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Introduction

The aim of these lecture notes is to study sequences of random variables and random vectors indexed
by n — oo, where n is most of the cases a number of independent statistical observations. These
random variables and vectors will typically stem from estimators of the form 6,, for estimating a
vector of parameter 6 in a parametric model. This parametric model is for instance {Ly;0 € ©} for
a set © € RP and where, for all 8, Ly is a distribution on R. In this case, the statistical observations
are X1,...,X, € R with unknown distribution 6y € ©.

An important result that will be proved is the asymptotic normality of the maximum likelihood
estimator én based on independent X, ..., X, as n — co. Under regularity conditions, we will show

that
Iy

converges in distribution to a centered Gaussian vector.
For (much) more content on the topic of asymptotic statistics, we refer in particular to the book
[VdvoT].

General notations

Throughout, N will be the set of non-zero natural numbers, N = {1,2,...}. For a set A in a metric
space F, A will be its closure, A will be its interior, §A = Z\A will be its boundary and A¢ = E\A
will be its complement. Also the diameter of A will be defined as diam(A) = sup{dist(u,v) : u,v € A}
where dist is the distance in the space F.

We write 1{event} as the indicator function that an event holds true. For a function g : E — F
and A C F, we write g~ }(A) = {x € E: g(z) € A}. For c € R¥ and r > 0 we let B(c,7) = {z € R¥ :
lx — ¢|| < r}. On an Euclidean space, the inner product is written (-,-) and the Euclidean norm is
written || - [|. The acronym c.d.f. will stand for cumulative distribution function. The acronym i.i.d.
will stand for independent and identically distributed. The acronyms lL.h.s. and r.h.s. will stand for
left-hand side and right-hand side. The acronym w.r.t. will stand for with respect to.

For a random vector X, its covariance matrix is written cov(X). For two numbers u, v, we write
u A v = min(u,v). The transpose of a matrix M is written M T, If M is square and invertible, we
write M~T = (M~1)T = (MT)~!. For a function ¢ : R¥ — R™ that is differentiable at x, its m x k
Jacobian matrix at x is written J$(x). For a function ¢ : R¥ — R that is differentiable at , its k x 1
gradient column vector at = is written V¢(z).

For t € R we write

-1 if t<0
sign(t) =< 0 it t=0.
1 if t>0

1 Convergence of random vectors

1.1 Definitions

Let X = (Xi,..., X}) be arandom vector of R*. We can naturally extend the definition of a cumulative
distribution function (c.d.f.) of a random variable by defining

Fy :RF = [0,1]
by, for x = (z1,...,x;) € R¥,
Fx(x) =P (X1 <21,..., Xk < 2p).

Definition 1. Let (X,)nen be a sequence of random vectors of R* and X be a random vector of R¥.
Then we say that X,, converges to X



e in distribution if Fx, (x) — Fx(z) as n — oo for all © such that Fx is continuous at x. In
this case we write

X, 5 X

n—o0

e in probability if for all e > 0,
P(|X,—X]||>¢€¢) — 0.
n—oo
In this case we write
X, 5 X;

n—oo
e almost surely if
P (||Xn ~X|| — o) -1

n—oo

In this case we write
X, =5 X,

n—o0

In the above definition, we remark that convergence in distribution can hold even if X, and X
are not defined on a common probability space (€2, F,P). Indeed, this definition actually apply to the
distributions of X,, and X on R¥. On the other hand, convergence in probability and almost surely
need X,, and X to be defined on a common probability space (€2, F,P), for instance for X,, — X to be
well-defined.

Remark 2. Because of the above discussion, the definition of the convergence in distribution, and all

the properties presented next, hold, up to obvious changes, if the limit random vector X is replaced by
a limit distribution £ on RF.

1.2 Equivalent conditions for convergence in distribution and continuous mapping

Lemma 3 (Portmanteau). Let (X,)nen be a sequence of random vectors of R* and X be a random
vector of RF. The following statements are equivalent.

1. X, 5 x.

n—0o0

2. Elf(Xn)] — E[f(X)] for any bounded continuous function f.

3. E[f(X,)] — E[f(X)] for any bounded L-Lipschitz-continuous function f (L < c0).

n—o0

4. liminf E[f(X,)] > E[f(X)] for any continuous non-negative function.

n—oQ

5. liminf P (X,, € O) > P(X € O) for any open set O.

n—oo

6. limsup P (X,, € F) <P (X € F) for any closed set F'.

n—oo

7. P(X, € B) — P(X € B) for all Borel set B such that P(X € §B) = 0.
Proof. We skip this proof in the lecture notes. O

Let us illustrate some of the statements above with the simple example where X,, ~ N (0, %) and

X =0 a.s. Then one can check that X, _% X (exercize). Let us illustrate the statement 6 with
n—oo
the closed set {0}. We have

limsup P(X,, € {0}) =limsup 0 =0<1=P(X € {0}).

n—oo n—oo

Now let us illustrate the statement 5 with the open set (—¢,€) for some € > 0. We have

liniinf P (X, € (—¢,€)) = lirginf P (vVnX, € (—v/ne,v/ne)) = hII_l}iIlfIP) (Z € (—v/ne,v/ne)) =1
Z~N(0,1)

=P(X € (—¢,€)).



Theorem 4 (Continuous mapping). Let (X, )nen be a sequence of random vectors of R and X be a
random vector of R¥. Let g : R¥ — R™ be continuous at all points of a set C satisfying P(X € C) = 1.
Then

1. If X, néox then g(X,) = g(X).

n—oo

2. If X, néox then g(X,) - g(X).

n—oo
3 If Xp £ X then g(X,) 23 g(X).
n—oo n—oo

Proof. 3. Proving Item 3 is left as an exercize.
2. Let € > 0 and § > 0. We have

P([lg(Xn) = g(X)[| = €) <P (g(Xn) = g(X)[ = & [ Xn = X[| < 0) + P ([ Xn — X[ 2 6). (1)

The quantity P (|| X,, — X|| > d) goes to zero as n — oo since X, £, X. Let us define
n—oo

Bs ={r e R*:3y e Rs.t.|e —yl| <4, ]lg(z) — g(y)ll = e}
Then (1) yields

lim supP (lg(Xa) — 9(X)|| > &) < B(X € By) = P(X € B, nC).

n— oo
For all z € C, g is continuous at x so there is § > 0 small enough such that for all y, ||z —y|| <6
implies ||g(z) — g(y)|| < €. Hence, for 6 > 0 small enough 1{z € B; N C} = 0. Hence by dominated
convergence, P(X € BsNC) — 0 as § — 0. Hence limsupP (||g(Xy,) — g(X)|| > €) = 0 and thus Item

n—oo
2 is proved.

1. We will apply Item 6 from Lemma 3. Let F' be a closed set of R™. We have {g(X,) € F} =

{X, € g7Y(F)}. We have
gl (F)cg M(F) cg(F)uce.

To prove the second inclusion, consider x € g—1(F). There is a sequence X,, such that z, — z. If
x € C, then by continuity of g at z, g(x,) — g(x) and thus g(x) € F and thus = € g~!(F). Otherwise
x & C.

Hence,

limsup P(g(X,) € F) <limsup P ((Xn € g_l(F)>

n—o0 n—oo

Hence, by Item 6 from Lemma 3,

limsup P (g(X,) € F) <P (X = gfl(F)) <P(X € g {(F)) + Pz € C°) = P(g(X) € F).

n—oo

Hence, by Item 6 from Lemma 3, g(X,,) £, 9(X). O

n—oo

We remark from the theorem statement that if the random variable X is a fixed constant ¢, we
just need the continuity of g at c.

