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Introduction

The aim of these lecture notes is to study sequences of random variables and random vectors indexed
by n → ∞, where n is most of the cases a number of independent statistical observations. These
random variables and vectors will typically stem from estimators of the form θ̂n for estimating a
vector of parameter θ in a parametric model. This parametric model is for instance {Lθ; θ ∈ Θ} for
a set Θ ∈ Rp and where, for all θ, Lθ is a distribution on R. In this case, the statistical observations
are X1, . . . , Xn ∈ R with unknown distribution θ0 ∈ Θ.

An important result that will be proved is the asymptotic normality of the maximum likelihood
estimator θ̂n based on independent X1, . . . , Xn as n → ∞. Under regularity conditions, we will show
that √

n
(
θ̂n − θ0

)

converges in distribution to a centered Gaussian vector.
For (much) more content on the topic of asymptotic statistics, we refer in particular to the book

[VdV07].

General notations

Throughout, N will be the set of non-zero natural numbers, N = {1, 2, . . .}. For a set A in a metric
space E, A will be its closure, Å will be its interior, δA = A\Å will be its boundary and Ac = E\A
will be its complement. Also the diameter of A will be defined as diam(A) = sup{dist(u, v) : u, v ∈ A}
where dist is the distance in the space E.

We write 1{event} as the indicator function that an event holds true. For a function g : E → F
and A ⊂ F , we write g−1(A) = {x ∈ E : g(x) ∈ A}. For c ∈ Rk and r ≥ 0 we let B(c, r) = {x ∈ Rk :
∥x − c∥ < r}. On an Euclidean space, the inner product is written ⟨·, ·⟩ and the Euclidean norm is
written ∥ · ∥. The acronym c.d.f. will stand for cumulative distribution function. The acronym i.i.d.
will stand for independent and identically distributed. The acronyms l.h.s. and r.h.s. will stand for
left-hand side and right-hand side. The acronym w.r.t. will stand for with respect to.

For a random vector X, its covariance matrix is written cov(X). For two numbers u, v, we write
u ∧ v = min(u, v). The transpose of a matrix M is written M⊤. If M is square and invertible, we
write M−⊤ = (M−1)⊤ = (M⊤)−1. For a function ϕ : Rk → Rm that is differentiable at x, its m × k
Jacobian matrix at x is written Jϕ(x). For a function ϕ : Rk → R that is differentiable at x, its k× 1
gradient column vector at x is written ∇ϕ(x).

For t ∈ R we write

sign(t) =





−1 if t < 0

0 if t = 0

1 if t > 0

.

1 Convergence of random vectors

1.1 Definitions

LetX = (X1, . . . , Xk) be a random vector of Rk. We can naturally extend the definition of a cumulative
distribution function (c.d.f.) of a random variable by defining

FX : Rk → [0, 1]

by, for x = (x1, . . . , xk) ∈ Rk,

FX(x) = P (X1 ≤ x1, . . . , Xk ≤ xk) .

Definition 1. Let (Xn)n∈N be a sequence of random vectors of Rk and X be a random vector of Rk.
Then we say that Xn converges to X
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• in distribution if FXn(x) → FX(x) as n → ∞ for all x such that FX is continuous at x. In
this case we write

Xn
L−→

n→∞
X;

• in probability if for all ϵ > 0,

P (∥Xn −X∥ ≥ ϵ) −→
n→∞

0.

In this case we write
Xn

p−→
n→∞

X;

• almost surely if

P
(
∥Xn −X∥ −→

n→∞
0
)
= 1.

In this case we write
Xn

a.s.−→
n→∞

X.

In the above definition, we remark that convergence in distribution can hold even if Xn and X
are not defined on a common probability space (Ω,F ,P). Indeed, this definition actually apply to the
distributions of Xn and X on Rk. On the other hand, convergence in probability and almost surely
need Xn and X to be defined on a common probability space (Ω,F ,P), for instance for Xn −X to be
well-defined.

Remark 2. Because of the above discussion, the definition of the convergence in distribution, and all
the properties presented next, hold, up to obvious changes, if the limit random vector X is replaced by
a limit distribution L on Rk.

1.2 Equivalent conditions for convergence in distribution and continuous mapping

Lemma 3 (Portmanteau). Let (Xn)n∈N be a sequence of random vectors of Rk and X be a random
vector of Rk. The following statements are equivalent.

1. Xn
L−→

n→∞
X.

2. E[f(Xn)] −→
n→∞

E[f(X)] for any bounded continuous function f .

3. E[f(Xn)] −→
n→∞

E[f(X)] for any bounded L-Lipschitz-continuous function f (L < ∞).

4. lim inf
n→∞

E[f(Xn)] ≥ E[f(X)] for any continuous non-negative function.

5. lim inf
n→∞

P (Xn ∈ O) ≥ P (X ∈ O) for any open set O.

6. lim sup
n→∞

P (Xn ∈ F ) ≤ P (X ∈ F ) for any closed set F .

7. P(Xn ∈ B) −→
n→∞

P(X ∈ B) for all Borel set B such that P(X ∈ δB) = 0.

Proof. We skip this proof in the lecture notes.

Let us illustrate some of the statements above with the simple example where Xn ∼ N (0, 1
n) and

X = 0 a.s. Then one can check that Xn
L−→

n→∞
X (exercize). Let us illustrate the statement 6 with

the closed set {0}. We have

lim sup
n→∞

P (Xn ∈ {0}) = lim sup
n→∞

0 = 0 ≤ 1 = P(X ∈ {0}).

Now let us illustrate the statement 5 with the open set (−ϵ, ϵ) for some ϵ > 0. We have

lim inf
n→∞

P (Xn ∈ (−ϵ, ϵ)) = lim inf
n→∞

P
(√

nXn ∈ (−
√
nϵ,

√
nϵ)
)
= lim inf

n→∞
P
(
Z ∈ (−

√
nϵ,

√
nϵ)
)

︸ ︷︷ ︸
Z∼N (0,1)

= 1

= P(X ∈ (−ϵ, ϵ)).
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Theorem 4 (Continuous mapping). Let (Xn)n∈N be a sequence of random vectors of Rk and X be a
random vector of Rk. Let g : Rk → Rm be continuous at all points of a set C satisfying P(X ∈ C) = 1.
Then

1. If Xn
L−→

n→∞
X then g(Xn)

L−→
n→∞

g(X).

2. If Xn
p−→

n→∞
X then g(Xn)

p−→
n→∞

g(X).

3. If Xn
a.s.−→

n→∞
X then g(Xn)

a.s.−→
n→∞

g(X).

Proof. 3. Proving Item 3 is left as an exercize.
2. Let ϵ > 0 and δ > 0. We have

P (∥g(Xn)− g(X)∥ ≥ ϵ) ≤ P (∥g(Xn)− g(X)∥ ≥ ϵ, ∥Xn −X∥ ≤ δ) + P (∥Xn −X∥ ≥ δ) . (1)

The quantity P (∥Xn −X∥ ≥ δ) goes to zero as n → ∞ since Xn
L−→

n→∞
X. Let us define

Bδ = {x ∈ Rk : ∃y ∈ Rks.t.∥x− y∥ ≤ δ, ∥g(x)− g(y)∥ ≥ ϵ}.

Then (1) yields

lim sup
n→∞

P (∥g(Xn)− g(X)∥ ≥ ϵ) ≤ P(X ∈ Bδ) = P(X ∈ Bδ ∩ C).

For all x ∈ C, g is continuous at x so there is δ > 0 small enough such that for all y, ∥x − y∥ ≤ δ
implies ∥g(x) − g(y)∥ < ϵ. Hence, for δ > 0 small enough 1{x ∈ Bδ ∩ C} = 0. Hence by dominated
convergence, P(X ∈ Bδ ∩ C) → 0 as δ → 0. Hence lim sup

n→∞
P (∥g(Xn)− g(X)∥ ≥ ϵ) = 0 and thus Item

2 is proved.
1. We will apply Item 6 from Lemma 3. Let F be a closed set of Rm. We have {g(Xn) ∈ F} =

{Xn ∈ g−1(F )}. We have
g−1(F ) ⊂ g−1(F ) ⊂ g−1(F ) ∪ Cc.

To prove the second inclusion, consider x ∈ g−1(F ). There is a sequence Xn such that xn → x. If
x ∈ C, then by continuity of g at x, g(xn) → g(x) and thus g(x) ∈ F and thus x ∈ g−1(F ). Otherwise
x ̸∈ C.

Hence,

lim sup
n→∞

P (g(Xn) ∈ F ) ≤ lim sup
n→∞

P
(
(Xn ∈ g−1(F )

)

Hence, by Item 6 from Lemma 3,

lim sup
n→∞

P (g(Xn) ∈ F ) ≤ P
(
X ∈ g−1(F )

)
≤ P

(
X ∈ g−1(F )

)
+ P(x ∈ Cc) = P(g(X) ∈ F ).

Hence, by Item 6 from Lemma 3, g(Xn)
L−→

n→∞
g(X).

We remark from the theorem statement that if the random variable X is a fixed constant c, we
just need the continuity of g at c.

1.3 Uniformly tight variables

We observe that for any random vector X and any ϵ > 0, there exists M > 0 such that

P(∥X∥ ≥ M) ≤ ϵ

(exercize). We thus say that any fixed random vector is tight.
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Definition 5. Let F = {Xa, a ∈ A} be a family of random vectors. We say that F is uniformly
tight is

∀ϵ > 0, ∃M > 0 s.t. sup
a∈A

P(∥Xa∥ ≥ M) ≤ ϵ.

Equivalently
sup
a∈A

P(∥Xa∥ ≥ M) −→
M→∞

0.

Theorem 6 (Prokhorov). Let (Xn)n∈N be a sequence of random vectors.

1. If there exists a random vector x such that Xn
L−→

n→∞
X then the family (Xn)n∈N is uniformly

tight.

2. If the family (Xn)n∈N is uniformly tight then there exists a random vector X and a subsequence

(Xϕ(n))n∈N such that Xϕ(n)
L−→

n→∞
X.

Proof. We skip this proof in the lecture notes.

We remark that these definitions and results related to tightness actually apply to the distributions
of the vectors Xn, not the random vectors themselves.

