachoc et al., 2023a\]](#page-28-0).
- Multiple-instance learning: a label is associated to a bag of vectors [\[Dietterich et al., 1997,](#page-29-0) [Ray and Page, 2015\]](#page-30-0).

E.g. for drug design.

- Ecological inference: "learning individual-level associations from aggregate data" [\[Flaxman et al., 2015\]](#page-29-1).
	- E.g. percentage of vote of men for Obama in 2012, county by county.

Hilbertian embedding

Hilbertian embedding

$$
x: \mathcal{P}(\Omega) \to \mathcal{H}
$$

$$
\mu \mapsto x_{\mu},
$$

where H is a Hilbert space.

⇒ In order to use kernel regression on Hilbert spaces (see later)!

Illustration of Hilbertian embedding $+$ kernel regression

Hilbertian embedding 1: mean embedding

Consider a kernel k on Ω.

Very quick introduction to kernels and RKHS

 $k: \Omega \times \Omega \rightarrow \mathbb{R}$.

For any $\ell \in \mathbb{N}$, $t_1, \ldots, t_\ell \in \Omega$, the $\ell \times \ell$ matrix $[k(t_i, t_j)]$ is symmetric non-negative definite.

■ There is a (unique) Hilbert space \mathcal{H}_k of functions from Ω to R,

- with inner product $\langle \cdot, \cdot \rangle_{\mathcal{H}_{k}}$
- **u** with norm $\|\cdot\|_{\mathcal{H}_k}$

such that

 \mathbb{H} H_k contains all functions $k_t := k(t, \cdot)$ for $t \in \Omega$,

for all $g \in \mathcal{H}_k$, for all $t \in \Omega$, $g(t) = \langle g, k_t \rangle_{\mathcal{H}_k}$ (reproducing property).

 \implies H_k is the reproducing kernel Hilbert space (RKHS) of k.

Then mean embedding

$$
x_\mu:=\int_\Omega k_x\mathrm{d}\mu(x)=\left(t\mapsto\int_\Omega k(t,x)\mathrm{d}\mu(x)\right),
$$

[Szabó et al., 2015, Szabó et al., 2016, [Muandet et al., 2017\]](#page-30-1).

Hilbertian embedding 2: sliced Wasserstein

The sliced Wasserstein distance [\[Kolouri et al., 2018,](#page-30-2) [Manole et al.,](#page-30-3) [2022,](#page-30-3) [Meunier et al., 2022\]](#page-30-4)

$$
\mathcal{SW}(\mu,\nu)^2:=\int_{\mathcal{S}^{d-1}}\int_0^1\big(\mathsf{F}_{\mu_\theta}^{-1}(t)-\mathsf{F}_{\nu_\theta}^{-1}(t)\big)^2\,\mathrm{d} t\mathrm{dA}(\theta),
$$

- with two distributions $\mu, \nu \in \mathcal{P}(\Omega)$,
- where \mathcal{S}^{d-1} is the unit sphere,
- where Λ is the uniform distribution on \mathcal{S}^{d-1} ,
- **■** where μ_{θ} is the univariate distribution of $\langle \theta, X \rangle$ for $X \sim \mu$,
- where $\mathcal{F}_{\mu_\theta}^{-1}$ is the quantile function of μ_θ .

Hilbert distance of a Hilbertian embedding

$$
\mathcal{SW}(\mu,\nu)^2 = ||x_{\mu} - x_{\nu}||_{\mathcal{H}}^2.
$$

 $\mathcal{H} = \mathcal{L}^2 \left(\Lambda \times \mathcal{U}([0,1]) \right),$ where $\mathcal{U}([0, 1])$ is the uniform distribution on [0, 1]. $x_\mu(\theta,t)=F_{\mu_\theta}^{-1}(t).$

Hilbertian embedding 3: Sinkhorn distance and dual potential

Dual formulation of entropic-regularized (Sinkhorn) optimal transport [\[Cuturi, 2013,](#page-28-1) [Genevay, 2019\]](#page-29-2)

$$
\sup_{h\in L^1(\mu),g\in L^1(\mathcal{U})}\quad \int_{\Omega} h(x)\mathrm{d}\mu(x)+\int_{\Omega} g(y)\mathrm{d}\mathcal{U}(y)\\-\epsilon\int_{\Omega\times\Omega} e^{\frac{1}{\epsilon}\left(h(x)+g(y)-\frac{1}{2}\|x-y\|^2\right)}\mathrm{d}\mu(x)\mathrm{d}\mathcal{U}(y).
$$

- $\epsilon > 0$ regularization parameter.
- **■** Fixed $U \in \mathcal{P}(\Omega)$ called reference measure.
- For any $\mu \in \mathcal{P}(\Omega)$.