1.3 Uniformly tight variables
We observe that for any random vector X and any € > 0, there exists M > 0 such that

P([|X][ = M) < e

(exercize). We thus say that any fixed random vector is tight.



Definition 5. Let F = {X,,a € A} be a family of random vectors. We say that F' is uniformly
tight is
Ve >0, IM >0 s.t. supP(||Xq|| > M) <e.
acA

Equivalently
sup P(|| Xo[| = M) — 0.
a€A M—o0

Theorem 6 (Prokhorov). Let (X,,)nen be a sequence of random vectors.

1. If there exists a random vector x such that X, £y X then the family (X,)nen is uniformly
n—o0
tight.

2. If the family (X, )nen is uniformly tight then there exists a random vector X and a subsequence
L
(X¢(n))n€N such that X¢(n) — X.

n—0o0

Proof. We skip this proof in the lecture notes. O

We remark that these definitions and results related to tightness actually apply to the distributions
of the vectors X,,, not the random vectors themselves.

Also, we can see this theorem as an extension of a well-known deterministic result in finite dimen-
sion: any convergent sequence is bounded and from any bounded sequence we can extract a convergent
subsequence.

1.4 Relationships between the various modes of convergence

Theorem 7. Let (X,,)nen, (Yn)nen, X and Y be random vectors and let ¢ be a constant vector. Then

1. If X, 2% X then X, 25 X,
n—oo n—oo

2. If X, 25 X then X, =5 X,
n—oo n—oo

o

. . L
L X 5 e if and only if X,, — ¢,
n—oo n—oo

4o IF X, 55 X and || X, — Y| -2 0 then Y, =5 X,
n—o00 n—00 n—00

N

. (Slutsky) If X, = X and Y, -2 c then (Xn,Y,) - (X,0),
n—oo n—oo

n—00

6. If X, =5 X and Y, 25 Y then (X,,,Y,) == (X,Y).
n—oo n—oo n—oo

Proof. 1. Let € > 0. Consider the probability space (€2, F,P). Consider the function w — 1{|| X, (w)
X(w)|l > €}. For P-a.e. w e Q, we have X,,(w) - X(w) as n — oo and thus 1{]| X, (w) — X (w)||
€} = 0 as n — oo. Hence, from the dominated convergence theorem [, 1{||X,(w) — X (w)|
e}dP — 0 as n — oo. We conclude by using [, 1{[|Xp(w) — X(w)|| > e}dP = E [1{[| X, — X| > €}]
P (X0 — X[ > o).

2. is a consequence of Item 4.

3. Because of Item 2, only = needs to be proved. We will use Item 6 from Lemma 3. Let ¢ > 0
and B = B(c,¢€), the open Euclidean ball of center ¢ and radius e. We have

AV AVAR

limsup P(|| X, — ¢/ > ¢€) = limsup P(X,, € B°) <P(c € B°) =0.
n—oo

4. We will use Item 3 from Lemma 3. Consider a bounded L-Lipschitz function f. Let M be an
upper bound on |f|. We have
[E[f (Yn)] = E[f(X)]] < [E[f(Yn)] — ELf (Xn)] + [E[f (Xn)] — ELf(X)]|
< E[|f(Ya) — F(Xa)] + [ELF(X.)] — E[F(X)].



Above, E[f(X,)] — E[f(X)] — 0 as n — oo from Item 3 from Lemma 3. Also
Eflf(Ya) = f(X)[] < LE[[[Yn — Xull] < LeP (Y, — X[l < €) + LMP (|[Yn — Xall > €) .

From this we obtain
limsup [E[f(Y,)] — ELf(X)]| < Le.

n—oo
Since this is true for all € > 0 this lim sup is zero and thus we conclude from Item 3 from Lemma 3.
5. We have

limsup P (||(Xn,Yn) — (Xn,0)|| > €) =limsup P(||Y,, —¢|| >€) =0

n—oo n—oo

since Y;, —= ¢. Hence ||(Xn,Yy) — (Xn,¢)|| == 0. Hence from Item 4 it suffices to show that
n—oo n—oo

(Xn,0) N (X,c). Let k be the dimension of X and m be the dimension of c¢. For any continuous
n—oo

bounded function f : R¥*™ — R, the function f. : R¥ — R defined by f.(z) = f(x,¢) is bounded
continuous. Hence E[f(X,,,c)] = E[fc(Xn)] — E[fo(X)] = E[f(X,¢)]. Hence (X,,¢) é (X,c)
from Item 2. in Lemma 3.

6. is left as an exercize. O

From the above theorem and Theorem 4, we obtain the following theorem (exercize).

Theorem 8 (Slutsky). Let (X, )nen, X and (Yn)nen be random vectors and let ¢ be a constant vector.
If X, i> X and Y, i> c then

n—o0 n—o0

1. X, +Y, £, X + ¢, when Xp, Yy, c € RE;
n—oo

2. Y, X, é cX, when X, € R and Y,,ceR;

n—oo
L

Lemma 9 (Uniform convergence of the c.d.f. and convergence in distribution). Let (X, )nen and X

be random vectors on R¥ and assume that X, _>i> X and that Fx is continuous on RE. Then
n o0

sup |Fx,(z) — Fx(z)| 0
Proof. We write the proof for k = 1 to simplify the notations. The extension to a general k is left
as an exercize. Let ¢ > 0 and an integer N such that 1/N < e. Since Fx is continuous, there exist
x1,...,xN—1 such that Fx(z;) = i/N for i = 1,...,N — 1. Let also by convention 2y = —oco and
xy = +00. Since Fx and Fy, are non-decreasing, we have, for any i = 1,..., N and = € [z;_1, x;]*

FXn(ZE) — F(LL’) < FXn(SUi) — Fx(xi_l) < FXn(xz) - Fx(xl) + %

(we use the conventions F, (—oo) = Fx(—o00) =0 and Fy, (+00) = Fx(+00) = 1) and

1
Fx,(x) = F(z) 2 Fx, (zi-1) = Fx (@) 2 Fx, (2i-1) = Fx(zi-1) = -
Hence 1
sup |[Fx, (z) — Fx(z)| < max |Fx, (i) — Fx(zi)| +
z€R i=1,....N N
and thus by definition of convergence in distribution,
1
limsupsup |Fx, (z) — Fx(z)] < —.
n—oo zelR N
This is true for all N which concludes the proof. O

1Actually ifi=1,z<ziandifi=N,z>xzNn_1.



1.5 The symbols op and Op

We introduce here two symbols that will be very useful in the sequel. Let (X,,),en be a sequence of
random vectors.

e X, = op(1) means that ||X,|| = 0. More generally, for a sequence (R, )nen of non-negative
n—oo

random variables, X,, = op(R,) means that there exists a sequence of random vectors (Yy,)nen
such that X, = R,Y;, and ||Yy|| - 0.
n—oo

e X, = Op(1) means that (X,),ecn is uniformly tight. More generally, for a sequence (Rj,)neN
of non-negative random variables, X,, = Op(R,,) means that there exists a sequence of random
vectors (Yy,)nen such that X,, = R, Y, and (Y, )nen is uniformly tight.

The next lemma allows us to replace deterministic quantities by random quantities in the deter-
ministic standard notations o and O.

Lemma 10. Let (X,,)nen be a sequence of random vectors on RF such that X, L50. Then for all
n—ro0
q > 0 and for all function R : R¥ — R™ such that R(0) = 0,

1. ||R(h)|| = o(||h]|?) as h — O implies R(X,) = op(|| Xn]|9);
2. |IR(h)|| = O(||h||?) as h — 0 implies R(X,) = Op(|| X, ||?).