Also, we can see this theorem as an extension of a well-known deterministic result in finite dimen-
sion: any convergent sequence is bounded and from any bounded sequence we can extract a convergent
subsequence.

1.4 Relationships between the various modes of convergence

Theorem 7. Let (Xn)n∈N, (Yn)n∈N, X and Y be random vectors and let c be a constant vector. Then

1. If Xn
a.s.−→

n→∞
X then Xn

p−→
n→∞

X,

2. If Xn
p−→

n→∞
X then Xn

L−→
n→∞

X,

3. Xn
p−→

n→∞
c if and only if Xn

L−→
n→∞

c,

4. If Xn
L−→

n→∞
X and ∥Xn − Yn∥

p−→
n→∞

0 then Yn
L−→

n→∞
X,

5. (Slutsky) If Xn
L−→

n→∞
X and Yn

p−→
n→∞

c then (Xn, Yn)
L−→

n→∞
(X, c),

6. If Xn
p−→

n→∞
X and Yn

p−→
n→∞

Y then (Xn, Yn)
p−→

n→∞
(X,Y ).

Proof. 1. Let ϵ > 0. Consider the probability space (Ω,F ,P). Consider the function ω 7→ 1{∥Xn(ω)−
X(ω)∥ ≥ ϵ}. For P-a.e. ω ∈ Ω, we have Xn(ω) → X(ω) as n → ∞ and thus 1{∥Xn(ω) − X(ω)∥ ≥
ϵ} → 0 as n → ∞. Hence, from the dominated convergence theorem

∫
Ω 1{∥Xn(ω) − X(ω)∥ ≥

ϵ}dP → 0 as n → ∞. We conclude by using
∫
Ω 1{∥Xn(ω)−X(ω)∥ ≥ ϵ}dP = E [1{∥Xn −X∥ ≥ ϵ}] =

P (∥Xn −X∥ ≥ ϵ).
2. is a consequence of Item 4.
3. Because of Item 2, only =⇒ needs to be proved. We will use Item 6 from Lemma 3. Let ϵ > 0

and B = B(c, ϵ), the open Euclidean ball of center c and radius ϵ. We have

lim sup
n→∞

P(∥Xn − c∥ ≥ ϵ) = lim sup
n→∞

P(Xn ∈ Bc) ≤ P(c ∈ Bc) = 0.

4. We will use Item 3 from Lemma 3. Consider a bounded L-Lipschitz function f . Let M be an
upper bound on |f |. We have

|E[f(Yn)]− E[f(X)]| ≤ |E[f(Yn)]− E[f(Xn)]|+ |E[f(Xn)]− E[f(X)]|
≤ E [|f(Yn)− f(Xn)|] + |E[f(Xn)]− E[f(X)]| .
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Above, E[f(Xn)]− E[f(X)] → 0 as n → ∞ from Item 3 from Lemma 3. Also

E [|f(Yn)− f(Xn)|] ≤ LE [∥Yn −Xn∥] ≤ LϵP (∥Yn −Xn∥ ≤ ϵ) + LMP (∥Yn −Xn∥ ≥ ϵ) .

From this we obtain
lim sup
n→∞

|E[f(Yn)]− E[f(X)]| ≤ Lϵ.

Since this is true for all ϵ > 0 this lim sup is zero and thus we conclude from Item 3 from Lemma 3.
5. We have

lim sup
n→∞

P (∥(Xn, Yn)− (Xn, c)∥ ≥ ϵ) = lim sup
n→∞

P (∥Yn − c∥ ≥ ϵ) = 0

since Yn
p−→

n→∞
c. Hence ∥(Xn, Yn) − (Xn, c)∥

p−→
n→∞

0. Hence from Item 4 it suffices to show that

(Xn, c)
L−→

n→∞
(X, c). Let k be the dimension of X and m be the dimension of c. For any continuous

bounded function f : Rk+m → R, the function fc : Rk → R defined by fc(x) = f(x, c) is bounded

continuous. Hence E[f(Xn, c)] = E[fc(Xn)] −→
n→∞

E[fc(X)] = E[f(X, c)]. Hence (Xn, c)
L−→

n→∞
(X, c)

from Item 2. in Lemma 3.
6. is left as an exercize.

From the above theorem and Theorem 4, we obtain the following theorem (exercize).

Theorem 8 (Slutsky). Let (Xn)n∈N, X and (Yn)n∈N be random vectors and let c be a constant vector.

If Xn
L−→

n→∞
X and Yn

L−→
n→∞

c then

1. Xn + Yn
L−→

n→∞
X + c, when Xn, Yn, c ∈ Rk;

2. YnXn
L−→

n→∞
cX, when Xn ∈ Rk and Yn, c ∈ R;

3. 1
Yn

Xn
L−→

n→∞
1
cX, when Xn ∈ Rk and Yn, c ∈ R\{0}.

Lemma 9 (Uniform convergence of the c.d.f. and convergence in distribution). Let (Xn)n∈N and X

be random vectors on Rk and assume that Xn
L−→

n→∞
X and that FX is continuous on Rk. Then

sup
x∈Rk

|FXn(x)− FX(x)| 0
n→∞

.

Proof. We write the proof for k = 1 to simplify the notations. The extension to a general k is left
as an exercize. Let ϵ > 0 and an integer N such that 1/N ≤ ϵ. Since FX is continuous, there exist
x1, . . . , xN−1 such that FX(xi) = i/N for i = 1, . . . , N − 1. Let also by convention x0 = −∞ and
xN = +∞. Since FX and FXn are non-decreasing, we have, for any i = 1, . . . , N and x ∈ [xi−1, xi]

1

FXn(x)− F (x) ≤ FXn(xi)− FX(xi−1) ≤ FXn(xi)− FX(xi) +
1

N

(we use the conventions FXn(−∞) = FX(−∞) = 0 and FXn(+∞) = FX(+∞) = 1) and

FXn(x)− F (x) ≥ FXn(xi−1)− FX(xi) ≥ FXn(xi−1)− FX(xi−1)−
1

N
.

Hence

sup
x∈R

|FXn(x)− FX(x)| ≤ max
i=1,...,N

|FXn(xi)− FX(xi)|+
1

N

and thus by definition of convergence in distribution,

lim sup
n→∞

sup
x∈R

|FXn(x)− FX(x)| ≤ 1

N
.

This is true for all N which concludes the proof.
1Actually if i = 1, x ≤ x1 and if i = N , x ≥ xN−1.
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1.5 The symbols oP and OP

We introduce here two symbols that will be very useful in the sequel. Let (Xn)n∈N be a sequence of
random vectors.

• Xn = oP(1) means that ∥Xn∥
p−→

n→∞
0. More generally, for a sequence (Rn)n∈N of non-negative

random variables, Xn = oP(Rn) means that there exists a sequence of random vectors (Yn)n∈N
such that Xn = RnYn and ∥Yn∥

p−→
n→∞

0.

• Xn = OP(1) means that (Xn)n∈N is uniformly tight. More generally, for a sequence (Rn)n∈N
of non-negative random variables, Xn = OP(Rn) means that there exists a sequence of random
vectors (Yn)n∈N such that Xn = RnYn and (Yn)n∈N is uniformly tight.

The next lemma allows us to replace deterministic quantities by random quantities in the deter-
ministic standard notations o and O.

Lemma 10. Let (Xn)n∈N be a sequence of random vectors on Rk such that Xn
p−→

n→∞
0. Then for all

q > 0 and for all function R : Rk → Rm such that R(0) = 0,

1. ∥R(h)∥ = o(∥h∥q) as h → 0 implies R(Xn) = oP(∥Xn∥q);

2. ∥R(h)∥ = O(∥h∥q) as h → 0 implies R(Xn) = OP(∥Xn∥q).

Proof. We define g : Rk → Rm by g(h) = R(h)
∥h∥q if h ̸= 0 and g(0) = 0. Then R(Xn) = g(Xn)∥Xn∥q.

1. In this case the function g is continuous at 0. Hence by Theorem 4 (continuous mapping), since

∥Xn∥
p−→

n→∞
0, g(Xn)

p−→
n→∞

0.

2. Since R(h) = O(∥h∥q) there exists δ > 0 such that when ∥h∥ ≤ δ we have R(h) ≤ M∥h∥q and
thus g(h) ≤ M . Hence

lim sup
n→∞

P(∥g(Xn)∥ ≥ M) ≤ lim sup
n→∞

P(∥Xn∥ ≥ δ) = 0

since Xn
p−→

n→∞
0. Hence g(Xn) is uniformly tight and thus R(Xn) = OP(∥Xn∥q).

1.6 Characteristic function

Definition 11. Let X be a random vector of Rk and t ∈ Rk be deterministic. The characteristic
function of X at t is defined by

ϕX(t) = E
[
ei⟨t,x⟩

]

with i =
√
−1.

Theorem 12 (Paul Levy).

1. Let (Xn)n∈N and X be random vectors of Rk. Then the two following statements are equivalent.

(a) Xn
L−→

n→∞
X;

(b) ϕXn(t) −→
n→∞

ϕX(t) for all t ∈ Rk.

2. If there is a function ϕ : Rk → R such that ϕ is continuous at zero and ϕXn(t) −→
n→∞

ϕ(t) for all

t ∈ Rk, then there is a random vector X such that ϕ = ϕX and Xn
L−→

n→∞
X.

Proof. We skip the proof in these lecture notes.

Lemma 13. Two random vectors X and Y have the same distribution if and only if their characteristic
functions are equal.

Proof. We skip the proof in these lecture notes.
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1.7 Strong law of large number and central limit theorem

Proposition 14. Let (Xi)i∈N be a sequence of i.i.d. random vectors such that E[∥X1∥] < ∞. Then

X1 + · · ·+Xn

n

a.s.−→
n→∞

E[X1].

Proof. We skip the proof in these lecture notes.

Proposition 15. Let (Xi)i∈N be a sequence of i.i.d. random vectors such that E[∥X1∥2] < ∞. Then

√
n

(
X1 + · · ·+Xn

n
− E[X1]

)
L−→

n→∞
N (0, cov(X1)).

Proof. We skip the proof in these lecture notes.

1.8 Uniform integrability and convergence of moments

Definition 16 (Uniform integrability). A sequence of random vectors (Xn)n∈N is uniformly inte-
grable (u.i.) if

lim
M→∞

sup
n∈N

E [∥Xn∥1{∥Xn∥ ≥ M}] = 0.

