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Outline
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2 Near-unbiased condition and improved rates
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Distribution regression

We observe i.i.d. pairs

(µi ,Yi ), i = 1, . . . , n.

Yi ∈ R.

µi is a probability distribution on Ω.

Ω is compact in Rd .

Goal: constructing a regression function

f̂n : P(Ω)→ R,

where P(Ω) is the set of probability distributions on Ω.
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Illustration with d = 1
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Illustration with d = 1

R

Y1 = 1Y2 = 3

Y3 = 5

Y4 = 12
Y5 = 10

Output ∈ R
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Illustration with d = 1

R

µ, Y =?
Output ∈ R
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Applications

For instance.

From µ ∈ P(Ω), regressing entropy(µ) ∈ R.

From a Gaussian mixture µ, regressing the number of components.

Seeing images/textures as grids of PDF values (after
renormalization) [Bachoc et al., 2023a].

Multiple-instance learning: a label is associated to a bag of vectors
[Dietterich et al., 1997, Ray and Page, 2015].

E.g. for drug design.

Ecological inference: “learning individual-level associations from
aggregate data” [Flaxman et al., 2015].

E.g. percentage of vote of men for Obama in 2012, county by county.
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Hilbertian embedding

Hilbertian embedding

x : P(Ω)→ H
µ 7→ xµ,

where H is a Hilbert space.

=⇒ In order to use kernel regression on Hilbert spaces (see later)!
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Illustration of Hilbertian embedding + kernel regression

• µ1

• µ2

• µ3

P(Ω)

• xµ1

• xµ2

• xµ3

H

• Y1

• Y2

• Y3

R

xxxxxxxxxxxxxxxxxxxxx︸ ︷︷ ︸
Hilbertian embedding

xxxxxxxxxxxxxxx︸ ︷︷ ︸
kernel regression
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Hilbertian embedding 1: mean embedding

Consider a kernel k on Ω.

Very quick introduction to kernels and RKHS

k : Ω× Ω→ R.

For any ` ∈ N, t1, . . . , t` ∈ Ω, the `× ` matrix [k(ti , tj)] is
symmetric non-negative definite.

There is a (unique) Hilbert space Hk of functions from Ω to R,

with inner product 〈·, ·〉Hk

with norm ‖ · ‖Hk

such that

Hk contains all functions kt := k(t, ·) for t ∈ Ω,
for all g ∈ Hk , for all t ∈ Ω, g(t) = 〈g , kt〉Hk (reproducing property).

=⇒ Hk is the reproducing kernel Hilbert space (RKHS) of k.

Then mean embedding

xµ :=

∫
Ω

kxdµ(x) =

(
t 7→

∫
Ω

k(t, x)dµ(x)

)
,

[Szabó et al., 2015, Szabó et al., 2016, Muandet et al., 2017].
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Hilbertian embedding 2: sliced Wasserstein

The sliced Wasserstein distance [Kolouri et al., 2018, Manole et al.,
2022, Meunier et al., 2022]

SW(µ, ν)2 :=

∫
Sd−1

∫ 1

0

(
F−1
µθ

(t)− F−1
νθ

(t)
)2

dtdΛ(θ),

with two distributions µ, ν ∈ P(Ω),

where Sd−1 is the unit sphere,

where Λ is the uniform distribution on Sd−1,

where µθ is the univariate distribution of 〈θ,X 〉 for X ∼ µ,

where F−1
µθ

is the quantile function of µθ.

Hilbert distance of a Hilbertian embedding

SW(µ, ν)2 = ‖xµ − xν‖2
H.

H = L2 (Λ× U([0, 1])),
where U([0, 1]) is the uniform distribution on [0, 1].

xµ(θ, t) = F−1
µθ

(t).
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Hilbertian embedding 3: Sinkhorn distance and dual potential

Dual formulation of entropic-regularized (Sinkhorn) optimal transport
[Cuturi, 2013, Genevay, 2019]

sup
h∈L1(µ),g∈L1(U)

∫
Ω

h(x)dµ(x) +

∫
Ω

g(y)dU(y)

−ε
∫

Ω×Ω

e
1
ε (h(x)+g(y)− 1

2‖x−y‖
2)dµ(x)dU(y).