Proof. We define g : R¥ — R™ by g(h) = (iip) if h # 0 and g(0) = 0. Then R(X,) = g(X,,)[ X 7.
1. In this case the function g is continuous at 0. Hence by Theorem 4 (continuous mapping), since
IXall =5 0, 9(Xa) 5 0.
n—oo n—oo
2. Since R(h) = O(]|h||?) there exists 6 > 0 such that when ||h|| < § we have R(h) < M|/h||? and
thus g(h) < M. Hence

lim supP([|g(Xy)[| = M) < limsupP(|| X, > ) =0
n—oo

n—oo

since X, — 0. Hence g(X,) is uniformly tight and thus R(X,) = Op(||X,[|%). O

n—oo

1.6 Characteristic function

Definition 11. Let X be a random vector of R* and t € R* be deterministic. The characteristic
function of X at t is defined by

bx(t) = E /)]
with 1 = v/ —1.
Theorem 12 (Paul Levy).

1. Let (Xy)nen and X be random vectors of RF. Then the two following statements are equivalent.

(a) X £, X;

n—o0

(b) ox, (1) — bx(t) for all t € RF.

2. If there is a function ¢ : R¥ — R such that ¢ is continuous at zero and ¢x, (t) — o(t) for all
n oo
t € R*, then there is a random vector X such that ¢ = ¢x and X, _% X.
n oo
Proof. We skip the proof in these lecture notes. O

Lemma 13. Two random vectors X andY have the same distribution if and only if their characteristic
functions are equal.

Proof. We skip the proof in these lecture notes. O



1.7 Strong law of large number and central limit theorem

Proposition 14. Let (X;)ien be a sequence of i.i.d. random vectors such that E[| X1]|] < co. Then

Xy 4.t X
AEF A as gy,

n n—00

Proof. We skip the proof in these lecture notes. O
Proposition 15. Let (X;)ien be a sequence of i.i.d. random vectors such that E[|| X1 ||?] < co. Then

X144+ X,

n n—00

\/ﬁ( - E[Xﬂ) L5 N(0, cov(X1)).

Proof. We skip the proof in these lecture notes. O

1.8 Uniform integrability and convergence of moments

Definition 16 (Uniform integrability). A sequence of random vectors (Xp)nen is uniformly inte-
grable (u.i.) if
lim_sup E [| X, 141X, | = M}] = 0.

Note that convergence in distribution does not necessarily imply convergence of expectation for
unbounded functions. The next theorem shows that this occurs under the additional condition of
uniform integrability.

Theorem 17. Consider a function f : R¥ — R which is continuous on a set C. Let X be a random
vector of R which belongs a.s. to C. Let (X,)nen be a sequence of random vectors of RF. Then if

Xn % X and if (f(Xn))nen is w.i., we have

E[f(Xn)] — E[f(X)].

n—oo
Proof. We assume that f(X,) is non-negative, otherwise (exercize) we separate the positive and

negative parts.
By continuity, f(Xp) N f(X) from Theorem 4 (continuous mapping). We have for all M > 0,

n—oo

limsup [E[f(Xn)] — E[f(X)]|

< limsup [E[f (X,)] — E[f(X,) A M]| + limsup [E[f(X,) A M) =E[/(X) A M| (2

+ limsup [E[f(X) A M] — E[f(X)].

n—oo

Fix € > 0. Remark that
[E[f(Xn)] = E[f(Xn) A M]| < E[| f(Xa)|1{|f(X5)| > M}].

Since (f(Xp))nen is ud. we can fix M such that the first limsup on the r.h.s. of (2) is smaller than
€. Similarly, we can increase M such that the third limsup is smaller than e. The second limsup is
then zero from Theorem 4 (continuous maping), because f(-) A M is bounded and continuous on C.
Hence we have

lim sup [E[f(Xn)] — E[f(X)]| < 2e

n—o0

for all € > 0 which concludes the proof. O



2 The Delta method

2.1 The theorem

Let 6 € R* be a parameter in a statistical model and let (§n)n€N be a sequence of estimators for it.
Consider a function ¢ : R — R™. It is natural to estimate ¢(¢) by ¢(6,) and to ask if asymptotic
properties of 6, — 6 can be transferred to ¢(6,) — ¢(0).

The continuous mapping theorem (Theorem 4) provides a first answer. If 6A?n —>_]; 0 and ¢ is
n oo
continuous, then ¢(6,) —= ().
n—oo

Consider now that we have a stronger result, a central limit theorem: /n(6,, — 6) néo N(0,%) for
some covariance matrix X. Then, if ¢ is linear and defined by a m x k matrix M, we have (continuous
mapping, exercize) /n(M0, — M) néo NO,MEMT).

The intuition of the Delta method is that a similar result takes place if ¢ is continuously differen-
tiable, where the role of M will be played by the Jacobian matrix J¢.

Theorem 18 (Delta method). Let 6 € R* be fired. Let ¢ : RF — R™ be differentiable at 0. Let
(0n)nen be a sequence of random vectors and let X be a random vector such that, for a sequence
(rn)nen that goes to infinity, we have

rn (0n —0) 55 X.
(0 =0)

Then R
ra (6(0) = 0(0)) = (Jo(0)X 3)
and
ra (6(82) = 6(0)) = ra(J6(0)) B — 0) L5 0. (4)

Proof. Observe first that 8, — 6 = %rn(gn — ) goes to zero from Lemma 8 (Slutsky). Observe also
that the sequence ry, (6, — 6) is uniformly tight from Theorem 6 (Prokhorov). Next, write

R(h) = ¢(0 + h) = ¢(0) — (J9(0))h.

By definition of differentiability we have R(h) = o(||h||) as h — 0. Hence from Lemma 10,

-~

ru (60n) = 6(60)) = (J(O))ra(l — ) + ruR (B~ 0) = ra(J6(0))( ~ 0) + raoe (B, — ).
Above, rn0p(§n - 5) = O]P(T‘n(é\n - 5)) = op(1) because rn(an - 5) = Op(1) (exercize). This proves
(4).

From Theorem 4 (continuous mapping) and because 7, (@L - 9) L X , it follows that 7, (J&(6)) (6, —

n—0o0

0) = (ng(@))rn(gn —0) _>i> (J¢(0))X. Hence (3) holds from Item 4 in Theorem 7. O

2.2 The example of variance estimation

Consider a sequence of i.i.d. random variables (X;);en such that E[X}] < co. We can thus define the
mean E[X;] and the 3 centered moments po, us, g with

= E (X1 — E[X1))"] .

We naturally estimate E[X] by 11, = %Z?Zl X; and pe9 is the variance that we naturally estimate
by

n

- 1 .
H2n = E Z; (Xz - Ml,n)2 .
1=



Giving asymptotic results for jis,, is not easy because we may not be able to write it as an average
of independent variables, for instance (contrarily to fi1,,). Let us apply the Delta method. We write
¢ : R? i R defined by ¢(z,y) = y — 2. We have (exercize)

n n 2 n n 2
fon=" > X7 - <izxi> = (X - EIX))? - (iZ(XZ- —E[Xl])> :
=1 i=1

i=1 i—1
We write
v < X; - E[X)] )
(X - E[X))?

such that ps = ¢ (% Yo Y, % Yoy Yf) Also we have, since (Y;)1 is centered
cov (}/1) _ <M2 H3 2) )
M3 4 — Ko

Hence from the central limit theorem

1, (0 L P2 M3
ﬁ(n;n <H2>> n:foN<O’<u3 m—u%))’

Then from the Delta method
. B 1~y c E[X1] 3 0\\ _
Vi (fizn — p2) = V/n (¢ (n ;E) - ¢(07M2)> v N (07 (0 1) ( us M%) (1)> = N0, pia—pi3).