Note that convergence in distribution does not necessarily imply convergence of expectation for
unbounded functions. The next theorem shows that this occurs under the additional condition of
uniform integrability.

Theorem 17. Consider a function f : Rk → R which is continuous on a set C. Let X be a random
vector of Rk which belongs a.s. to C. Let (Xn)n∈N be a sequence of random vectors of Rk. Then if

Xn
L−→

n→∞
X and if (f(Xn))n∈N is u.i., we have

E[f(Xn)] −→
n→∞

E[f(X)].

Proof. We assume that f(Xn) is non-negative, otherwise (exercize) we separate the positive and
negative parts.

By continuity, f(Xn)
L−→

n→∞
f(X) from Theorem 4 (continuous mapping). We have for all M > 0,

lim sup
n→∞

|E[f(Xn)]− E[f(X)]|

≤ lim sup
n→∞

|E[f(Xn)]− E[f(Xn) ∧M ]|+ lim sup
n→∞

|E[f(Xn) ∧M ]− E[f(X) ∧M ]| (2)

+ lim sup
n→∞

|E[f(X) ∧M ]− E[f(X)]| .

Fix ϵ > 0. Remark that

|E[f(Xn)]− E[f(Xn) ∧M ]| ≤ E[|f(Xn)|1{|f(Xn)| ≥ M}].

Since (f(Xn))n∈N is u.i. we can fix M such that the first lim sup on the r.h.s. of (2) is smaller than
ϵ. Similarly, we can increase M such that the third lim sup is smaller than ϵ. The second lim sup is
then zero from Theorem 4 (continuous maping), because f(·) ∧M is bounded and continuous on C.
Hence we have

lim sup
n→∞

|E[f(Xn)]− E[f(X)]| ≤ 2ϵ

for all ϵ > 0 which concludes the proof.
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2 The Delta method

2.1 The theorem

Let θ ∈ Rk be a parameter in a statistical model and let (θ̂n)n∈N be a sequence of estimators for it.
Consider a function ϕ : Rk → Rm. It is natural to estimate ϕ(θ) by ϕ(θ̂n) and to ask if asymptotic
properties of θ̂n − θ can be transferred to ϕ(θ̂n)− ϕ(θ).

The continuous mapping theorem (Theorem 4) provides a first answer. If θ̂n
p−→

n→∞
θ and ϕ is

continuous, then ϕ(θ̂n)
p−→

n→∞
ϕ(θ).

Consider now that we have a stronger result, a central limit theorem:
√
n(θ̂n− θ)

L−→
n→∞

N (0,Σ) for

some covariance matrix Σ. Then, if ϕ is linear and defined by a m×k matrix M , we have (continuous

mapping, exercize)
√
n(Mθ̂n −Mθ)

L−→
n→∞

N (0,MΣM⊤).

The intuition of the Delta method is that a similar result takes place if ϕ is continuously differen-
tiable, where the role of M will be played by the Jacobian matrix Jϕ.

Theorem 18 (Delta method). Let θ ∈ Rk be fixed. Let ϕ : Rk → Rm be differentiable at θ. Let
(θ̂n)n∈N be a sequence of random vectors and let X be a random vector such that, for a sequence
(rn)n∈N that goes to infinity, we have

rn

(
θ̂n − θ

)
L−→

n→∞
X.

Then
rn

(
ϕ(θ̂n)− ϕ(θ)

)
L−→

n→∞
(Jϕ(θ))X (3)

and
rn

(
ϕ(θ̂n)− ϕ(θ)

)
− rn(Jϕ(θ))(θ̂n − θ)

p−→
n→∞

0. (4)

Proof. Observe first that θ̂n − θ = 1
rn
rn(θ̂n − θ) goes to zero from Lemma 8 (Slutsky). Observe also

that the sequence rn(θ̂n − θ) is uniformly tight from Theorem 6 (Prokhorov). Next, write

R(h) = ϕ(θ + h)− ϕ(θ)− (Jϕ(θ))h.

By definition of differentiability we have R(h) = o(∥h∥) as h → 0. Hence from Lemma 10,

rn

(
ϕ(θ̂n)− ϕ(θ)

)
= (Jϕ(θ))rn(θ̂n − θ̂) + rnR(θ̂n − θ̂) = rn(Jϕ(θ))(θ̂n − θ̂) + rnoP(θ̂n − θ̂).

Above, rnoP(θ̂n − θ̂) = oP(rn(θ̂n − θ̂)) = oP(1) because rn(θ̂n − θ̂) = OP(1) (exercize). This proves
(4).

From Theorem 4 (continuous mapping) and because rn

(
θ̂n − θ

)
L−→

n→∞
X, it follows that rn(Jϕ(θ))(θ̂n−

θ) = (Jϕ(θ))rn(θ̂n − θ)
L−→

n→∞
(Jϕ(θ))X. Hence (3) holds from Item 4 in Theorem 7.

2.2 The example of variance estimation

Consider a sequence of i.i.d. random variables (Xi)i∈N such that E[X4
1 ] < ∞. We can thus define the

mean E[X1] and the 3 centered moments µ2, µ3, µ4 with

µk = E
[
(X1 − E[X1])

k
]
.

We naturally estimate E[X1] by µ̂1,n = 1
n

∑n
i=1Xi and µ2 is the variance that we naturally estimate

by

µ̂2,n =
1

n

n∑

i=1

(Xi − µ̂1,n)
2 .
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Giving asymptotic results for µ̂2,n is not easy because we may not be able to write it as an average
of independent variables, for instance (contrarily to µ̂1,n). Let us apply the Delta method. We write
ϕ : R2 7→ R defined by ϕ(x, y) = y − x2. We have (exercize)

µ̂2,n =
1

n

n∑

i=1

X2
i −

(
1

n

n∑

i=1

Xi

)2

=
1

n

n∑

i=1

(Xi − E[X1])
2 −

(
1

n

n∑

i=1

(Xi − E[X1])

)2

.

We write

Yi =

(
Xi − E[X1]

(Xi − E[X1])
2

)

such that µ2 = ϕ
(
1
n

∑n
i=1 Yi,

1
n

∑n
i=1 Y

2
i

)
. Also we have, since (Yi)1 is centered

cov (Yi) =

(
µ2 µ3

µ3 µ4 − µ2
2

)
.

Hence from the central limit theorem

√
n

(
1

n

n∑

i=1

Yi −
(

0
µ2

))
L−→

n→∞
N
(
0,

(
µ2 µ3

µ3 µ4 − µ2
2

))
.

Then from the Delta method

√
n (µ̂2,n − µ2) =

√
n

(
ϕ

(
1

n

n∑

i=1

Yi

)
− ϕ(0, µ2)

)
L−→

n→∞
N
(
0,
(
0 1

)(E[X1] µ3

µ3 µ4 − µ2
2

)(
0
1

))
= N (0, µ4−µ2

2).

3 Statistical model and method of moments

3.1 Statistical model

Consider a sequence (Xi)i∈N of i.i.d. random vectors of Rk. We call a (parametric) statistical model
a set of the form

{Lθ; θ ∈ Θ}

for Θ ⊂ Rp where each Lθ is a distribution on Rk. It is a set of candidate distributions for the law of
X1.

We will make the assumption that the statistical model is well-specified and contains this law.
Hence we assume that there is a θ0 ∈ Θ̊ such that the distribution of X1 is Lθ0 . The goal is to
estimate θ0 from X1, . . . , Xn.

We write Eθ, Pθ, covθ for the expectation, probability and covariance computed “as if” we had
θ0 = θ. For instance

Eθ[∥X1∥2] =
∫

Rk

∥x∥2dLθ(x)

and if k = 1 and Lθ = N (0, θ) with Θ = (0,∞), we have

E3[X
2
1 ] =

∫

R
x21dL3(x) = E[Z2]︸ ︷︷ ︸

Z∼N (0,3)

= 3.

Note that we still write Eθ0 = E, Pθ0 = P and covθ0 = cov since Lθ0 is “really” the distribution of
X1, . . . , Xn.
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3.2 Method of moments

Consider a sequence (Xi)i∈N of i.i.d. random vectors of Rk. Consider a statistical model

{Lθ; θ ∈ Θ}

for Θ ⊂ Rp where each Lθ is a distribution on Rk. Assume that there is a θ0 ∈ Θ̊ such that the
distribution of X1 is Lθ0 .

The idea of the method of moments is to choose k functions f1, . . . , fp : Rk → R and to find a
parameter θ such that the empirical moments and the theoretical moments are equal, that is





1
n

∑n
i=1 f1(Xi) = Eθ[f1(X1)]

...
1
n

∑n
i=1 fp(Xi) = Eθ[fp(X1)]

. (5)

The idea is that as n is large the empirical moments are close to the theoretical one, and if we have
indentifiability from the k moments, that is, for θ ̸= θ0,



Eθ[f1(X1)]

...
Eθ[fp(X1)]


 ̸=



Eθ0 [f1(X1)]

...
Eθ0 [fp(X1)]




we hope that the θ selected by the method of moments will be close to θ0.

Example 19. Let Θ = R × [0,∞), θ = (m,σ2) and Lθ = N (m,σ2). Let us consider the method of
moments with f1(x) = x and f2(x) = x2. We have

Eθ[f1(X1)] = EZ∼N (m,σ2)[Z] = m

and
Eθ[f2(X1)] = EZ∼N (m,σ2)[Z

2] = m2 + σ2.

Also we have
1

n

n∑

i=1

f1(Xi) =

∑n
i=1Xi

n

and
1

n

n∑

i=1

f2(Xi) =

∑n
i=1X

2
i

n
.

Hence the estimators m̂n and σ̂2
n solve the system of equations

{∑n
i=1 Xi

n = m̂n∑n
i=1 X

2
i

n = m̂2
n + σ̂2

n

.

We obtain the usual empirical mean and empirical variance estimators

m̂2
n =

∑n
i=1Xi

n

and

σ̂2
n =

∑n
i=1X

2
i

n
−
(∑n

i=1Xi

n

)2

=
1

n

n∑

i=1

(Xi − m̂n)
2 .