ε > 0 regularization parameter.
Fixed U ∈ P(Ω) called reference measure.
For any µ ∈ P(Ω).

Hilbertian embedding

There is a unique optimal (h?, g?) such that g? is centered w. r. t. U .
Also g? ∈ L2(U).
[Bachoc et al., 2023a]:

xµ := g∗.

H := L2(U).
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Illustration of Sinkhorn embedding
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Kernel ridge regression on Hilbert space

Hilbertian covariates: for i = 1, . . . , n, let

xi := xµi .

Kernel K on H. E.g. squared-exponential, for u, v ∈ H,

K (u, v) := e−‖u−v‖
2
H .

=⇒ Yields the RKHS HK of functions from H to R.

Ridge regression

f̂n = argmin
f∈HK

Rn(f )

with

Rn(f ) :=
1

n

n∑
i=1

(f (xi )− Yi )
2 + λ‖f ‖2

HK
,

where λ > 0 is a regularization parameter.
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Two-stage sampling

Studied in [Szabó et al., 2015, Szabó et al., 2016, Meunier et al., 2022].

For i = 1, . . . , n, µi is unobserved.

We observe i. i. d. (Xi,j)j=1,...,N with Xi,j ∼ µi .

We let

µN
i =

1

N

N∑
j=1

δXi,j

and
xN,i = xµN

i
.

Ridge regression with approximate covariates

f̂n,N = argmin
f∈HK

Rn,N(f )

with

Rn,N(f ) :=
1

n

n∑
i=1

(f (xN,i )− Yi )
2 + λ‖f ‖2

HK
.
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1 Distribution regression, Hilbertian embedding and two-stage sampling

2 Near-unbiased condition and improved rates
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Existing error bounds on f̂n − f̂n,N

[Szabó et al., 2015, Szabó et al., 2016, Meunier et al., 2022] address
their respective distribution regression settings.

But their results are naturally made general.

Existing bounds

For all s ≥ 1, conditionally to (xi ,Yi )
n
i=1,

E
[∥∥∥f̂n − f̂n,N

∥∥∥s
HK

]1/s

≤
constant

(
‖f̂n‖HK

+ Ymax,n

)
√
Nλ

with Ymax,n = maxi=1,...,n |Yi |.
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Existing error bounds are improvable?

Proofs based on explicit expressions of f̂n and f̂n,N .

Somewhere: ∥∥∥∥∥1

n

n∑
i=1

(
f̂n(xi )Kxi − f̂n(xN,i )KxN,i

)∥∥∥∥∥
HK

≤ 1

n

n∑
i=1

∥∥∥f̂n(xi )Kxi − f̂n(xN,i )KxN,i

∥∥∥
HK

.

But (
f̂n(xi )Kxi − f̂n(xN,i )KxN,i

)n
i=1

are independent conditionally on (xi ,Yi )
n
i=1.

Do they have approximately zero mean (in HK )?

If yes, we could gain an order
√
n in the upper bound.
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Near-unbiased condition

In [Bachoc et al., 2023b].

Near-unbiased condition

For i = 1, . . . , n, there are random aN,i and bN,i such that

xN,i − xi = aN,i + bN,i .

‖aN,i‖H has order 1√
N

.

E[aN,i |µi ] = 0 ∈ H.

‖bN,i‖H has order 1
N .

For the 3 examples of Hilbertian embedding

Mean embedding: bN,i = 0 (exactly unbiased).

Sinkhorn: indeed near unbiased, relying on [González-Sanz et al.,
2022].

Sliced Wasserstein: indeed near unbiased under conditions.
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Improved rates (1/2)

Main result in [Bachoc et al., 2023b].

Theorem

Up to constant√
En

[
‖f̂n − f̂n,N‖2

HK

]
≤ Ymax,n + ‖f̂n‖HK

λN
+

Ymax,n + ‖f̂n‖HK

λ
√
n
√
N

+

(
1 +

√
N√
n

)−1(
Ymax,n + ‖f̂n‖HK

λn
+

Ymax,n + ‖f̂n‖HK

λ2n
√
N

)

with Ymax,n = maxi=1,...,n |Yi |,
where En denotes the conditional expectation given (µi ,Yi )

n
i=1.