3 Statistical model and method of moments

3.1 Statistical model

Consider a sequence (X;);ey of i.i.d. random vectors of R¥. We call a (parametric) statistical model
a set of the form

{Lo;0 € O}

for © C RP where each £y is a distribution on R*. Tt is a set of candidate distributions for the law of
Xi.

We will make the assumption that the statistical model is well-specified and contains this law.
Hence we assume that there is a 6y € © such that the distribution of X1 is Lg,. The goal is to
estimate 0y from Xq,..., X,.

We write Ey, Py, covy for the expectation, probability and covariance computed “as if” we had
0y = 0. For instance

Eall X0 = [ lelaco(a)

and if £ =1 and Ly = N(0,6) with © = (0, 0), we have

Es[X?] = /R 2dlsx) = E[Z%] =3.
Z~N(0,3)

Note that we still write Ey, = E, Py, = P and covy, = cov since Ly, is “really” the distribution of
X1,...,Xn.

10



3.2 Method of moments

Consider a sequence (Xj);en of i.i.d. random vectors of RF. Consider a statistical model
{Ly;0 € ©}

for © C RP where each Ly is a distribution on R¥. Assume that there is a 6y € O such that the
distribution of X is Ly,.

The idea of the method of moments is to choose £k functions fi,..., fp : R* — R and to find a
parameter 6 such that the empirical moments and the theoretical moments are equal, that is

L3 f1(Xa) = Eglf1(X1))]
: (5)
LS8 | fo(X0) = Eolfp(X1))

The idea is that as n is large the empirical moments are close to the theoretical one, and if we have
indentifiability from the & moments, that is, for 6 # 6y,

Eq[f1(X1)] Egy [f1(X1)]
| # ;
Eolfp(X1)] Eg, [fp(X1)]

we hope that the 8 selected by the method of moments will be close to 6.

Example 19. Let © = R x [0,00), 0 = (m,0?) and Ly = N(m,0?). Let us consider the method of
moments with fi(x) = x and fo(x) = 22. We have

Eg[f1(X1)] = Ezonrm,e2)[Z] = m

and
Eolf2(X1)] = Ezonm,o)[2°] = m* + 0.

Also we have
1 — "X
- Z (X)) = 22—71
n n

and

1 & noox2
7Zf2(Xi):Zz—l i
nizl n

Hence the estimators my, and G2 solve the system of equations

We obtain the usual empirical mean and empirical variance estimators

n
~2 Zi:lXi
m, = ————
n

and

ISR DD NS DD AR _
Gy = =Et - - ==Y (X —in)?.

Theorem 20. Let us define the function e : © — RP by

Eolf1(X1)]
e(f) = :
Eq[fp(X1)]

11



Assume that 6y € © and there is ¢ > 0 such that B(6p,e) C © and such that e is continuously
differentiable on B(0y,€) with an invertible Jacobian matriz Je(6y) at 0y. Assume also that for j =
L...,p, E[lf;(X1)]?] < . R

Then, we can define a random vector 6, that satisfies (5) with probability going to 1 as n — oo
and such that

) L — —
Vi (00 = 00) =5 N (0,(Je(00)) 755 (Je(00)) ) |
where Xy is the p X p covariance matriz of the random vector (fi(X1),..., fp(Xp)).

When p = 1, we can interpret the asymptotic covariance matrix (here simply a variance) as follows.
This variance is smaller (thus the method of moments works better) if the two following properties
hold. (1) the derivative of 6 — Eg[f1(X1)] at 6y is large, which means that f is a good function for
discriminating between 0y and the other candidate parameters 6. (2) the variance of f1(X7) is small
so that the empirical and theoretical versions of Eg[f1(X1)] have a smaller difference.

Proof of Theorem 20. We will apply the inverse function theorem to the function e. This theorem
states that there exist two neighborhoods U of 6y and V or e(fy) such that e : U — V is bijective with
inverse function e~!. Furthermore, e~! is continuously differentiable on V and for v = e(u) € V, we
have

(Je M) (v) = (Je(u)~".
Write
it f1(X5)

en — :

% Z?:l f p(Xi)

and note that e, —— e(fp) from the strong law of large number and Item 1 of Theorem 7. Hence
n—oo

P(e, € V) — 1 as n — oo since e(fp) is in the interior of V. We thus define

~  Je(en) ife, eV
arbitrary value ife, ¢V

and then indeed §n satisfies (5) with probability going to 1 as n — oco. Let us define

€n —

- en ife, eV
b ife, gV

and observe that for e > 0

P [H\/ﬁ (én - 90) — Vi (e L@ - 6_1(6(90)))” > e} <Plen g V) — 0.

n—oo

Also
P(e, # en) =Ple, € V) — 0.

n—oo

Hence, from Item 4 in Theorem 7 (applied twice), it is sufficient to prove that

Vi (7 en) = e e@0))) E3 N (0, (Je(©0)) 15 (Te(00)) )

n—oo

This is a consequence of the Delta method (Theorem 18). Indeed from the central limit theorem we
have

Vi (en = e(00)) == N (0,%)

and we have seen that

(Je")(e(bo)) = (Je(bo) ™"

12



4 Consistency of M and Z-estimators

4.1 M-estimator

In general we wish to estimate a parameter # in a parameter space ® C RP. The main example is
where 6 and © come from a statistical model as in Section 3.1, but we also allow for more general
settings. Consider a sequence of random functions (My,),en where for each n € N, M,, is a random
function from © to R. That is for all 6, M,(#) is a random variable and all the random variables
{M,(0);0 € ©} are defined on the same probability space.

Then, a M-estimator is a sequence of random (6,),en taking values in © and maximizing M,
(hence the name). That is, for all n € N, a.s.?

~

0, € argmax My(0).
USS)

4.2 Maximum likelihood

Maximum likelihood estimators are the most important example of M-estimators in these lecture
notes. We consider a statistical model {Ly : € O} as in Section 3.1, where for all 8, Ly is a candidate
distribution on R¥ for the common law of (X;);ey. We assume furthermore that for all 6, £y has a
density fp w.r.t. Lebesgue measure (this could be straightforwardly extended to a general measure
p). Then, since X1,..., X, are i.i.d, if § was equal to 6, that is if £y was the distribution of X1, the
density of the observation vector (X1, ..., X,) would be equal to

n

T fo(x0).

i=1

This density, seen now as a function of # after having observed (X7, ..., X,,) is called the likelihood.
Taking the log facilitates the theoretical analysis and yields

> log(fa(Xi))
=1

which is called the log-likelihood. The maximum likelihood estimator consists in maximizing this
log-likelihood (equivalently the likelihood) over ©. It is thus a M-estimator defined by

~

Oy, € argmax M,(0) (6)
(4SS

with

Mo (0) = log(fo(Xi)). (7)
=1

4.3 Consistency of M-estimators

Theorem 21. Consider a sequence (Mp)nen of random functions from © C RP to R. Consider a
deterministic function M : © — R. Assume that

sup [ My (0) — M(0)] — 0 (8)
PcO n—,oo
and
Ve >0, sup M(0) < M(6p). 9)
0cO:
16—60|>e

2As will be seen from the mathematical statements below regarding M-estimators, we can allow for more flexibility
that this “almost sure”. It will be sufficient that these estimators maximize M,, with probability going to 1 or even up
to a op(1).