Theorem 20. Let us define the function e : Θ → Rp by

e(θ) =



Eθ[f1(X1)]

...
Eθ[fp(X1)]


 .
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Assume that θ0 ∈ Θ̊ and there is ϵ > 0 such that B(θ0, ϵ) ⊂ Θ and such that e is continuously
differentiable on B(θ0, ϵ) with an invertible Jacobian matrix Je(θ0) at θ0. Assume also that for j =
1, . . . , p, E[|fj(X1)|2] < ∞.

Then, we can define a random vector θ̂n that satisfies (5) with probability going to 1 as n → ∞
and such that √

n
(
θ̂n − θ0

)
L−→

n→∞
N
(
0, (Je(θ0))

−1Σf (Je(θ0))
−⊤
)
,

where Σf is the p× p covariance matrix of the random vector (f1(X1), . . . , fp(Xp)).

When p = 1, we can interpret the asymptotic covariance matrix (here simply a variance) as follows.
This variance is smaller (thus the method of moments works better) if the two following properties
hold. (1) the derivative of θ 7→ Eθ[f1(X1)] at θ0 is large, which means that f1 is a good function for
discriminating between θ0 and the other candidate parameters θ. (2) the variance of f1(X1) is small
so that the empirical and theoretical versions of Eθ[f1(X1)] have a smaller difference.

Proof of Theorem 20. We will apply the inverse function theorem to the function e. This theorem
states that there exist two neighborhoods U of θ0 and V or e(θ0) such that e : U → V is bijective with
inverse function e−1. Furthermore, e−1 is continuously differentiable on V and for v = e(u) ∈ V , we
have

(Je−1)(v) = (Je(u))−1.

Write

en =




1
n

∑n
i=1 f1(Xi)

...
1
n

∑n
i=1 fp(Xi)




and note that en
p−→

n→∞
e(θ0) from the strong law of large number and Item 1 of Theorem 7. Hence

P(en ∈ V ) → 1 as n → ∞ since e(θ0) is in the interior of V . We thus define

θ̂n =

{
e−1(en) if en ∈ V

arbitrary value if en ̸∈ V

and then indeed θ̂n satisfies (5) with probability going to 1 as n → ∞. Let us define

ẽn =

{
en if en ∈ V

θ0 if en ̸∈ V

and observe that for ϵ > 0

P
[∥∥∥

√
n
(
θ̂n − θ0

)
−
√
n
(
e−1(ẽn)− e−1(e(θ0))

)∥∥∥ ≥ ϵ
]
≤ P (en ̸∈ V ) −→

n→∞
0.

Also
P(ẽn ̸= en) = P(en ̸∈ V ) −→

n→∞
0.

Hence, from Item 4 in Theorem 7 (applied twice), it is sufficient to prove that

√
n
(
e−1(en)− e−1(e(θ0))

) L−→
n→∞

N
(
0, (Je(Θ0))

−1Σf (Je(Θ0))
−⊤
)

This is a consequence of the Delta method (Theorem 18). Indeed from the central limit theorem we
have √

n (en − e(θ0))
L−→

n→∞
N (0,Σf )

and we have seen that
(Je−1)(e(θ0)) = (Je(θ0))

−1.
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4 Consistency of M and Z-estimators

4.1 M-estimator

In general we wish to estimate a parameter θ in a parameter space Θ ⊂ Rp. The main example is
where θ and Θ come from a statistical model as in Section 3.1, but we also allow for more general
settings. Consider a sequence of random functions (Mn)n∈N where for each n ∈ N, Mn is a random
function from Θ to R. That is for all θ, Mn(θ) is a random variable and all the random variables
{Mn(θ); θ ∈ Θ} are defined on the same probability space.

Then, a M-estimator is a sequence of random (θ̂n)n∈N taking values in Θ and maximizing Mn

(hence the name). That is, for all n ∈ N, a.s.2

θ̂n ∈ argmax
θ∈Θ

Mn(θ).

4.2 Maximum likelihood

Maximum likelihood estimators are the most important example of M-estimators in these lecture
notes. We consider a statistical model {Lθ : θ ∈ Θ} as in Section 3.1, where for all θ, Lθ is a candidate
distribution on Rk for the common law of (Xi)i∈N. We assume furthermore that for all θ, Lθ has a
density fθ w.r.t. Lebesgue measure (this could be straightforwardly extended to a general measure
µ). Then, since X1, . . . , Xn are i.i.d, if θ was equal to θ0, that is if Lθ was the distribution of X1, the
density of the observation vector (X1, . . . , Xn) would be equal to

n∏

i=1

fθ(Xi).

This density, seen now as a function of θ after having observed (X1, . . . , Xn) is called the likelihood.
Taking the log facilitates the theoretical analysis and yields

n∑

i=1

log(fθ(Xi))

which is called the log-likelihood. The maximum likelihood estimator consists in maximizing this
log-likelihood (equivalently the likelihood) over Θ. It is thus a M-estimator defined by

θ̂n ∈ argmax
θ∈Θ

Mn(θ) (6)

with

Mn(θ) =
n∑

i=1

log(fθ(Xi)). (7)

4.3 Consistency of M-estimators

Theorem 21. Consider a sequence (Mn)n∈N of random functions from Θ ⊂ Rp to R. Consider a
deterministic function M : Θ → R. Assume that

sup
θ∈Θ

|Mn(θ)−M(θ)| p−→
n→∞

0 (8)

and
∀ϵ > 0, sup

θ∈Θ:
∥θ−θ0∥≥ϵ

M(θ) < M(θ0). (9)

2As will be seen from the mathematical statements below regarding M-estimators, we can allow for more flexibility
that this “almost sure”. It will be sufficient that these estimators maximize Mn with probability going to 1 or even up
to a oP(1).
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θ

M(θ),Mn(θ)

θ0 θ̂n

Figure 1: Illustration of Theorem 21. From the condition (8), the curves of M and Mn are uniformly
close to each other. From the condition (9) the function M has a global maximum at θ0 that is
well-separated from the values taken away from θ0. As a result of Theorem 21, the values of θ0 and
θ̂n are close.

Consider a sequence (θ̂n)n∈N such that

Mn(θ̂n) ≥
(
sup
θ∈Θ

Mn(θ)

)
+ oP(1). (10)

Then
θ̂n

p−→
n→∞

θ0.

In (8), M is the limit of Mn and the convergence must be uniform over θ and must hold in
probability. Often, but not always, Mn is of the form

Mn =
n∑

i=1

m(Xi, θ)

for i.i.d. (Xi)i∈N and M is taken to be M(θ) = E[m(X1, θ)]. Then (9) means that not only the
function M has a global maximum at θ0 but also this maximum is well-separated from the values
taken at parameters θ that are not close to θ0. These two conditions (8) and (9) are illustrated in
Figure 1. Finally, (10) provide the flexibility discussed above: θ̂n needs not exactly maximize Mn, but
only up to a margin oP(1) (that goes to zero in probability as n → ∞).

Proof of Theorem 21. Let ϵ > 0 be fixed. We have

P
(
∥θ̂n − θ0∥ ≥ ϵ

)
≤ P


M(θ̂n) ≤ sup

θ∈Θ:
∥θ−θ0∥≥ϵ

M(θ)


 . (11)

Note that

M(θ̂n) ≥ Mn(θ̂n)− sup
θ∈Θ

|Mn(θ)−M(θ)|

(from (10):) ≥ Mn(θ0) + sup
θ∈Θ

|Mn(θ)−M(θ)|+ oP(1)

≥ M(θ0)− 2 sup
θ∈Θ

|Mn(θ)−M(θ)|+ oP(1).
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Hence back from (11) we obtain

P
(
∥θ̂n − θ0∥ ≥ ϵ

)
≤ P


M(θ0)− 2 sup

θ∈Θ
|Mn(θ)−M(θ)|+ oP(1) ≤ sup

θ∈Θ:
∥θ−θ0∥≥ϵ

M(θ)




= P


2 sup

θ∈Θ
|Mn(θ)−M(θ)|+ oP(1) ≤ M(θ0)− sup

θ∈Θ:
∥θ−θ0∥≥ϵ

M(θ)


 .

Above, from (8), 2 supθ∈Θ |Mn(θ)−M(θ)| = oP(1) and from (9), M(θ0) − sup
θ∈Θ:

∥θ−θ0∥≥ϵ

M(θ) > 0. Hence

by definition of convergence in probability, the above probability goes to zero as n → ∞.

4.4 Z-estimator

As for M -estimators, we wish to estimate a parameter θ in a parameter space Θ ⊂ Rp. Consider a
sequence of random functions (Zn)n∈N where for each n ∈ N, Zn is a random function from Θ to Rq

for a given q ∈ N. Then, a Z-estimator is a sequence of random (θ̂n)n∈N taking values in Θ and
setting Zn to zero (hence the name). That is, for all n ∈ N, a.s.3

Zn(θ̂n) = 0.

Consider a M-estimator given by the function Mn and assume further that Θ is open and that for
all n ∈ N, and θ ∈ Θ, a.s, Mn is differentiable at θ. Then if

θ̂n ∈ argmax
θ∈Θ

Mn(θ),

we have a.s.
∇Mn(θ̂n) = 0

and thus in this case, the M-estimator is also a Z-estimator with Zn taking values in Rp.

4.5 Consistency of Z-estimators

The next theorem can be interpreted as having similarities with Theorem 21 for M-estimators.

Theorem 22. Consider a sequence (Zn)n∈N of random functions from Θ ⊂ Rp to Rq. Consider a
deterministic function Z : Θ → Rq. Assume that

sup
θ∈Θ

|Zn(θ)− Z(θ)| p−→
n→∞

0 (12)

and
∀ϵ > 0, inf

θ∈Θ:
∥θ−θ0∥≥ϵ

∥Z(θ)∥ > 0 = Z(θ0). (13)

Consider a sequence (θ̂n)n∈N such that

Zn(θ̂n) = oP(1). (14)

Then
θ̂n

p−→
n→∞

θ0.

3As for M-estimators, we can allow for more flexibility that this “almost sure”.
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Proof. Let ϵ > 0 be fixed. We have

P
(
∥θ̂n − θ0∥ ≥ ϵ

)
≤ P


∥Z(θ̂n)∥ ≥ inf

θ∈Θ:
∥θ−θ0∥≥ϵ

∥Z(θ)∥


 . (15)

Note that

∥Z(θ̂n)∥ ≤ ∥Zn(θ̂n)∥+ sup
θ∈Θ

|∥Zn(θ)∥ − ∥Z(θ)∥|

(from (14):) ≤ oP(1) + sup
θ∈Θ

∥Zn(θ)− Z(θ)∥.