Hilbertian embedding

There is a unique optimal (h^\star,g^\star) such that g^\star is centered w. r. t. $\mathcal U.$ Also $g^{\star} \in L^2(\mathcal{U})$. [\[Bachoc et al., 2023a\]](#page-28-0):

- $x_{\mu} := g^*$
- $\mathcal{H} := L^2(\mathcal{U}).$

Illustration of Sinkhorn embedding

Kernel ridge regression on Hilbert space

Hilbertian covariates: for $i = 1, \ldots, n$, let

$$
x_i := x_{\mu_i}.
$$

Kernel K on H. E.g. squared-exponential, for $u, v \in H$,

$$
K(u,v):=e^{-\|u-v\|_{\mathcal{H}}^2}.
$$

 \implies Yields the RKHS \mathcal{H}_K of functions from \mathcal{H} to \mathbb{R} .

Ridge regression

$$
\widehat{f_n} = \operatorname*{argmin}_{f \in \mathcal{H}_K} R_n(f)
$$

with

$$
R_n(f) := \frac{1}{n} \sum_{i=1}^n (f(x_i) - Y_i)^2 + \lambda ||f||_{\mathcal{H}_K}^2,
$$

where $\lambda > 0$ is a regularization parameter.

Two-stage sampling

Studied in [Szabó et al., 2015, Szabó et al., 2016, [Meunier et al., 2022\]](#page-30-4).

- For $i = 1, \ldots, n$, μ_i is unobserved.
- We observe i. i. d. $(X_{i,j})_{j=1,..., \boldsymbol{N}}$ with $X_{i,j} \sim \mu_i.$

We let

$$
\mu_i^N = \frac{1}{N} \sum_{j=1}^N \delta_{X_{i,j}}
$$

and

$$
x_{N,i}=x_{\mu_i^N}.
$$

Ridge regression with approximate covariates

$$
\hat{f}_{n,N} = \underset{f \in \mathcal{H}_K}{\text{argmin}} R_{n,N}(f)
$$

with

$$
R_{n,N}(f) := \frac{1}{n}\sum_{i=1}^n (f(x_{N,i}) - Y_i)^2 + \lambda \|f\|_{\mathcal{H}_K}^2.
$$

[Distribution regression, Hilbertian embedding and two-stage sampling](#page-2-0)

[Near-unbiased condition and improved rates](#page-15-0)

Existing error bounds on $\widehat{f}_n - \widehat{f}_{n,N}$

- **E** Szabó et al., 2015, Szabó et al., 2016, Meunier et al., 2022 address their respective distribution regression settings.
- But their results are naturally made general.

Existing bounds

For all $s \geq 1$, conditionally to $(x_i, Y_i)_{i=1}^n$,

$$
\mathbb{E}\left[\left\|\hat{f}_n-\hat{f}_{n,N}\right\|_{\mathcal{H}_K}^s\right]^{1/s} \leq \frac{\text{constant}\left(\|\hat{f}_n\|_{\mathcal{H}_K} + Y_{\max,n}\right)}{\sqrt{N}\lambda}
$$

with $Y_{\max,n} = \max_{i=1,\dots,n} |Y_i|$.

Existing error bounds are improvable?