13
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000,

Figure 1: Illustration of Theorem 21. From the condition (8), the curves of M and M, are uniformly
close to each other. From the condition (9) the function M has a global maximum at 6y that is
well-separated from the values taken away from 6y. As a result of Theorem 21, the values of 6y and
§n are close.

Consider a sequence (é\n)neN such that

Then

In (8), M is the limit of M, and the convergence must be uniform over § and must hold in
probability. Often, but not always, M, is of the form

Mn = im(Xz, (9)

=1

for i.i.d. (X;)ien and M is taken to be M(0) = E[m(X1,0)]. Then (9) means that not only the
function M has a global maximum at 6y but also this maximum is well-separated from the values
taken at parameters 6 that are not close to 6y. These two conditions (8) and (9) are illustrated in
Figure 1. Finally, (10) provide the flexibility discussed above: 6,, needs not exactly maximize M, but
only up to a margin op(1) (that goes to zero in probability as n — o).

Proof of Theorem 21. Let € > 0 be fixed. We have
P (60— 60l > ¢) <P [ M@) < sup M(©) |- (1)

Note that

0co
(from (10):) > My (6o) + sup [ My (0) — M(0)] + op()
0cO
> M(6y) — ZSug | M (0) — M ()] + op(1)
€

14



Hence back from (11) we obtain

P (110 — 6oll = ) <P [ M(60) - 25up [My(6) = M(O)] +0xty < sup - M(6)
[

— P | 25up [ M (0) — M(9)| + 0pry < M(6) — sup  M(0)
6ce ||69%®H:>

Above, from (8), 2supgeg | My (0) — M(0)| = op(1) and from (9), M(6p) — sup M(0) > 0. Hence
0co:
1660l >e

by definition of convergence in probability, the above probability goes to zero as n — oo.

4.4 Z-estimator

As for M-estimators, we wish to estimate a parameter € in a parameter space © C RP. Consider a
sequence of random functions (Z,),en where for each n € N, Z,, is a random function from © to R?
for a given ¢ € N. Then, a Z-estimator is a sequence of random (gn)neN taking values in © and
setting Z, to zero (hence the name). That is, for all n € N, a.s.3

Z(6,) = 0.

Consider a M-estimator given by the function M,, and assume further that © is open and that for
alln € N, and 0 € O, a.s, M, is differentiable at 6. Then if

~

0, € argmazx My (0),
0cO

we have a.s.

~

VM, (0,) =0

and thus in this case, the M-estimator is also a Z-estimator with Z,, taking values in RP.

4.5 Consistency of Z-estimators

The next theorem can be interpreted as having similarities with Theorem 21 for M-estimators.

Theorem 22. Consider a sequence (Zy)nen of random functions from © C RP to Re. Consider a
deterministic function Z : © — R9. Assume that

sup | Z,(0) — Z(0)] == 0 (12)
fcO n—o0
and
Ve >0, elég; |Z(O)|| > 0= Z(b). (13)
6—00]|=€

Consider a sequence (6n)nen such that
Zn(0) = 0p(1). (14)

Then

~

0, -5 0.

3 As for M-estimators, we can allow for more flexibility that this “almost sure”.
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Proof. Let € > 0 be fixed. We have

P (116, — 00l =€) <P [1Z@)lI = jnt  1ZO)] |- (15)
0—00l|>€

Note that
1ZOa)| < [1Za(80)]] + sup |1 Za ()] — 1 Z(0)]]
0cO

(from (14):) < op) + Sup 12n(6) — Z(0)]-
€

Hence back from (15) we obtain

B (18— toll = €) <P | opr) +sup 1 Z,(6) = Z@)] = jnf  [1Z(0)]
6601 >¢

Above, from (12), supgeg [|Zn(0) — Z(0)|| = op) and from (13), einef)- |Z(0)|] > 0. Hence by

10—60][>¢
definition of convergence in probability, the above probability goes to zero as n — oo.
O

The next theorem is an example where we can relax the condition (12) of uniform convergence of
Zy, to Z, in the one-dimensional case © C R.

Proposition 23. Let © = R. Consider a sequence (Zp)nen of random functions from © to R.
Consider a deterministic function Z : © — R. Assume that

1. For all fized 0 € ©, Z,(0) BN Z(0);

n—oo

2. Z, is non-decreasing;
3. There is a fizved 6y such that for all e >0, Z(0p —€) <0< Z(6p + €).

Consider a sequence (é\n)nEN such that

Z(0,) = op(1). (16)

Then

0, 25 0.

n—o0

Proof. Let € > 0 be fixed. We have

(|9 —90|>e): (n 90—6)+P(9 >90+e)
(Z,, is non-decreasing:) (Zn (B0 — 6)) +P (Zn(é\n) > Zn(00 + e))
(from (16):) = ( op(1) < n( 0 =€)+ P(op(l) = Zn(b +¢))
(Op(l) < ((90 - 6) + Zy (90 — 6) — 2(90 — 6))
(0]}»( > (90+6) + Zn (90+6) —Z(90+€))
(from Item 1:) = ( op(1) < Z(0y—¢€)) +P(op(l) > Z(6g +¢)).

\_/

The two above probabilities go to zero by definition of op(1) and from Item 3. Hence indeed 0, 2
n—oo

o. O
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Let us provide an example to Proposition 23 by considering the empirical median. Consider ¢.i.d.
random variables (X;);en having a density with respect to Lebesgue measure. Define the empirical
median as a random variable 0,, satisfying

Z sign(6, — X;) = 0.
i=1

Note that a.s. Xi,..., X, are two-by-two distinct and thus if n = 2m (even number), é\n is any
number 6 satisfying X,, < 6 < X,,41 and if n = 2m + 1 (odd number), then é\n = Xm+1. Also,
assume that Flx, is strictly increasing on R, such that there is a unique population median such that
Fx,(60) =1/2. R

Let us apply Proposition 23 to show that 6, n%o 0p. We write

Zn(0) = Z sign(f — X;)
i=1

and
Z(0) = Fx,(0) — (1 = Fx,(9))-
For all fixed 0, by the strong law of large number

Zn(0) = sign(0 — X;)
=1
:i]l{H—Xi >0}—i1{9_Xi <0}
=1 i=1

Zi]l{Xi<9}—i]l{Xi>9}

n%@ P(X, <6)—P(X; > 0)
(since P(X1 =0)=0:) =Fx,(0)— (1 — Fx,(0))
=2(0),

hence Item 1 holds in Proposition 23. Item 2 also holds because 6 — sign(f — X;) is non-decreasing.
Item 3 also holds because Z(6) is strictly increasing on R because Fx, is strictly increasing. Finally

(16) holds because Zy,(6,,) = 0. Hence from Proposition 23, indeed 6,, — 6.

n—oo

5 Bracketing number for uniform convergence

5.1 Obtaining uniform convergence

To apply Theorems 21 and 22, a potentially challenging requirement is to obtain uniform conver-
gence, that is to show

sup [M,(0) — M(0)] = 0 and sup|Z.(0) — Z(0)] - 0.
0cO

0cO n—o0 n—o0

Considering the case of M-estimators, we will provide tools to obtain this uniform convergence in
the cases where (X;);cy are i.i.d., where M, is of the form

Mo(0) = = 37 (X 6),
i=1

for a function m : R¥ x ® — R, and where

M(0) = E[m(X1,)].