Hence back from (15) we obtain

P
(
∥θ̂n − θ0∥ ≥ ϵ

)
≤ P


oP(1) + sup

θ∈Θ
∥Zn(θ)− Z(θ)∥ ≥ inf

θ∈Θ:
∥θ−θ0∥≥ϵ

∥Z(θ)∥


 .

Above, from (12), supθ∈Θ ∥Zn(θ) − Z(θ)∥ = oP(1) and from (13), inf
θ∈Θ:

∥θ−θ0∥≥ϵ

∥Z(θ)∥ > 0. Hence by

definition of convergence in probability, the above probability goes to zero as n → ∞.

The next theorem is an example where we can relax the condition (12) of uniform convergence of
Zn to Z, in the one-dimensional case Θ ⊂ R.

Proposition 23. Let Θ = R. Consider a sequence (Zn)n∈N of random functions from Θ to R.
Consider a deterministic function Z : Θ → R. Assume that

1. For all fixed θ ∈ Θ, Zn(θ)
p−→

n→∞
Z(θ);

2. Zn is non-decreasing;

3. There is a fixed θ0 such that for all ϵ > 0, Z(θ0 − ϵ) < 0 < Z(θ0 + ϵ).

Consider a sequence (θ̂n)n∈N such that

Zn(θ̂n) = oP(1). (16)

Then
θ̂n

p−→
n→∞

θ0.

Proof. Let ϵ > 0 be fixed. We have

P
(
|θ̂n − θ0| ≥ ϵ

)
= P

(
θ̂n ≤ θ0 − ϵ

)
+ P

(
θ̂n ≥ θ0 + ϵ

)

(Zn is non-decreasing:) ≤ P
(
Zn(θ̂n) ≤ Zn(θ0 − ϵ)

)
+ P

(
Zn(θ̂n) ≥ Zn(θ0 + ϵ)

)

(from (16):) =P (oP(1) ≤ Zn(θ0 − ϵ)) + P (oP(1) ≥ Zn(θ0 + ϵ))

=P (oP(1) ≤ Z(θ0 − ϵ) + Zn(θ0 − ϵ)− Z(θ0 − ϵ))

+ P (oP(1) ≥ Z(θ0 + ϵ) + Zn(θ0 + ϵ)− Z(θ0 + ϵ))

(from Item 1:) =P (oP(1) ≤ Z(θ0 − ϵ)) + P (oP(1) ≥ Z(θ0 + ϵ)) .

The two above probabilities go to zero by definition of oP(1) and from Item 3. Hence indeed θ̂n
p−→

n→∞
θ0.
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Let us provide an example to Proposition 23 by considering the empirical median. Consider i.i.d.
random variables (Xi)i∈N having a density with respect to Lebesgue measure. Define the empirical
median as a random variable θ̂n satisfying

n∑

i=1

sign(θ̂n −Xi) = 0.

Note that a.s. X1, . . . , Xn are two-by-two distinct and thus if n = 2m (even number), θ̂n is any
number θ satisfying Xm < θ < Xm+1 and if n = 2m + 1 (odd number), then θ̂n = Xm+1. Also,
assume that FX1 is strictly increasing on R, such that there is a unique population median such that
FX1(θ0) = 1/2.

Let us apply Proposition 23 to show that θ̂n
p−→

n→∞
θ0. We write

Zn(θ) =
n∑

i=1

sign(θ −Xi)

and
Z(θ) = FX1(θ)− (1− FX1(θ)).

For all fixed θ, by the strong law of large number

Zn(θ) =

n∑

i=1

sign(θ −Xi)

=

n∑

i=1

1{θ −Xi > 0} −
n∑

i=1

1{θ −Xi < 0}

=

n∑

i=1

1{Xi < θ} −
n∑

i=1

1{Xi > θ}

p−→
n→∞

P(X1 < θ)− P(X1 > θ)

(since P(X1 = θ) = 0:) =FX1(θ)− (1− FX1(θ))

=Z(θ),

hence Item 1 holds in Proposition 23. Item 2 also holds because θ 7→ sign(θ −Xi) is non-decreasing.
Item 3 also holds because Z(θ) is strictly increasing on R because FX1 is strictly increasing. Finally

(16) holds because Zn(θ̂n) = 0. Hence from Proposition 23, indeed θ̂n
p−→

n→∞
θ0.

5 Bracketing number for uniform convergence

5.1 Obtaining uniform convergence

To apply Theorems 21 and 22, a potentially challenging requirement is to obtain uniform conver-
gence, that is to show

sup
θ∈Θ

|Mn(θ)−M(θ)| p−→
n→∞

0 and sup
θ∈Θ

|Zn(θ)− Z(θ)| p−→
n→∞

0.

Considering the case of M-estimators, we will provide tools to obtain this uniform convergence in
the cases where (Xi)i∈N are i.i.d., where Mn is of the form

Mn(θ) =
1

n

n∑

i=1

m(Xi, θ),

for a function m : Rk ×Θ → R, and where

M(θ) = E[m(X1, θ)].

17



.
In this case, we have, with mθ(·) = m(·, θ),

sup
θ∈Θ

|Mn(θ)−M(θ)| = sup
θ∈Θ

∣∣∣∣∣
1

n

n∑

i=1

mθ(Xi)− E[mθ(X1)]

∣∣∣∣∣

which is the supremum over a set of functions of differences between the empirical means of these
functions and the corresponding theoretical means.

We will address this supremum in a more general abstract setting with a set F of functions from
Rk to R such that for all f ∈ F , E[|f(X1)|] < ∞. Since the supremum obviously increases with the
set F (with the inclusion relationship), we will define a suitable measure of size or complexity for
F . This measure will be called the bracketing number.

Definition 24 (Bracketing number). For ℓ and u two functions from Rk to R such that for all x ∈ Rk

ℓ(x) ≤ u(x). We define the bracket

[ℓ, u] =
{
f : Rk → R : ∀x ∈ Rk, ℓ(x) ≤ f(x) ≤ u(x)

}
.

Then for ϵ > 0, for q > 0 and for a measure L on Rk, we define the bracketing number
N[](F , Lq(L), ϵ) as the smallest number of brackets that enable to cover F . More precisely

N[](F , Lq(L), ϵ) = min
N∈N

{
∃[ℓ1, u1], . . . , [ℓN , uN ] : ∀j ∈ {1, . . . , N},

(∫

Rk

(uj − ℓj)
qdL

)1/q

≤ ϵ, (17)

F ⊂ ∪N
j=1[ℓj , uj ]

}
.

The quantity N[](F , Lq(L), ϵ) decreases with ϵ and typically goes to 0 as ϵ → 0.

Definition 25. For a set of functions F : Rk → R and a distribution L on Rk, we say that F is
L-Glivenko-Cantelli if for all f ∈ F ,

∫
Rk |f |dL < ∞ and for i.i.d. (Xi)i∈N with distribution L,

sup
f∈F

∣∣∣∣∣
1

n

n∑

i=1

f(Xi)− E[f(X1)]

∣∣∣∣∣ = oP(1).

The next proposition establishes an important relationship between the bracketing number and
the L-Glivenko-Cantelli property.

Proposition 26. Consider a set of functions F : Rk → R and a distribution L on Rk, such that for
all f ∈ F ,

∫
Rk |f |dL < ∞ and

∀ϵ > 0, N[](F , L1(L), ϵ) < ∞.

Then F is L-Glivenko-Cantelli.

Proof. Let ϵ > 0, N = N[](F , L1(L), ϵ) < ∞ and [ℓ1, u1], . . . , [ℓN , uN ] some brackets such that for

j ∈ {1, . . . , N},
∫
Rk |uj − ℓj |dL ≤ ϵ and f ∈ ∪N

j=1[ℓj , uj ]. Then, for all f ∈ F , there is j ∈ {1, . . . , N}
such that

1

n

n∑

i=1

ℓj(Xi) ≤
1

n

n∑

i=1

f(Xi) ≤
1

n

n∑

i=1

uj(Xi), (18)

and, since E[uj(X1)]− E[ℓj(X1)] ≤ E[|ℓj(X1)− uj(X1)|] ≤ ϵ,

E[ℓj(X1)] ≤ E[f(X1)] ≤ E[uj(X1)] ≤ E[ℓj(X1)] + ϵ. (19)

From (18) and ℓj ≤ f ≤ uj , we have

1

n

n∑

i=1

ℓj(Xi)− E[uj(X1)] ≤
1

n

n∑

i=1

f(Xi)− E[f(X1)] ≤
1

n

n∑

i=1

uj(Xi)− E[ℓj(X1)].

18



Then (19) yields

1

n

n∑

i=1

ℓj(Xi)− E[ℓj(X1)]− ϵ ≤ 1

n

n∑

i=1

f(Xi)− E[f(X1)] ≤
1

n

n∑

i=1

uj(Xi)− E[uj(X1)] + ϵ.

Hence
∣∣∣∣∣
1

n

n∑

i=1

f(Xi)− E[f(X1)]

∣∣∣∣∣ ≤ max

(∣∣∣∣∣
1

n

n∑

i=1

ℓj(Xi)− E[ℓj(X1)]

∣∣∣∣∣ ,
∣∣∣∣∣
1

n

n∑

i=1

uj(Xi)− E[uj(X1)]

∣∣∣∣∣

)
+ ϵ

and thus

P

(
sup
f∈F

∣∣∣∣∣
1

n

n∑

i=1

f(Xi)− E[f(X1)]

∣∣∣∣∣ ≥ 2ϵ

)

≤ P

(
max

j=1,...,N
max

(∣∣∣∣∣
1

n

n∑

i=1

ℓj(Xi)− E[ℓj(X1)]

∣∣∣∣∣ ,
∣∣∣∣∣
1

n

n∑

i=1

uj(Xi)− E[uj(X1)]

∣∣∣∣∣

)
≥ ϵ

)
.

Above, there is a finite maximum of terms of the form 1
n

∑n
i=1 g(Xi)−E[g(X1)] with E[|g(X1)|] < ∞.

