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Outline

Distribution regression, Hilbertian embedding and two-stage sampling

Near-unbiased condition and improved rates
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Distribution regression

We observe i.i.d. pairs

(MI‘?W)) i:]-a"'an'

mY; eR
m (; is a probability distribution on Q.
m Q is compact in RY.

Goal: constructing a regression function

£, P(Q) — R,

m where P(Q) is the set of probability distributions on €.
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Applications

For instance.
m From p € P(Q), regressing entropy(u) € R.
m From a Gaussian mixture p, regressing the number of components.

m Seeing images/textures as grids of PDF values (after
renormalization) [Bachoc et al., 2023a].

m Multiple-instance learning: a label is associated to a bag of vectors
[Dietterich et al., 1997, Ray and Page, 2015].

m E.g. for drug design.

m Ecological inference: “learning individual-level associations from
aggregate data” [Flaxman et al., 2015].

m E.g. percentage of vote of men for Obama in 2012, county by county.
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Hilbertian embedding

Hilbertian embedding

x:P(Q)—>H
[ X,

where H is a Hilbert space.

= In order to use kernel regression on Hilbert spaces (see later)!
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lllustration of Hilbertian embedding + kernel regression

Gl — Xy ——p Y]
p2  — Xy =———p O Y
K3 — Xy =———d 0 Y;
P(Q) H
Hilbertian embedding kernel regression
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Hilbertian embedding 1: mean embedding

Consider a kernel k on .

Very quick introduction to kernels and RKHS

B k:QxQ—R
m Forany L €N, t1,...,t; € Q, the £ x £ matrix [k(t;, t;)] is
symmetric non-negative definite.
m There is a (unique) Hilbert space Hy of functions from 2 to R,
m with inner product (-, )7,
m with norm || - ||%,
such that
m Hy contains all functions k; := k(t,-) for t € Q,
m forall g € Hy, for all t € Q, g(t) = (g, ke)#, (reproducing property).

—> H is the reproducing kernel Hilbert space (RKHS) of k.

Then mean embedding

X ::/Qkxd (x) = (t»—)/ﬂk(t,x)d (x)>,

[Szabd et al., 2015, Szabé et al., 2016, Muandet et al., 2017].
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Hilbertian embedding 2: sliced Wasserstein

The sliced Wasserstein distance [Kolouri et al., 2018, Manole et al.,
2022, Meunier et al., 2022]

/Sd / F-1(1))” dtdA(6),

with two distributions /1,7 € P(Q),

where S~ is the unit sphere,

where A is the uniform distribution on S9-1,

where /1 is the univariate distribution of (0, X) for X ~ 1,

where F;l is the quantile function of 1.g.
Hilbert distance of a Hilbertian embedding

SW(i,1)? = [ = x I3

m H=L2(AxU([0,1])),
m where U([0, 1]) is the uniform distribution on [0, 1].
m x,(0,t) = F (1)
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Hilbertian embedding 3: Sinkhorn distance and dual potential

Dual formulation of entropic-regularized (Sinkhorn) optimal transport
[Cuturi, 2013, Genevay, 2019]

sup / ()d(x) + / £(y)d(y)
€L(1),geLi(W) Q Q
—e/ et (10+e)=3 =y 17) g (x)dud(y).

QxQ

m ¢ > 0 regularization parameter.
m Fixed U € P(Q) called reference measure.

m For any /1 € P(Q).

Hilbertian embedding
There is a unique optimal (/*, g*) such that g* is centered w. r. t. U.
Also g* € L2(U).
[Bachoc et al., 2023a]:
mx, =g
n H = L2(U).
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lllustration of Sinkhorn embedding

Run Sinkhorn Algorithm Use Sinkhorn dual variables Compute the kernel
to obtain the dual variables. as embedding of distributions. from the embeddings.

p I
a8 g
U mmuonEn
E O = F(|l - l2a)
% IEE = “
-% Z
® g
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Kernel ridge regression on Hilbert space

m Hilbertian covariates: for i =1,...,n, let

Xi 1= Xy,

m Kernel K on H. E.g. squared-exponential, for u,v € H,
K(u,v) := e llu=vili,
= Yields the RKHS Hx of functions from H to R.

m Ridge regression

E, = argmin R,(f)
feEHk

with
1 n
Ra(F) := — 3 (F(x) = Y0 + Al
i=1

m where X\ > 0 is a regularization parameter.
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Two-stage sampling

Studied in [Szabé et al., 2015, Szabd et al., 2016, Meunier et al., 2022].

m Fori=1,...,n, p;is unobserved.
m We observe i. i. d. (Xi;)j=1,...n with Xi; ~ p;.
m We let

1 N
N _
Hi = N E 6Xi,j
Jj=1

and

XN, i :XM;\/.

Ridge regression with approximate covariates

1?:,7,\/ = argmin R, y(f)
feHk

with
n

1
Ron(f) = = >~ (o) = Y2 4 Ml e
i=1
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Near-unbiased condition and improved rates



~

Existing error bounds on f,, — fan

m [Szabd et al., 2015, Szabé et al., 2016, Meunier et al., 2022] address
their respective distribution regression settings.

m But their results are naturally made general.

Existing bounds

For all s > 1, conditionally to (x;, Y;)7_,,

?|

m with Yiax, = maxj—1

s 1Y/s  constant <||ﬁ,||HK + Ymax,n)
fo—fan :| <
K

VN

,,,,,
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Existing error bounds are improvable?