17



In this case, we have, with my(-) = m(-, ),

n

sup (M (6) — M(0)] = sup | = 3 mg(X:) — Elmg(X1)]

n
00 o |1

which is the supremum over a set of functions of differences between the empirical means of these
functions and the corresponding theoretical means.

We will address this supremum in a more general abstract setting with a set F of functions from
R* to R such that for all f € F, E[|f(X1)|]] < oo. Since the supremum obviously increases with the
set F (with the inclusion relationship), we will define a suitable measure of size or complexity for
F. This measure will be called the bracketing number.

Definition 24 (Bracketing number). For ¢ and u two functions from R¥ to R such that for all x € R*
() < wu(x). We define the bracket

[6,u] = {f;Rk S R: VeeRF, 4(z) < f(z) §u(:17)}.

Then for € > 0, for ¢ > 0 and for a measure L on RF, we define the bracketing number
N (F, LI(L),€) as the smallest number of brackets that enable to cover F. More precisely

1/q
Ny(F, LI(L),€) = min {H[El,ul],...,[EN,uN] : Vjed{l,...,N}, (/ (uj—Ej)qd,C) <e, (17)
NeN RF

F C Ué\[zle, ’LL]]}
The quantity Nj(F, LI(L), €) decreases with € and typically goes to 0 as € — 0.

Definition 25. For a set of functions F : R¥ — R and a distribution £ on R¥, we say that F is
L-Glivenko-Cantelli if for all f € F, [p |f|dL < 0o and for i.i.d. (X;)ien with distribution L,

L3 (X0 ~ Bl (X))
=1

sup
feF

= O[P(l).

The next proposition establishes an important relationship between the bracketing number and
the £-Glivenko-Cantelli property.

Proposition 26. Consider a set of functions F : R¥ — R and a distribution £ on R*, such that for
al feF, [plfldL < oo and
Ve>0, Nj(F,L'(L),€) < oo.

Then F is L-Glivenko-Cantells.

Proof. Let € > 0, N = Nj(F,L*(£),e) < oo and [¢1,u1],...,[¢n,un] some brackets such that for
jed{l,...,N}, [prluj —4;]dL < eand f e U;-Vzl[fj,uj]. Then, for all f € F, thereis j € {1,...,N}
such that

LS XD S D) S 1D (X)), (18)
i=1 i=1 =1
and, since E[u;(X1)] — E[¢;(X1)] < E[|£;(X1) —u;(X1)]] <,
E[4;(X1)] < E[f(X1)] < E[u;(X1)] < E[¢;(X1)] +e. (19)
From (18) and ¢; < f < u;, we have

L34 ~ Bl (X)) < 5 30 06) ~ G € 3wy (X0) ~ Bl ()

n-



Then (19) yields

008 < BI00)] —e < 1 3 A B < 1 Y (060~ Bl (X)) +
Hence - i i
£ 00 = S < (‘i S0 = B 530 ~ B () ) ve
and th;; - i
P (;gg DIEIRLIESIE ze>
<P (J_r?’a% max (‘ Ze Zu] Elu;(X1)] ) > 6> .

Above, there is a finite maximum of terms of the form 1 Y% | g(X;) — E[g(X1)] with E[|g(X1)]] < occ.
Hence (exercize) from the strong law of large number, this probability goes to 0 as n — co. Since
this holds for all € > 0, we indeed have

sup Zf x1)]| = op(1).

fer |1

Next is a simple example of application of Proposition 26.

Proposition 27. Let £ be a distribution on RF, let F = {gg;0 € O} where gg : R*¥ — R and assume
that

1. © is a compact set of a metric space;

2. for all x € R*, 0+ go(x) is continuous;

3. /R sup |go(z)|dL(z) < 0o

k 0cO
Then F is L-Glivenko-Cantelli.

Proof. Let us show that for all € > 0, ./\/H (F,LY(L),e) < oo in order to apply Proposition 26. Fix
€ > 0. Let dist : ©2 — R* be the distance on ©. For 6 € ©, consider the sequence of sets (Bg y)Nen
with By y = B(6, &) = {6 € © : dist(6,0) < &} (open balls with the metric of ©).

For all N, we write

ZgﬁN(az) = inf gg(x)
96397]\]

and

up,N(z) = sup gg(x).
QEBQ’N

For every fixed = € R¥, g n(z) — %’N(:z) — 0 as N — oo since 6 — gy(x) is continuous. Furthermore,
for all N ¢ N _
ug,N — Lo N < sup|gy|
USS)

and thus ka SUpP yeN ”ljg,N — Z97N’ dL < co. Hence by dominated convergence

J.

?797]\] — Z&,N’ d — 0.
N—oo
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Hence there exists N € N such that ka
proof.

Now, the set {UgceBp v} is a union of open sets that contains ©. Now we use the following
property of compact spaces (that can also be the definition of compacity)

Ug,N — %,N’ dL < e. We fix this value IV for the rest of the

e For a compact set K in a metric space E, for every set of open sets of E, C = {E'; E' € C} that
covers K
K C UE’eCE/

there exists a finite subset C' of C such that

K C UE’EC’E,-

We apply this property to the set {Upco By v} that covers the compact set ©. Hence there exist
f1,...,0,, such that

We define for j =1,...,m and = € R*

j(z) = _inf go(x) =Llo, v
GGBQJ.,N

and

uj(z) = sup go(x) = tg;,N-
QGng,N

From the above choice of N, we have ¢; < u; and ka luj — £;|dL < €. For any 6 € O, there is
j=1{1,...,m} such that 0 € By, x and thus gy € [¢;,u;]. Hence we have found N brackets such that
the property in the min in (17) holds. Hence Njj(F,L*(£),e) < oo and thus we can conclude from
Proposition 26. O

5.2 Application to maximum likelihood

We consider the setting of Section 4.2 (maximum likelihood). The following theorem provides the
consistency of maximum likelihood, under (quite non-restrictive) regularity conditions.

Theorem 28. Consider the context of Section 4.2 where there is a set {Lg;0 € O} of distributions
on R*, with Ly having density fo with respect to Lebesgque measure, and where there are (X;)ien i.i.d.
with density fg, for 0 € ©. Assume that

1. © is compact in RP;
2. For all @ € © and x € R*, fy(x) > 0;
3. For all v € R, 0+ fo(x) is continuous on ©;
4 Jiw 5uBpee 0B (fo ()] fop (2} < 007
5. for all 6 # Oy, the distributions Lo and Ly, are different.
Then 6,, defined in (6) and (7) satisfies
0, > 6y

Note that Item 5 is called an identifiability condition. It is clearly necessary since if Ly = Ly,
the observations (X;);en are distributed both as Ly and Ly, .
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Proof. Let us first show that {log(fy);0 € ©} is Ly,-Glivenko-Cantelli using Proposition 27. In this
proposition, Item 1 holds by assumption. We let g9 = log(fy) Item 2 in the proposition hold from
Items 2 and 3 of the theorem. Finally Item 3 in the proposition holds from Item 4 in the theorem
since dLg,(z) = fp,dz. Thus Proposition 27 holds and by definition of being Lg,-Glivenko-Cantelli,
we have

sup Zlog fo(X:)) — Ellog(fo(X1)l| — 0.