Hence (exercize) from the strong law of large number, this probability goes to 0 as n → ∞. Since
this holds for all ϵ > 0, we indeed have

sup
f∈F

∣∣∣∣∣
1

n

n∑

i=1

f(Xi)− E[f(X1)]

∣∣∣∣∣ = oP(1).

Next is a simple example of application of Proposition 26.

Proposition 27. Let L be a distribution on Rk, let F = {gθ; θ ∈ Θ} where gθ : Rk → R and assume
that

1. Θ is a compact set of a metric space;

2. for all x ∈ Rk, θ 7→ gθ(x) is continuous;

3.

∫

Rk

sup
θ∈Θ

|gθ(x)|dL(x) < ∞.

Then F is L-Glivenko-Cantelli.

Proof. Let us show that for all ϵ > 0, N[](F , L1(L), ϵ) < ∞ in order to apply Proposition 26. Fix
ϵ > 0. Let dist : Θ2 → R+ be the distance on Θ. For θ ∈ Θ, consider the sequence of sets (Bθ,N )N∈N
with Bθ,N = B(θ, 1

N ) = {θ̃ ∈ Θ : dist(θ, θ̃) < 1
N } (open balls with the metric of Θ).

For all N , we write
ℓ̃θ,N (x) = inf

θ̃∈Bθ,N

g
θ̃
(x)

and
ũθ,N (x) = sup

θ̃∈Bθ,N

g
θ̃
(x).

For every fixed x ∈ Rk, ũθ,N (x)− ℓ̃θ,N (x) → 0 as N → ∞ since θ 7→ gθ(x) is continuous. Furthermore,
for all N ∈ N

ũθ,N − ℓ̃θ,N ≤ sup
θ∈Θ

|gθ|

and thus
∫
Rk supN∈N

∣∣∣ũθ,N − ℓ̃θ,N

∣∣∣dL < ∞. Hence by dominated convergence

∫

Rk

∣∣∣ũθ,N − ℓ̃θ,N

∣∣∣ dL −→
N→∞

0.
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Hence there exists N ∈ N such that
∫
Rk

∣∣∣ũθ,N − ℓ̃θ,N

∣∣∣ dL ≤ ϵ. We fix this value N for the rest of the

proof.
Now, the set {∪θ∈ΘBθ,N} is a union of open sets that contains Θ. Now we use the following

property of compact spaces (that can also be the definition of compacity)

• For a compact set K in a metric space E, for every set of open sets of E, C = {E′;E′ ∈ C} that
covers K

K ⊂ ∪E′∈CE
′

there exists a finite subset C′ of C such that

K ⊂ ∪E′∈C′E′.

We apply this property to the set {∪θ∈ΘBθ,N} that covers the compact set Θ. Hence there exist
θ1, . . . , θm such that

Θ ⊂ ∪m
j=1Bθj ,N .

We define for j = 1, . . . ,m and x ∈ Rk

ℓj(x) = inf
θ̃∈Bθj ,N

gθ(x) = ℓ̃θj ,N

and
uj(x) = sup

θ̃∈Bθj ,N

gθ(x) = ũθj ,N .

From the above choice of N , we have ℓj ≤ uj and
∫
Rk |uj − ℓj |dL ≤ ϵ. For any θ ∈ Θ, there is

j = {1, . . . ,m} such that θ ∈ Bθj ,N and thus gθ ∈ [ℓj , uj ]. Hence we have found N brackets such that
the property in the min in (17) holds. Hence N[](F , L1(L), ϵ) < ∞ and thus we can conclude from
Proposition 26.

5.2 Application to maximum likelihood

We consider the setting of Section 4.2 (maximum likelihood). The following theorem provides the
consistency of maximum likelihood, under (quite non-restrictive) regularity conditions.

Theorem 28. Consider the context of Section 4.2 where there is a set {Lθ; θ ∈ Θ} of distributions
on Rk, with Lθ having density fθ with respect to Lebesgue measure, and where there are (Xi)i∈N i.i.d.
with density fθ0 for θ0 ∈ Θ. Assume that

1. Θ is compact in Rp;

2. For all θ ∈ Θ and x ∈ Rk, fθ(x) > 0;

3. For all x ∈ Rk, θ 7→ fθ(x) is continuous on Θ;

4.
∫
Rk supθ∈Θ |log(fθ(x))| fθ0(x)dx < ∞;

5. for all θ ̸= θ0, the distributions Lθ and Lθ0 are different.

Then θ̂n defined in (6) and (7) satisfies

θ̂n
p−→

n→∞
θ0.

Note that Item 5 is called an identifiability condition. It is clearly necessary since if Lθ = Lθ0

the observations (Xi)i∈N are distributed both as Lθ and Lθ0 .

20



Proof. Let us first show that {log(fθ); θ ∈ Θ} is Lθ0-Glivenko-Cantelli using Proposition 27. In this
proposition, Item 1 holds by assumption. We let gθ = log(fθ) Item 2 in the proposition hold from
Items 2 and 3 of the theorem. Finally Item 3 in the proposition holds from Item 4 in the theorem
since dLθ0(x) = fθ0dx. Thus Proposition 27 holds and by definition of being Lθ0-Glivenko-Cantelli,
we have

sup
θ∈Θ

∣∣∣∣∣
n∑

i=1

log(fθ(Xi))− E[log(fθ(X1))]

∣∣∣∣∣
p−→

n→∞
0.

The aim now is to apply Theorem 21, and we have just shown that the condition (8) holds, choosing

M(θ) = E[log(fθ(X1))].

Also the condition (10) holds from (6). It remains to prove (9).
For θ ̸= θ0,

M(θ)−M(θ0) =E[log(fθ(X1))]− E[log(fθ0(X1))]

=

∫

Rk

log(fθ(x))fθ0(x)dx−
∫

Rk

log(fθ0(x))fθ0(x)dx

=

∫

Rk

log

(
fθ(x)

fθ0(x)

)
fθ0(x)dx.

Note that all integrals above are well-defined from Item 4 in the theorem statement. We then use the
inequality log(t) ≤ 2(

√
t− 1) for t > 0. This yields

M(θ)−M(θ0) ≤2

∫

Rk

(√
fθ(x)

fθ0(x)
− 1

)
fθ0(x)dx

=2

∫

Rk

√
fθ(x)

√
fθ0(x)dx− 2

∫

Rk

fθ0(x)dx

=2

∫

Rk

√
fθ(x)

√
fθ0(x)dx−

∫

Rk

fθ0(x)dx−
∫

Rk

fθ(x)dx

=−
∫

Rk

(√
fθ(x)−

√
fθ0(x)

)2

dx

< 0

since the distributions Lθ and Lθ0 are different from Item 5 in the theorem statement.
Next, M is a continuous function on Θ by dominated convergence, because θ 7→ log(fθ(x)) is

continuous for all x from Items 2 and 3 and because Item 4 yields the domination by an integrable
function. Hence, by compacity of Θ, (9) holds. Hence we can apply Theorem 21 and conclude.

6 Asymptotic normality of Z-estimators

6.1 Some intuition

In this section we consider a Z-estimator θ̂n satisfying

1

n

n∑

i=1

z(Xi, θ̂n) = 0

for i.i.d. (Xi)i∈N and for a function z : Rk×Θ 7→ Rp with Θ ⊆ Rp. We assume that there is θ0 ∈ Θ such

that E[z(Z1, θ0)] = 0 and that we have already proved (from Section 4 for instance) that θ̂n
p−→

n→∞
θ0.

The aim of this section is to show the asymptotic normality of

√
n(θ̂n − θ0).
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Assuming enough smoothness, we could write a Taylor expansion of

θ 7→ Zn(θ) =
1

n

n∑

i=1

z(Xi, θ̂)

around θ0:

0 = Zn(θ̂n) ≈ Zn(θ0) + (JZn)(θ0)
(
θ̂n − θ0

)
,

where JZn is the random Jacobian matrix of θ 7→ Zn(θ) Asymptotically, the p × p matrix JZn(θ0)
is expected to be close to E[Jz(X1, θ0)], where for x ∈ Rk and θ ∈ Θ, Jz(x, θ0) is the p × p matrix

defined by Jz(x, θ)k,ℓ =
∂z(x, θ)k

∂θℓ
. If this matrix E[Jz(X1, θ0)] is invertible, then the matrix (JZn)(θ0)

is invertible with probability going to one and we would have

0 = (JZn)(θ0)
−1Zn(θ0) +

(
θ̂n − θ0

)

and thus √
n
(
θ̂n − θ0

)
= −(JZn)(θ0)

−1
(√

nZn(θ0)
)
.

From the central limit theorem and because E[z(X1, θ0)] = 0,
√
nZn(θ0) converges in distribution to

N (0, cov (z(X1, θ0))) .

Hence from Slutsky lemma we would have

√
n
(
θ̂n − θ0

)
L−→

n→∞
N
(
0,E[Jz(X1, θ0)]

−1cov (z(X1, θ0))E[Jz(X1, θ0)]
−⊤
)
.

It is possible to obtain a rigorous mathematical statement and proof from this intuition above, but
with strong smoothness condition on z(x, θ) for fixed x. In the next section, we instead present a proof
that is more involved, but needs only mild smoothness assumptions. In particular, it will allow us to
address the asymptotic normality of the empirical median (Section 4.5), given by z(x, θ) = sign(θ−x),
the function z not being differentiable w.r.t. θ for fixed x.

6.2 The main result

We will use the following tool, that enables to bound a quantity of the form

sup
f∈F

1√
n

∣∣∣∣∣
n∑

i=1

(f(Xi)− E[f(X1)])

∣∣∣∣∣

for i.i.d. (Xi)i∈N on Rk and for a set F of functions from Rk to R. Note that if F = {f} is a singleton,
this quantity is bounded in probability by the central limit theorem. The interest of the next theorem,
called a maximal inequality, is to allow for infinite sets F .

Theorem 29. Let (Xi)i∈N be i.i.d. on Rk with distribution L. Consider a set F of functions from
Rk to R such that there is a function F such that

for all f ∈ F , for L-almost all x ∈ Rk |f(x)| ≤ F (x)

with
E[F (X1)

2] < ∞.