- Proofs based on explicit expressions of \hat{f}_n and $\hat{f}_{n,N}$.
- Somewhere:

$$
\left\| \frac{1}{n} \sum_{i=1}^n \left(\hat{f}_n(x_i) K_{x_i} - \hat{f}_n(x_{N,i}) K_{x_{N,i}} \right) \right\|_{\mathcal{H}_K}
$$

$$
\leq \frac{1}{n} \sum_{i=1}^n \left\| \hat{f}_n(x_i) K_{x_i} - \hat{f}_n(x_{N,i}) K_{x_{N,i}} \right\|_{\mathcal{H}_K}.
$$

■ But

$$
\left(\hat{f}_n(x_i)K_{x_i}-\hat{f}_n(x_{N,i})K_{x_{N,i}}\right)_{i=1}^n
$$

are independent conditionally on $(x_i, Y_i)_{i=1}^n$.

- Do they have approximately zero mean (in \mathcal{H}_K)?
- If yes, we could gain an order \sqrt{n} in the upper bound.

Near-unbiased condition

In [\[Bachoc et al., 2023b\]](#page-28-2).

Near-unbiased condition

For $i = 1, \ldots, n$, there are random $a_{N,i}$ and $b_{N,i}$ such that

$$
x_{N,i}-x_i=a_{N,i}+b_{N,i}.
$$

■
$$
\|a_{N,i}\|_{\mathcal{H}}
$$
 has order $\frac{1}{\sqrt{N}}$.

$$
\mathbb{E}[a_{N,i}|\mu_i]=0\in\mathcal{H}.
$$

 $||b_{N,i}||_{\mathcal{H}}$ has order $\frac{1}{N}$.

For the 3 examples of Hilbertian embedding

- **Mean embedding:** $b_{N,i} = 0$ (exactly unbiased).
- Sinkhorn: indeed near unbiased, relying on [González-Sanz et al., [2022\]](#page-29-3).
- Sliced Wasserstein: indeed near unbiased under conditions.

Improved rates $(1/2)$

Main result in [\[Bachoc et al., 2023b\]](#page-28-2).

Theorem

Up to constant

$$
\sqrt{\mathbb{E}_n\left[\|\hat{f}_n-\hat{f}_{n,N}\|_{\mathcal{H}_K}^2\right]} \leq \frac{Y_{\max,n} + \|\hat{f}_n\|_{\mathcal{H}_K}}{\lambda N} + \frac{Y_{\max,n} + \|\hat{f}_n\|_{\mathcal{H}_K}}{\lambda\sqrt{n}\sqrt{N}}
$$

$$
+ \left(1 + \frac{\sqrt{N}}{\sqrt{n}}\right)^{-1} \left(\frac{Y_{\max,n} + \|\hat{f}_n\|_{\mathcal{H}_K}}{\lambda n} + \frac{Y_{\max,n} + \|\hat{f}_n\|_{\mathcal{H}_K}}{\lambda^2 n\sqrt{N}}\right)
$$

with $Y_{\max,n} = \max_{i=1,\dots,n} |Y_i|$, where \mathbb{E}_n denotes the conditional expectation given $(\mu_i, Y_i)_{i=1}^n$.

The \sqrt{n} we gain comes from average of independent centered variables.

Improved rates (2/2)

From previous theorem.

Corollary

- Let $n, N \rightarrow \infty$ and $\lambda \rightarrow 0$. √
- Assume $1/\lambda = \mathcal{O}($ N).
- Assume $n = \mathcal{O}(N)$.
- Assume $\mathbb{E}[\|\hat{f}_{n}\|_{\mathcal{H}_{K}}^{2}]$ and $\mathbb{E}[Y_{\mathsf{max},n}^{2}]$ are bounded.

Then

$$
\sqrt{\mathbb{E}\left[\|\hat{f}_n-\hat{f}_{n,N}\|_{\mathcal{H}_K}^2\right]}=\mathcal{O}\left(\frac{1}{\lambda\sqrt{n}\sqrt{N}}\right).
$$

In comparison the methods of Szabó et al., 2015, Szabó et al., [2016,](#page-31-2) [Meunier et al., 2022\]](#page-30-4) yield

$$
\sqrt{\mathbb{E}\left[\|\hat{f}_n-\hat{f}_{n,N}\|_{\mathcal{H}_K}^2\right]}=\mathcal{O}\left(\frac{1}{\lambda\sqrt{N}}\right).
$$