0cO

The aim now is to apply Theorem 21, and we have just shown that the condition (8) holds, choosing

M(0) = Eflog(fo(X1))]-

Also the condition (10) holds from (6). It remains to prove (9).
For 6 # 6y,

M(0) — M(6o) =Ellog(fo(X1))] — E[log(fa, (X1
:/Rk log(fo(x)) fo, (x / g(foo () fo, (x)dz
)

= [, e <f@0(<fs>> oo 2)dz

Note that all integrals above are well-defined from Item 4 in the theorem statement. We then use the
inequality log(t) < 2(v/t — 1) for ¢ > 0. This yields

M(0) — M(6y) <2 /R k ( J{:)((a;)) _ 1) foo(x)da
9 /R V@ fou (@) de — 2/Rk fou(2)da
=2 /Rk V fo(x)\/ foo (x)da — /Rk foo (z)dw — /Rk fo(z)dz
- /Rk (\/ fo(z) — \/feo(ﬁﬂ))de
<0

since the distributions £y and Ly, are different from Item 5 in the theorem statement.

Next, M is a continuous function on © by dominated convergence, because 6 — log(fyo(z)) is
continuous for all x from Items 2 and 3 and because Item 4 yields the domination by an integrable
function. Hence, by compacity of O, (9) holds. Hence we can apply Theorem 21 and conclude. 0

6 Asymptotic normality of Z-estimators

6.1 Some intuition

In this section we consider a Z-estimator gn satisfying
1 n
— g 2(X;,0
n
i=1

for i.i.d. (X;);en and for a function z : R¥ x © — RP with © C RP. We assume that there is 6y € © such
that E[z(Z1,6p)] = 0 and that we have already proved (from Section 4 for instance) that 6, _% 0o.
n o

The aim of this section is to show the asymptotic normality of

Vn(6, — 6y).
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Assuming enough smoothness, we could write a Taylor expansion of
1 ~
0 Zn(0) = = > 2(X;,0)

around 6g:

0 = Zu(Bn) = Za(00) + (T 72)(60) (B0 — 60 )

where JZ,, is the random Jacobian matrix of § — Z,(6) Asymptotically, the p X p matrix JZ,(6p)
is expected to be close to E[J,(X1,60p)], where for € R¥ and 0 € ©, J,(z,6p) is the p x p matrix
defined by J,(z,0)r, = &z(a:neﬁ)k If this matrix E[J, (X1, 0p)] is invertible, then the matrix (JZ,)(6p)

¢

is invertible with probability going to one and we would have

0 = (JZ)(00) " Zn(80) + (B — 60)
and thus
Vi (00— 00) = =(I22)(00) ™ (Vi Za(00))
From the central limit theorem and because E[z(X1,00)] = 0, v/nZ,(0y) converges in distribution to
N (0, cov (2(X71,6p))) .

Hence from Slutsky lemma we would have

\/ﬁ<§n —90) £, N(O E[J.(X1,00)] Lcov (2 (Xl,ao))E[Jz(Xl,ao)rT).

n—oo

It is possible to obtain a rigorous mathematical statement and proof from this intuition above, but
with strong smoothness condition on z(x, @) for fixed z. In the next section, we instead present a proof
that is more involved, but needs only mild smoothness assumptions. In particular, it will allow us to
address the asymptotic normality of the empirical median (Section 4.5), given by z(z, ) = sign( —z),
the function z not being differentiable w.r.t. 8 for fixed x.

6.2 The main result

We will use the following tool, that enables to bound a quantity of the form

sup —~ (37 (F(X0) ~ BLF (%))

fer i—1

for i.i.d. (X;)seny on R¥ and for a set F of functions from R¥ to R. Note that if F = {f} is a singleton,
this quantity is bounded in probability by the central limit theorem. The interest of the next theorem,
called a maximal inequality, is to allow for infinite sets F.

Theorem 29. Let (X;)icn be i.i.d. on RF with distribution L. Consider a set F of functions from
RF to R such that there is a function F such that

for all f € F, for L-almost all z € RF | f(x)| < F(x)

with
E[F(X1)?] < .

Then, with the Bracketing number /\/H (F,L3(L),¢) defined in Definition 24,

/\/E[F X1)?]

0

n

Z f(X1)])

=1

< Cur \/log (NY(F, L2(£), ) de,

E* |sup —
fe]-‘
for a universal constant Cyy.
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Proof. We skip this proof in the lecture notes. We refer to Corollary 19.35 in [VdAV07]. O

Above, the star in E* means that the sup is allowed to be non-measurable. In this case, we define
the expectation as an outer expectation (see Section 18.2 in [VdV07]). We shall not worry about this
since this E* will serve to bound expectations or probabilities for measurable quantities.

We can now provide the general asymptotic normality result for Z-estimators.

Theorem 30. Let (X;)ien be i.i.d. on RF with distribution L.

1. Consider consider a Z-estimator é\n satisfying
LS X = o) (20)
\/ﬁ £ 2\ Aj,Un) = Op
with z : R¥ x © — R? satisfying E[||z(X1,0)]|?] < co for all § € ©. Assume that there is 0y € ©
such that E[z(X1,6p)] = 0 and 0, % 0.

2. Assume that there is a neighborhood A of © such that 0 — E[z(X71,0)] is continuously differen-
tiable on A. We write JE[2(X1,0)] for its px p Jacobian matriz at 0. Assume that JE[z(X1,0p)]
is invertible.

3. Forj=1,....plet Fj = {RF > 2 2(z,0);;0 € A}. Assume that for all 0 < § < oo,

5
/ Vlog (V) (F5, ZA(£), €))de < .
0
4. Assume that
E| sup [2(X1,0) - 2(X1,60)[*| — 0.
feA 6—0
16—601<5

Then

n

> " 2(Xi,00) + op(1) (21)

Vi (B, — o) = — (JEL2(X1,60) \}ﬁ >

and thus
NG <§n - 90) LN (o, (JE[2(X1,60)]) " cov (2(X1,60)) (JE[Z(Xl,eO)])*l) . (22)

A main strength of Theorem 30 is that we don’t need differentiability of the random function
0 — z(X1,0), only of its expectation.

Proof of Theorem 30. Write for concision V' = JE[z2(X1,60p)]. Let us write a Taylor expansion of
0 — E[2(X1,0)] around 6y:

/ +(z,0)dL(x) = / (@, 00)dL(x) + V(8 — 00) + (6 — o))
Rk RF

Since we assume gn — 6y = op(1), from Lemma 10,

/ (2, 8)dL(x) = / (2, 60)AL(x) + V(B — ) + 08 (1[5 — bo]))-
Rk Rk

This can be written (exercize)

/ 2(,0,)dL(x) = / 2(,00)dL(z) + (V + op(1)) (Br — o),
Rk Rk
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where this last op(1) is a sequence of p X p random matrices @, such that ||@Q,| = op(1) (for any norm
|| - || on the space of matrices).
Multiplying the above display by y/n and using [gr z(x,09)dL(z) = 0 and (20), we obtain

\f Z (/ 0,)dL(z) — 2(X;, 571)) = (V + op(1)) vn(8, — 60) + op(1).