Then, with the Bracketing number N[](F , L2(L), ϵ) defined in Definition 24,

E⋆

[
sup
f∈F

1√
n

∣∣∣∣∣
n∑

i=1

(f(Xi)− E[f(X1)])

∣∣∣∣∣

]
≤ CMI

∫ √
E[F (X1)2]

0

√
log
(
N[](F , L2(L), ϵ)

)
dϵ,

for a universal constant CMI.
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Proof. We skip this proof in the lecture notes. We refer to Corollary 19.35 in [VdV07].

Above, the star in E⋆ means that the sup is allowed to be non-measurable. In this case, we define
the expectation as an outer expectation (see Section 18.2 in [VdV07]). We shall not worry about this
since this E⋆ will serve to bound expectations or probabilities for measurable quantities.

We can now provide the general asymptotic normality result for Z-estimators.

Theorem 30. Let (Xi)i∈N be i.i.d. on Rk with distribution L.

1. Consider consider a Z-estimator θ̂n satisfying

1√
n

n∑

i=1

z(Xi, θ̂n) = oP(1) (20)

with z : Rk ×Θ → Rp satisfying E[∥z(X1, θ)∥2] < ∞ for all θ ∈ Θ. Assume that there is θ0 ∈ Θ̊

such that E[z(X1, θ0)] = 0 and θ̂n
p−→

n→∞
θ0.

2. Assume that there is a neighborhood A of Θ such that θ 7→ E[z(X1, θ)] is continuously differen-
tiable on A. We write JE[z(X1, θ)] for its p×p Jacobian matrix at θ. Assume that JE[z(X1, θ0)]
is invertible.

3. For j = 1, . . . , p let Fj = {Rk ∋ x 7→ z(x, θ)j ; θ ∈ A}. Assume that for all 0 < δ < ∞,

∫ δ

0

√
log
(
N[](Fj , L2(L), ϵ)

)
dϵ < ∞.

4. Assume that

E


 sup

θ∈A
∥θ−θ0∥≤δ

∥z(X1, θ)− z(X1, θ0)∥2


 −→

δ→0
0.

Then
√
n
(
θ̂n − θ0

)
= − (JE[z(X1, θ0)])

−1 1√
n

n∑

i=1

z(Xi, θ0) + oP(1) (21)

and thus

√
n
(
θ̂n − θ0

)
L−→

n→∞
N
(
0, (JE[z(X1, θ0)])

−1 cov (z(X1, θ0)) (JE[z(X1, θ0)])
−1
)
. (22)

A main strength of Theorem 30 is that we don’t need differentiability of the random function
θ 7→ z(X1, θ), only of its expectation.

Proof of Theorem 30. Write for concision V = JE[z(X1, θ0)]. Let us write a Taylor expansion of
θ 7→ E[z(X1, θ)] around θ0:

∫

Rk

z(x, θ)dL(x) =
∫

Rk

z(x, θ0)dL(x) + V (θ − θ0) + o(∥θ − θ0∥).

Since we assume θ̂n − θ0 = oP(1), from Lemma 10,

∫

Rk

z(x, θ̂n)dL(x) =
∫

Rk

z(x, θ0)dL(x) + V (θ̂n − θ0) + oP(∥θ̂n − θ0∥).

This can be written (exercize)

∫

Rk

z(x, θ̂n)dL(x) =
∫

Rk

z(x, θ0)dL(x) + (V + oP(1)) (θ̂n − θ0),
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where this last oP(1) is a sequence of p×p random matrices Qn such that ∥Qn∥ = oP(1) (for any norm
∥ · ∥ on the space of matrices).

Multiplying the above display by
√
n and using

∫
Rk z(x, θ0)dL(x) = 0 and (20), we obtain

1√
n

n∑

i=1

(∫

Rk

z(x, θ̂n)dL(x)− z(Xi, θ̂n)

)
= (V + oP(1))

√
n(θ̂n − θ0) + oP(1).

We rewrite this as

(V + oP(1))
√
n(θ̂n − θ0) =oP(1)−

1√
n

n∑

i=1

(
z(Xi, θ0)−

∫

Rk

z(x, θ0)dL(x)
)

+
1√
n

n∑

i=1

((
z(Xi, θ0)− z(Xi, θ̂n)

)
−
∫

Rk

(
z(x, θ0)− z(x, θ̂n)

)
dL(x)

)
.

If we prove that

1√
n

n∑

i=1

((
z(Xi, θ0)− z(Xi, θ̂n)

)
−
∫

Rk

(
z(x, θ0)− z(x, θ̂n)

)
dL(x)

)
= oP(1), (23)

we can conclude the proof of both (21) and (22) because V = JE[m(X1, θ0)] is fixed and invertible
and

1√
n

n∑

i=1

(
z(Xi, θ0)−

∫

Rk

z(x, θ0)dL(x)
)

=
1√
n

n∑

i=1

z(Xi, θ0)
L−→

n→∞
N (0, cov (z(X1, θ0))) .

Call rn the quantity in (23), note that it is a p × 1 vector and write it (r1,n, . . . , rp,n)
⊤. For

j = 1, . . . , p, for δ > 0 such that B(θ0, δ) ⊂ A, define

Fj,δ =
{
Rk ∋ x 7→ z(x, θ)j − z(x, θ0)j ; θ ∈ B(θ0, δ)

}
.

Note that if ∥θ̂n − θ0∥ ≤ δ, we have

∥rn∥ ≤ √
p max
j=1,...,p

sup
f∈Fj,δ

1√
n

∣∣∣∣∣
n∑

i=1

(f(Xi)− E[f(X1)])

∣∣∣∣∣ .

Note that if [ℓ1, u1], . . . , [ℓN , uN ] is a finite set of brackets that covers Fj (as in (17) with q = 2), then
[ℓ1− z(·, θ0)j , u1− z(·, θ0)j ], . . . , [ℓN − z(·, θ0)j , uN − z(·, θ0)j ] is a finite set of brackets that covers Fj,δ

(as in (17) with q = 2). Indeed, for all k ∈ {1, . . . , N}, uk − z(·, θ0)j − (ℓk − z(·, θ0)j) = uk − ℓk and

∫

Rk

(uk(x)− z(x, θ0)j − (ℓk(x)− z(x, θ0)j))
2 dL(x) =

∫

Rk

(uk(x)− ℓk(x))
2 dL(x).

Also, if f ∈ [ℓk, uk] then f − z(·, θ0)j ∈ [ℓk − z(·, θ0)j , uk − z(·, θ0)j ].
Hence for all ϵ > 0,

N[](Fj,δ, L
2(L), ϵ) ≤ N[](Fj , L

2(L), ϵ). (24)

Next, for all δ, ϵ > 0, with B(θ0, δ) ⊂ A, we have

P (|rn| ≥ ϵ) ≤ P
(
∥θ̂n − θ0∥ ≥ δ

)
+ P

(
√
p max
j=1,...,p

sup
f∈Fj,δ

1√
n

∣∣∣∣∣
n∑

i=1

(f(Xi)− E[f(X1)])

∣∣∣∣∣ ≥ ϵ

)
.

Since θ̂n is assumed to converge to θ0 in probability, applying lim sup
n→∞

yields

lim sup
n→∞

P (|rn| ≥ ϵ) ≤ P

(
√
p max
j=1,...,p

sup
f∈Fj,δ

1√
n

∣∣∣∣∣
n∑

i=1

(f(Xi)− E[f(X1)])

∣∣∣∣∣ ≥ ϵ

)
.
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For all f ∈ Fj,δ and x ∈ Rk, we have
|f(x)| ≤ Fδ(x),

with
Fδ(x) = sup

θ∈A
∥θ−θ0∥≤δ

∥z(X1, θ)− z(X1, θ0)∥.

Hence from Theorem 29 (maximum inequality) and Markov inequality, we obtain

lim sup
n→∞

P (|rn| ≥ ϵ) ≤
p∑

j=1

P

(
sup

f∈Fj,δ

1√
n

∣∣∣∣∣
n∑

i=1

(f(Xi)− E[f(X1)])

∣∣∣∣∣ ≥
ϵ
√
p

)

≤
p∑

j=1

√
p

ϵ
E

[
sup

f∈Fj,δ

1√
n

∣∣∣∣∣
n∑

i=1

(f(Xi)− E[f(X1)])

∣∣∣∣∣

]

≤
p∑

j=1

√
p

ϵ
CMI

∫ √
E[Fδ(X1)2]

0

√
log
(
N[](Fj , L2(L), u)

)
du.

By assumption E[Fδ(X1)
2] → 0 as δ → 0 and the above function is integrable on any set [0, t], t < ∞,

and thus the lim sup above can be arbitrarily small by taking δ > 0 small enough. Hence this lim sup
is zero and thus (23) holds, which concludes the proof.

6.3 Application to the empirical median

Let us apply Theorem 30 to the empirical median discussed at the end of Section 4.5. Consider thus
i.i.d. random variables (Xi)i∈N, having a c.d.f. FX1 and a density f with respect to Lebesgue measure,

and their empirical median θ̂n satisfying

n∑

i=1

sign(θ̂n −Xi) = 0.

This is as in (20) with z(x, θ) = sign(θ − x). Assume that f is strictly positive on R, and thus FX1 is
strictly increasing on R. Hence there is a unique θ0 (the population median) such that FX1(θ0) = 1/2
and f(θ0) > 0 Hence from the discussion after Proposition 23, Item 1 of Theorem 30 holds.

Also, assume that f is continuous in a neighborhood of θ0. Then E[sign(θ−X1)] = 2FX1(θ)− 1 is
continuously differentiable in a neighborhood of θ0 with positive derivative 2f(θ0) at θ0. Hence Item
2 of Theorem 30 holds.

The next lemma shows that Item 3 of Theorem 30 holds.

Lemma 31. Let
F = {R ∋ x 7→ sign(θ − x); θ ∈ R}

and L be a distribution on R. Then for ϵ > 0,

N[](F , L2(L), ϵ) ≤ 4

ϵ2
+ 1.

Proof. Let us start by considering the set

F+ = {R ∋ x 7→ 1{x < θ}; θ ∈ R}.