One proof ingredient

Recall

$$
\hat{f}_n = \underset{f \in \mathcal{H}_K}{\text{argmin}} \ \frac{1}{n} \sum_{i=1}^n (f(x_i) - Y_i)^2 + \lambda \|f\|_{\mathcal{H}_K}^2
$$

and

$$
\hat{f}_{n,N} = \underset{f \in \mathcal{H}_K}{\text{argmin}} \ \frac{1}{n} \sum_{i=1}^n (f(x_{N,i}) - Y_i)^2 + \lambda \|f\|_{\mathcal{H}_K}^2.
$$

Then, exploiting convexity,

$$
\lambda \|\hat{f}_n - \hat{f}_{n,N}\|_{\mathcal{H}_K}^2 \leq \text{scalar bound}.
$$

Another proof ingredient

We are led to bound $(in \mathbb{R}!)$ terms such as

$$
\frac{1}{n}\sum_{i=1}^n Y_i\left\{\left[\hat{f}_n(x_i)-\hat{f}_{n,N}(x_i)\right]-\left[\hat{f}_n(x_{N,i})-\hat{f}_{n,N}(x_{N,i})\right]\right\}.
$$

By coupling arguments, we approximate by

$$
\frac{1}{n}\sum_{i=1}^n Y_i \left\{ \left[\hat{f}_n(x_i) - \tilde{f}_{n,N}(x_i) \right] - \left[\hat{f}_n(x_{N,i}) - \tilde{f}_{n,N}(x_{N,i}) \right] \right\},\,
$$

with $\tilde{f}_{n,N}$ constructed from new independent $(\tilde{x}_{N,i})_{i=1}^n$. Hence

- conditionally to $(\tilde{x}_{N,i}, \mu_i, Y_i)_{i=1}^n$,
- letting $(x_{N,i})_{i=1}^n$ be the only remaining source of randomness,
- \implies we have a sum of independent variables.

Application to sufficient N for minimax rate $(1/2)$

- **■** [\[Caponnetto and De Vito, 2007\]](#page-28-3) provide minimax rates as $n \to \infty$ with one-stage sampling (for \hat{f}_n).
- **Target:** conditional expectation function

 $f^* = \mathbb{E}[Y_i | x_i = \cdot]$ assumed to be in \mathcal{H}_K .

We let $\mathcal L$ be the distribution of x_i .

Problem class on H

Hardness of (\mathcal{L}, K, f^*) measured by

- \bullet \geq 1 effective dimension of \mathcal{H}_{κ} w. r. t. distribution \mathcal{L}_{κ} .
- $c \in (1,2]$ complexity of f^* .

Minimax rate

$$
\sqrt{\int_{\mathcal{H}} \left(f^{\star}(x) - \hat{f}_{n}(x)\right)^2 \mathrm{d}\mathcal{L}(x)} = \mathcal{O}_{\mathbb{P}}\left(n^{-\frac{bc}{2(bc+1)}}\right).
$$

$$
\blacksquare \text{ With } \lambda = n^{-\frac{b}{bc+1}}.
$$

Application to sufficient N for minimax rate $(2/2)$

In [\[Bachoc et al., 2023b\]](#page-28-2), from our bounds:

Sufficient N for minimax rate

$$
\sqrt{\int_{\mathcal{H}} \left(f^\star(\textup{\textsf{x}}) - \hat{f}_{n,\textup{\textsf{N}}}(\textup{\textsf{x}}) \right)^2 \mathrm{d}\mathcal{L}(\textup{\textsf{x}})} = \mathcal{O}_\mathbb{P}\left(n^{-\frac{bc}{2(bc+1)}} \right).
$$

$$
\blacksquare \text{ With } \lambda = n^{-\frac{b}{bc+1}}.
$$

With $N = n^a$,

$$
\begin{cases}\na = \max(\frac{b + \frac{bc}{2}}{bc + 1}, \frac{2b - 1}{bc + 1}, \frac{4b - bc - 2}{bc + 1}) \le 1) & \text{if } b(1 - \frac{c}{2}) \le \frac{3}{4} \\
a = \max(\frac{b + \frac{bc}{2}}{bc + 1}, \frac{2b - \frac{1}{2}}{bc + 1}) \le 1) & \text{if } b(1 - \frac{c}{2}) > \frac{3}{4} \n\end{cases}
$$