Proofs based on explicit expressions of f,, and ﬁ,,N.

m Somewhere:

1 . .
- Z (fn(Xi)KX, - fn(XN,i)KXN,f)
i=1 Hk
1<~z p
<= — ) K.
= fn(X:)Kx fn(XN,I)KXN, ‘HK

m But

are independent conditionally on (x;, Y;)7_;.

Do they have approximately zero mean (in Hy)?

Francois Bachoc Kernel distribution regression

If yes, we could gain an order /n in the upper bound.
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Near-unbiased condition

In [Bachoc et al., 2023b].

Near-unbiased condition

m For i =1,...,n, there are random ap ; and by ; such that
XN,i — Xi = an,i + bw,j.

B ||ay,i||# has order \%N
[ ] ]E[a/\/’,'|p,,'] =0¢eH.
® | byl has order £.

For the 3 examples of Hilbertian embedding

m Mean embedding: by ; = 0 (exactly unbiased).

m Sinkhorn: indeed near unbiased, relying on [Gonzélez-Sanz et al.,
2022].

m Sliced Wasserstein: indeed near unbiased under conditions.

Francois Bachoc Kernel distribution regression 17 /30



Improved rates (1/2)

Main result in [Bachoc et al., 2023b].

Up to constant

£ 5 Ym x,n T f,i, Ym wn+ fA'n
\/En |:||fn - fn,NHszK] < 2 ” ”HK + ax, ” ”HK

AN M/nvVN
—1 A A~
+ 1+ ﬂ YmaX," + ”fn”HK + YmaX,n + ||fn||?-l;<
NG An A2nv/N

B With Yimaxn = maxj=1,._,|Yil,

m where E, denotes the conditional expectation given (u;, Yi)!;.

The \/n we gain comes from average of independent centered variables.
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Improved rates (2/2)

From previous theorem.

Corollary

m Let n,N — ocoand A — 0.

m Assume 1/ = O(V/'N).

B Assume n = O(N).

m Assume E[[|£,[|3,,] and E[Y?

Then
\/E (1Fs = fon

In comparison the methods of [Szabd et al., 2015, Szabd et al.,
2016, Meunier et al., 2022] yield

VE[h i) =0 (52).
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One proof ingredient

Recall
1?,, = argmin — f(xi) — +)\ f
remi Z( ) 1115,
and
an—argmln — (xn.i) — +)\ f
remi Z 1F[13,-

Then, exploiting convexity,

)\an - szH%K <scalar bound.
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Another proof ingredient

We are led to bound (in R!) terms such as

72 A [0 = anx)] = [f) = FanCan)] }

= with , y constructed from new independent (%y;)7_,
Hence
m conditionally to (Xn, i, Yi)" 4,
m letting (xy )", be the only remaining source of randomness,

= we have a sum of independent variables.
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Application to sufficient N for minimax rate (1/2)

m [Caponnetto and De Vito, 2007] provide minimax rates as n — oo
with one-stage sampling (for f,).
m Target: conditional expectation function

*=E[Yix =] assumed to be in Hg.
m We let £ be the distribution of x;.

Problem class on H
Hardness of (£, K, f*) measured by
m b > 1 effective dimension of Hx w. r. t. distribution £,

m ¢ € (1,2] complexity of *.

Minimax rate

\//H (F(x) = ()" dL(x) = Op (0~ 57).

m With \ = n— &1,
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Application to sufficient N for minimax rate (2/2)

In [Bachoc et al., 2023b], from our bounds:

Sufficient NV for minimax rate
- 2 )
\// (f*(x)— n,N(x)) dL(x) = Op (n—ﬁ)
H

m With \ = n— &1,

m With N = n?,
. (b+% 2b—1 4b=bc—2) (< 1) ifp(1-5)< 3
a4 = maxXx gctl, bg+117 bc+1 = l 2/ — 4
5 2b—3 i |
S max(E 2R if b(1—5)> 3

In [Szabd et al., 2015, Szab¢ et al., 2016], same result for mean

. . b(c+1)

embedding with N = neei1 |
b(c+1)

terp > a forall b, c.
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Numerical experiment: Gaussian mixtures (1/2)

m Fori=1,..., n, u;is a Gaussian mixture with Y; modes.

mFori=1,...,nwe

Mixture n®1, with 8 modes

10

Mixture n°4, with 4 modes

}
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observe N samples X;; from p;.

x2
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Mixture n°3, with 3 modes
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Numerical

=10 d=10,C=2 d=2C=10 d=2,C=2

10,C

d

(a) Sinkhorn-U{.

(b) Sliced Wasserstein.

— Score increases with n, N.

(c) Mean embedding.

experiment: Gaussian mixtures (2/2)

0.7

o
S
Explained Variance Score (EVS)

= There is a saturation effect of increasing N (e.g. bottom-left).
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Conclusion

Hilbertian embedding for (symmetric non-negative definite) kernels.
Two-stage sampling as an additional source of error.

Main contribution: tighter control of this error.

The paper [Bachoc et al., 2023b]: arXiv:2308.14335.

Paper [Bachoc et al., 2023a] on Sinkhorn kernel.

Public Python codes (links in papers).

Thank you for your attention!
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