Let −∞ < t1 < · · · < tN < +∞. Let t0 = −∞ and tN+1 = ∞. For j = 1, . . . , N , let ℓ+,j(x) = 1{x ≤
tj} and u+,j(x) = 1{x < tj+1}. Let ℓ+,0(x) = 0 and u+,0(x) = 1{x < t1}. Then, for all θ ∈ R, there
is j ∈ {0, . . . , N} such that tj < θ ≤ tj+1 and thus for all x ∈ R

ℓ+,j(x) ≤ 1{x < θ} ≤ u+,j(x)

and thus f ∈ [ℓ+,j , u+,j ].
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For any integer N such that N + 1 ≥ 1
ϵ2
, we can select t1, . . . , tN such that for j = 0, . . . , N ,

L((tj , tj+1)) ≤ 1
ϵ2

(exercize). With this choice, for j = 0, . . . , N ,

∫

R
(u+,j − ℓ+,j)

2dL =

∫

R
1{x ∈ (tj , tj+1)}dL(x) = L((tj , tj+1)) ≤ ϵ2.

Next considering the set
F− = {R ∋ x 7→ 1{θ < x}; θ ∈ R}.

Keeping the same t1, . . . , tN , for j = 1, . . . , N , let ℓ−,j(x) = 1{tj+1 ≤ x} and u+,j(x) = 1{tj < x}.
Let ℓ−,0(x) = 1{t1 ≤ x} and u−,0(x) = 1. Then, for all θ ∈ R, there is j ∈ {0, . . . , N} such that
tj < θ ≤ tj+1 and thus for all x ∈ R

ℓ−,j(x) ≤ 1{θ < x} ≤ u−,j(x)

and thus f ∈ [ℓ−,j , u−,j ].
As before, for j = 0, . . . , N , ∫

R
(u−,j − ℓ−,j)

2dL ≤ ϵ2.

Then for any θ ∈ R, taking j ∈ {0, . . . , N} such that tj < θ ≤ tj+1, for all x ∈ R

sign(θ − x) = 1{x < θ} − 1{θ < x} ≤ u+,j(x)− ℓ−,j(x)

and also
sign(θ − x) ≥ ℓ+,j(x)− u−,j(x).

Also, from the triangle inequality
√∫

R
{u+,j(x)− ℓ−,j(x)− (ℓ+,j(x)− u−,j(x))}2 dL ≤ 2ϵ.

Hence we have found the N + 1 brackets

[u+,0(x)− ℓ−,0(x), ℓ+,0(x)− u−,0(x)], . . . , [u+,N (x)− ℓ−,N (x), ℓ+,N (x)− u−,N (x)]

that cover F as in (17) with ϵ there replaced by 2ϵ here. Hence

N[](F , L2(L), 2ϵ) ≤ N + 1.

Since we can choose N + 1 ≤ 1
ϵ2

+ 1, we obtain

N[](F , L2(L), 2ϵ) ≤ 1

ϵ2
+ 1

and thus for all ϵ > 0

N[](F , L2(L), ϵ) ≤ 4

ϵ2
+ 1.

Finally, for Item 4 of Theorem 30,

E


 sup

θ∈R
∥θ−θ0∥≤δ

(
sign(θ −X1)− sign(θ0 −X1)

)2

 = 2P (X1 ∈ [θ0 − δ, θ0 + δ]) −→

δ→0
0.

Hence Theorem 30 applies to the empirical median and we also have

var(sign(θ0 −X1)) = E[sign(θ0 −X1)
2] = E[1] = 1

and thus
√
n
(
θ̂n − θ0

)
L−→

n→∞
N
(
0,

1

4f2(θ0)
.

)
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6.4 Application to maximum likelihood

We first provide a lemma enabling to bound the bracketing number of general parametric sets of
functions.

Lemma 32. Let L be a distribution on Rk. Let Θ be a bounded set of Rp and let F = {fθ; θ ∈ Θ}
where for each θ, fθ : Rk → R and

∫
Rk f

2
θ dL < ∞. Assume that there is h : Rk → [0,∞) with

1 ≤
∫
Rk h

2dL < ∞ and for θ1, θ2 ∈ Θ and x ∈ Rk,

|fθ1(x)− fθ2(x)| ≤ ∥θ1 − θ2∥h(x). (25)

Then for each ϵ > 0

N[](F , L2(L), ϵ) ≤ Cpdiam(Θ)p
(∫

Rk

h2dL
) p

2 1

ϵp

for a constant Cp depending only on p.

Proof. One can show (exercize) that there is a constant C ′
p such that for each δ > 0 there is an

integer N ≤ C ′
pdiam(Θ)p 1

δp and there are θ1, . . . , θN ∈ Θ with

sup
θ∈Θ

min
j=1,...,N

∥θ − θj∥ ≤ δ.

For j = 1, . . . , N and x ∈ Rk we write ℓj(x) = fθj (x)− 2δh(x) and uj(x) = fθj (x) + 2δh(x). Then
we have ℓj(x) ≤ uj(x) and

∫

Rk

(uj(x)− ℓj(x))
2 dL(x) = 16δ2

∫

Rk

h2(x)dL(x).

Also, for each θ ∈ Θ, there is j such that ∥θ − θj∥ ≤ 2δ and thus from (25)

fθ(x) ≥ fθj (x)− ∥θ − θj∥h(x) ≥ fθj (x)− 2δh(x) = ℓj(x).

Similarly
fθ(x) ≤ uj(x).

Hence from (17),we have

N[]

(
F , L2(L), 4δ

√∫

Rk

h2dL

)
≤ C ′

pdiam(Θ)p
1

δp
.

Hence taking ϵ = 4δ
√∫

Rk h2dL, we obtain that for each ϵ > 0,

N[]

(
F , L2(L), ϵ

)
≤ 4pC ′

pdiam(Θ)p
(∫

Rk

h2dL
)p/2 1

ϵp
.

This concludes the proof.

We now consider the setting of maximum likelihood as in Theorem 28 in Section 5.2. Hence we
consider a set {Lθ; θ ∈ Θ} of distributions on Rk, with Lθ having density fθ with respect to Lebesgue
measure, and where there are (Xi)i∈N i.i.d. with density fθ0 for θ0 ∈ Θ̊.

For any function hθ(x) ∈ R, we write ∇h
θ̃
(x) for its vector of partial derivatives w.r.t. θ at θ = θ̃.

We also assume that for each θ and x, fθ(x) > 0 and fθ(x) is twice continuously differentiable w.r.t.
θ with gradient ∇fθ(x). We assume that for all θ

E[∥∇(log fθ(X1))∥2] < ∞.
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We consider a maximum likelihood estimator θ̂n assumed to be consistent (for instance thanks to
Theorem 28) and satisfying

1

n

n∑

i=1

∇ log fθ(Xi) =
1

n

n∑

i=1

1

fθ(Xi)
∇fθ(Xi) = 0.

Hence, let

z(x, θ) =
1

fθ(x)
∇fθ(x).

We have

E[z(X1, θ0)] = E
[
∇fθ0(X1)

fθ0(X1)

]
=

∫

Rk

∇fθ0(x)
fθ0(x)

fθ0(x)
dx =

∫

Rk

∇fθ0(x)dx.

Hence assuming ∫

Rk

sup
θ∈Θ

∥∇fθ(x)∥dx < ∞, (26)

from the dominated convergence theorem

E[z(X1, θ0)] = ∇
(∫

Rk

fθ0(x)dx

)
= ∇1 = 0.

Hence Item 1 of Theorem 30 holds.
Next, for any function hθ(x) ∈ Rp, we write Jh

θ̃
(x) for its p× p Jacobian matrix with element a, b

equal to ∂hθ(x)a
∂θb

∣∣∣
θ=θ̃

.

We now also assume that for a, b ∈ {1, . . . , p},
∫

Rk

sup
θ∈Θ

∣∣∣∣
∂2(log fθ(x))

∂θa∂θb

∣∣∣∣
2

fθ0(x)dx < ∞. (27)

This implies from dominated convergence that

JE[z(X1, θ)] = J

∫

Rk

∇(log fθ(x))fθ0(x) =

∫

Rk

(J∇)(log fθ(x))fθ0(x)

is well-defined for all θ. Above, we also notice that (J∇)(log fθ(x)) is the p × p Hessian matrix of
θ 7→ log fθ(x) at θ.

For any a, b = 1, . . . , p, we have

(JE[z(X1, θ0)])a,b =

∫

Rk




∂2fθ0 (x)

∂θa∂θb
fθ0(x)−

∂fθ0 (x)

∂θa

∂fθ0 (x)

∂θb

fθ0(x)
2


 fθ0(x)dx

=

∫

Rk

∂2fθ0(x)

∂θa∂θb
dx−

∫

Rk

∂ log fθ0(x)

∂θa

∂ log fθ0(x)

∂θb
fθ0(x). (28)

If we assume that ∫

Rk

sup
θ∈Θ

∣∣∣∣
∂2fθ0(x)

∂θa∂θb

∣∣∣∣dx < ∞

then the two separate integrals in (28) are well-defined and we have

∫

Rk

∂2fθ0(x)

∂θa∂θb
dx =

∂
∫
Rk

∂fθ0 (x)

∂θa
dx

∂θb
=

∂0

∂θb
= 0.

Hence we have
JE[z(X1, θ0)] = −cov (z(X1, θ0)) (29)

that we can assume to be invertible in order for Item 2 of Theorem 30 to hold.
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For Item 3 of Theorem 30, we can use Lemma 32 since for a = 1, . . . , p

∣∣∣∣
∂ log fθ1(x)

∂θa
− ∂ log fθ2(x)

∂θa

∣∣∣∣ ≤ ∥θ1 − θ2∥
√
p max
b=1,...,p

sup
θ∈Θ

∣∣∣∣
∂2 log fθ(x)

∂θa∂θb

∣∣∣∣

and we can use (27). Hence Item 3 of Theorem 30 indeed holds.
Finally,

sup
θ∈A

∥θ−θ0∥≤δ

∣∣∣∣
∂ log fθ1(x)

∂θa
− ∂ log fθ2(x)

∂θa

∣∣∣∣
2

≤ δp max
b=1,...,p

sup
θ∈Θ

∣∣∣∣
∂2 log fθ(x)

∂θa∂θb

∣∣∣∣

and thus Item 4 of Theorem 30 holds.
From Theorem 30 and (29), we obtain

√
n
(
θ̂n − θ0

)
L−→

n→∞
N
(
0, cov (z(X1, θ0))

−1
)
.

Note that the matrix −JE[z(X1, θ0)] = cov (z(X1, θ0)) is called the Fisher information matrix.
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