The
√
n we gain comes from average of independent centered variables.
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Improved rates (2/2)

From previous theorem.

Corollary

Let n,N →∞ and λ→ 0.

Assume 1/λ = O(
√
N).

Assume n = O(N).

Assume E[‖f̂n‖2
HK

] and E[Y 2
max,n] are bounded.

Then √
E
[
‖f̂n − f̂n,N‖2

HK

]
= O

(
1

λ
√
n
√
N

)
.

In comparison the methods of [Szabó et al., 2015, Szabó et al.,
2016, Meunier et al., 2022] yield√

E
[
‖f̂n − f̂n,N‖2

HK

]
= O

(
1

λ
√
N

)
.
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One proof ingredient

Recall

f̂n = argmin
f∈HK

1

n

n∑
i=1

(f (xi )− Yi )
2 + λ‖f ‖2

HK

and

f̂n,N = argmin
f∈HK

1

n

n∑
i=1

(f (xN,i )− Yi )
2 + λ‖f ‖2

HK
.

Then, exploiting convexity,

λ‖f̂n − f̂n,N‖2
HK
≤scalar bound.
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Another proof ingredient

We are led to bound (in R!) terms such as

1

n

n∑
i=1

Yi

{[
f̂n(xi )− f̂n,N(xi )

]
−
[
f̂n(xN,i )− f̂n,N(xN,i )

]}
.

By coupling arguments, we approximate by

1

n

n∑
i=1

Yi

{[
f̂n(xi )− f̃n,N(xi )

]
−
[
f̂n(xN,i )− f̃n,N(xN,i )

]}
,

with f̃n,N constructed from new independent (x̃N,i )
n
i=1.

Hence

conditionally to (x̃N,i , µi ,Yi )
n
i=1,

letting (xN,i )
n
i=1 be the only remaining source of randomness,

=⇒ we have a sum of independent variables.
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Application to sufficient N for minimax rate (1/2)

[Caponnetto and De Vito, 2007] provide minimax rates as n→∞
with one-stage sampling (for f̂n).
Target: conditional expectation function

f ∗ = E [Yi |xi = ·] assumed to be in HK .

We let L be the distribution of xi .

Problem class on H
Hardness of (L,K , f ∗) measured by

b > 1 effective dimension of HK w. r. t. distribution L,

c ∈ (1, 2] complexity of f ∗.

Minimax rate√∫
H

(
f ?(x)− f̂n(x)

)2

dL(x) = OP

(
n−

bc
2(bc+1)

)
.

With λ = n−
b

bc+1 .
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Application to sufficient N for minimax rate (2/2)

In [Bachoc et al., 2023b], from our bounds:

Sufficient N for minimax rate√∫
H

(
f ?(x)− f̂n,N(x)

)2

dL(x) = OP

(
n−

bc
2(bc+1)

)
.

With λ = n−
b

bc+1 .

With N = na,{
a = max(

b+ bc
2

bc+1 ,
2b−1
bc+1 ,

4b−bc−2
bc+1 ) (≤ 1) if b(1− c

2 ) ≤ 3
4

a = max(
b+ bc

2

bc+1 ,
2b− 1

2

bc+1 ) (> 1) if b(1− c
2 ) > 3

4

.

In [Szabó et al., 2015, Szabó et al., 2016], same result for mean

embedding with N = n
b(c+1)
bc+1 ,

b(c+1)
bc+1 > a, for all b, c .
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Numerical experiment: Gaussian mixtures (1/2)

For i = 1, . . . , n, µi is a Gaussian mixture with Yi modes.

For i = 1, . . . , n we observe N samples Xi,j from µi .

François Bachoc Kernel distribution regression 24 / 30



Numerical experiment: Gaussian mixtures (2/2)

=⇒ Score increases with n,N.
=⇒ There is a saturation effect of increasing N (e.g. bottom-left).
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Conclusion

Hilbertian embedding for (symmetric non-negative definite) kernels.

Two-stage sampling as an additional source of error.

Main contribution: tighter control of this error.

The paper [Bachoc et al., 2023b]: arXiv:2308.14335.

Paper [Bachoc et al., 2023a] on Sinkhorn kernel.

Public Python codes (links in papers).

Thank you for your attention!
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