We rewrite this as

n

~ 1
(V 4 0p(1)) v(6,, — 6p) =o0p(1 7 Z <z (Xi,60) — /Rk 2(z, Go)dﬁ(:r)>

n

1n Z ((z (X3, 00) = 2(Xi, 80)) - /Rk (2(@,60) — 2(2,0)) dﬁ(qj)) ,

If we prove that

2 Z << (X;,60) — (Xiﬁn)) - /Rk <z(x,00) - z(xﬁn)) dﬁ(m)) = op(1), (23)

we can conclude the proof of both (21) and (22) because V = JE[m(X1, 6p)] is fixed and invertible
and

\FZ < (X, 00) — /R z(x,eo)d,c(;p)> = \}HZZ(XZ-,OO) £ N (0, cov (2(X1,60))) -
=1

n—0o0

Call r,, the quantity in (23), note that it is a p x 1 vector and write it (ri,,...,7pn)". For
j=1,...,p, for 6 > 0 such that B(y,d) C A, define

Fio = {R 32 2(2,0); — 2(,600)50 € B(69,6) }

Note that if ||§n — 6|l <9, we have

Hrn||<\f max - sup

Z Xl)])|

Lo, fe]'— § =1
Note that if [¢1,u1],..., [N, un] is a finite set of brackets that covers F; (as in (17) with ¢ = 2), then
01— 2(-,60)5,u1 — 2(-,00)4], .- ., [{n — 2(-,00)j, un — 2(-,00);] is a finite set of brackets that covers Fj s

(as in (17) with ¢ = 2). Indeed, for all k € {1,..., N}, up — 2(-,00); — (bx — 2(+,00);) = up — £}, and

/ (up() — = 80); — () — 2(x, 60);))2 AL () = / (u(2) — Ca(x))? AL (z).
Rk Rk

Also, if f € [0y, ux] then f—2(-,60); € [lx — 2(-,00), ur — 2(-,60);].
Hence for all € > 0,
N(Fjs, LA(L),€) < Ny(Fj, L* (L), ). (24)

Next, for all 6, € > 0, with B(6y,0) C A, we have

Z(f(XJ ~E[f(X1)])| >

n :
=1
Ze).

P(jrp] >¢) <P (Hé\n — 6ol > 5) +P (f max sup

.]_ N ’pr-F](S

Since gn is assumed to converge to 0y in probability, applying lim sup yields
n—oo

n

> (F(X3) —E[f(X1)])

1
limsupP (jrp| >¢€) <P (f max sup ——
i=1

n—o0 1,. 7pf€f 5 \/77,
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For all f € Fjs and z € R* . we have
[f(z)| < Fs(x),
with
Fy(z) = sup |[|z(X1,0) — 2(X1,60)]
6cA
6—00l<6

Hence from Theorem 29 (maximum inequality) and Markov inequality, we obtain

d 1 n €
limsup P (|r,| > ¢) < P| sup — X;) —E[f(X > —
msup P (|r,| > ><j§:jl (fg;;é N ;(f( )~ Ef (X)) > \/5>

< ; @E [fg; jﬁ ; (F(X) — E[f(Xl)])“

]
\/log (N (F5, L2(L), u)) du.

M"d

v E[F5(X1)?
\éﬁCMI/

1 0

<.
Il

By assumption E[F5(X1)?] — 0 as § — 0 and the above function is integrable on any set [0,], t < oo,
and thus the limsup above can be arbitrarily small by taking § > 0 small enough. Hence this lim sup
is zero and thus (23) holds, which concludes the proof. O

6.3 Application to the empirical median

Let us apply Theorem 30 to the empirical median discussed at the end of Section 4.5. Consider thus
i.i.d. random variables (X;);ecn, having a c.d.f. Fx, and a density f with respect to Lebesgue measure,
and their empirical median 6, satisfying

n

Z sign(én - X;)=0.

i=1

This is as in (20) with z(z, ) = sign(f — x). Assume that f is strictly positive on R, and thus Fy, is
strictly increasing on R. Hence there is a unique 6y (the population median) such that Fx, (6p) = 1/2
and f(6p) > 0 Hence from the discussion after Proposition 23, Item 1 of Theorem 30 holds.

Also, assume that f is continuous in a neighborhood of §y. Then E[sign(f — X;)] = 2Fx,(0) — 1 is
continuously differentiable in a neighborhood of 6y with positive derivative 2f(6y) at 6y. Hence Item
2 of Theorem 30 holds.

The next lemma shows that Item 3 of Theorem 30 holds.

Lemma 31. Let
F={R >z signd —z);0 € R}

and L be a distribution on R. Then for e > 0,
2 4

N(F, L (L), e) < 2 + 1.

Proof. Let us start by considering the set
Fi={R3z+— 1{z < 0};0 € R}.
Let —oo <t < -+ <ty < 4o00. Let tg = —oo and ty411 =o00. For j =1,...,N, let {4 j(z) = I{x <
tj} and uq j(x) = 1{z < tj41}. Let €4 o(x) = 0 and u4 o(z) = 1{z < t;}. Then, for all § € R, there
is j € {0,..., N} such that t; < # <t;;; and thus for all z € R
0 5(2) < Mo < 0} < uy 5(2)

and thus f €[04 ;,uq j].
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For any integer N such that N +1 > E%, we can select t1,...,tyx such that for j = 0,..., N,
L((tj,tj+1)) < e% (exercize). With this choice, for j =0,..., N,

s = 5700 = [ 1o € (ut500}000@) = £((t ty10)) < @
Next considering the set
Fo={R>z+— 1{0 < z};0 € R}.

Keeping the same t1,...,ty, for j =1,... N, let {_ j(z) = 1{tj41 < z} and uy j(z) = 1{t; < z}.
Let {_o(z) = 1{t; < x} and u_o(z) = 1. Then, for all # € R, there is j € {0,..., N} such that
t; <6 <tj;1 and thus for all z € R

() < 1{0 < 2} < u_y(a)

and thus f € [(_ ;,u_ ;]
As before, for j =0,..., N,

/(U,j — Lo )%dL < €.

R

Then for any § € R, taking j € {0,..., N} such that t; < <t;4q, for allz € R
sign(f —x) = I{x < 0} — 1{0 < z} < uq j(z) — (_ j(x)

and also
sign(f — x) > £y j(z) —u_ ().

Also, from the triangle inequality

\/ [ @) = (@) = (Co) = u sy aL < 26
Hence we have found the N + 1 brackets
[uyo(x) =L o(x), by 0(x) —u—o(@)],... [up (@) = € N(2), b4 N(2) = u_ N (2)]
that cover F as in (17) with € there replaced by 2¢ here. Hence
NY(F.L*(L£),2¢) < N + 1.

Since we can choose N + 1 < 6% + 1, we obtain

and thus for all € > 0

Finally, for Item 4 of Theorem 30,

2
E| sup (sign(9 — X1) —sign(6y — X1)> = 2P (X1 € [y — 6,00 + d]) — 0.
112 9§Hﬁ<6 Y
—Uo(l>

Hence Theorem 30 applies to the empirical median and we also have
var(sign(6p — X1)) = E[sign(fp — X1)?] = E[1] = 1
and thus

it (0, - 0) £3 & (0, 1)
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6.4 Application to maximum likelihood

We first provide a lemma enabling to bound the bracketing number of general parametric sets of
functions.

Lemma 32. Let £ be a distribution on R¥. Let © be a bounded set of RP and let F = {fp;0 € O}
where for each 0, fo : R¥ — R and Jzr fgdﬁ < oco. Assume that there is h : RF — [0,00) with
1< ka h2dL < oo and for 61,05 € © and z € R¥,

[fo, () = fo, ()| < (|62 — Oa[ (). (25)

Then for each € > 0

M|

Ny(F,L*(L),€) < Cpdiam(O©)? ( /R h2d£> —

a
i

k
for a constant C,, depending only on p.

Proof. One can show (exercize) that there is a constant Cj, such that for each 6 > 0 there is an
integer N < C;,diam(@)péip and there are 601,...,0y € © with

sup min |6 —6;|| <.
sup_min [0 — 0] <

For j=1,...,N and = € R* we write {;(x) = fy,(x) — 20h(z) and uj(z) = fy,(x) + 26h(x). Then
we have (