In [Szabó et al., 2015, Szabó et al., 2016], same result for mean embedding with $N = n^{\frac{b(c+1)}{bc+1}}$,

$$
\blacksquare \ \frac{b(c+1)}{bc+1} > a, \text{ for all } b, c.
$$

Numerical experiment: Gaussian mixtures (1/2)

For $i=1,\ldots,n$, μ_i is a Gaussian mixture with Y_i modes. For $i=1,\ldots,n$ we observe N samples $X_{i,j}$ from μ_i .

Numerical experiment: Gaussian mixtures (2/2)

 \implies Score increases with *n*, *N*. \implies There is a saturation effect of increasing N (e.g. bottom-left).

Conclusion

- **Hilbertian embedding for (symmetric non-negative definite) kernels.**
- Two-stage sampling as an additional source of error.
- **Main contribution: tighter control of this error.**
- The paper $[Backo]$ and $[Backo]$: $arXiv:2308.14335$.
- Paper [\[Bachoc et al., 2023a\]](#page-28-0) on Sinkhorn kernel.
- **Public Python codes (links in papers).**

Thank you for your attention!

Bibliography I

暈 Bachoc, F., Béthune, L., González-Sanz, A., and Loubes, J.-M. (2023a).

Gaussian processes on distributions based on regularized optimal transport.

In International Conference on Artificial Intelligence and Statistics.

Bachoc, F., Béthune, L., González-Sanz, A., and Loubes, J.-M. (2023b).

Improved learning theory for kernel distribution regression with two-stage sampling.

arXiv:2308.14335.

Caponnetto, A. and De Vito, E. (2007). Optimal rates for the regularized least-squares algorithm. Foundations of Computational Mathematics, 7:331–368.

F

Cuturi, M. (2013).

Sinkhorn distances: Lightspeed computation of optimal transport. Advances in Neural Information Processing Systems, 26.

Bibliography II

昂

Dietterich, T., Lathrop, R., and Lozano-Pérez, T. (1997). Solving the multiple instance problem with axis-parallel rectangles. Artificial Intelligence, 89:31–71.

Flaxman, S. R., Wang, Y.-X., and Smola, A. J. (2015). Who supported Obama in 2012? Ecological inference through distribution regression.

In International Conference on Knowledge Discovery and Data Mining.

Genevay, A. (2019).

Entropy-regularized optimal transport for machine learning. PhD thesis, Paris Sciences et Lettres (ComUE).

González-Sanz, A., Loubes, J.-M., and Niles-Weed, J. (2022). Weak limits of entropy regularized optimal transport; potentials, plans and divergences.

arXiv preprint arXiv:2207.07427.

Bibliography III

F Kolouri, S., Rohde, G. K., and Hoffmann, H. (2018). Sliced Wasserstein distance for learning Gaussian mixture models. In IEEE Conference on Computer Vision and Pattern Recognition.

- **Manole, T., Balakrishnan, S., and Wasserman, L. (2022).** Minimax confidence intervals for the sliced Wasserstein distance. Electronic Journal of Statistics, 16(1):2252–2345.
- 晶
	- Meunier, D., Pontil, M., and Ciliberto, C. (2022). Distribution regression with sliced Wasserstein kernels. In International Conference on Machine Learning.

ā. Muandet, K., Fukumizu, K., Sriperumbudur, B., and Schölkopf, B. (2017). Kernel mean embedding of distributions: A review and beyond. Foundations and Trends \widehat{R} in Machine Learning, 10(1-2):1-141.

-
- \Box Ray, S. and Page, D. (2015).

Multiple instance regression.

In International Conference on Machine Learning.

Szabó, Z., Gretton, A., Póczos, B., and Sriperumbudur, B. (2015). Two-stage sampled learning theory on distributions. In International Conference on Artificial Intelligence and Statistics.

螶 Szabó, Z., Sriperumbudur, B., Póczos, B., and Gretton, A. (2016). Learning theory for distribution regression.

The Journal of Machine Learning Research, 17(1):5272–5311.