Analyse Fonctionnelle - Examen du 8 Janvier 2014

Durée: 3h

Les exercices sont indépendants et peuvent être traités dans n'importe quel ordre. Le barême tiendra compte de la longueur manifeste du sujet.

Exercice 1 (Questions de cours)

- 1. Enoncer le théorème de Banach-Steinhaus.
- 2. Soit (X, d) un espace métrique complet et $f: X \mapsto X$ une application.
 - (a) Rappeler ce que signifie la propriété : f est contractante sur X.
 - (b) Démontrer que si f est contractante, elle admet un unique point-fixe dans X.

Exercice 2

Soit $a = (a_n)_n \subset \mathbb{R}^{\mathbb{N}}$ une suite de nombres réels.

- 1. Montrer que, pour que la série $\sum_{n\geq 0} |a_n x_n|$ soit convergente pour tout élément $x\in l^{\infty}$, il est nécessaire et suffisant que $a\in l^1$.
- 2. On suppose désormais que $a \in l^1$, et on définit

$$||x|| \stackrel{\text{def}}{=} \sum_{n \ge 0} |a_n x_n|, \ \forall x \in l^{\infty}.$$

Donner une condition nécessaire et suffisante sur a pour que $\|.\|$ soit une norme sur l^{∞} .

3. Sous les conditions précédentes, montrer qu'il existe C>0 (dépendant de la suite a) telle que

$$||x|| \leqslant C||x||_{l^{\infty}}, \ \forall x \in l^{\infty}.$$

- 4. Montrer que les normes $\|.\|$ et $\|.\|_{l^{\infty}}$ ne sont pas équivalentes sur l^{∞} .
- 5. Montrer que l'espace l^{∞} muni de la norme $\|.\|$ n'est pas un Banach.

Exercice 3

Soit $E = \mathcal{C}^0([0,1],\mathbb{R})$ muni de la norme infinie $\|.\|_{\infty}$ et F un sous-espace vectoriel **fermé** de E. On suppose que toutes les fonctions f éléments de F sont dérivables en tout point de [0,1]. Le but de l'exercice est de montrer que F est de dimension finie.

1. On fixe dans cette question un point $x \in [0,1]$. Pour tout $y \in [0,1] \setminus \{x\}$, on définit

$$T_y: f \in F \mapsto \frac{f(y) - f(x)}{y - x} \in \mathbb{R}.$$

- (a) Montrer que, pour tout $y \neq x$, T_y est une forme linéaire continue sur F.
- (b) Montrer que, pour tout $f \in F$, la famille $(T_y f)_{y \neq x}$ est bornée.
- (c) Montrer qu'il existe un nombre $C_x > 0$ dépendant seulement de x tel que

$$|T_u f| \leq C_x ||f||_{\infty}, \ \forall f \in F, \forall y \neq x.$$

- 2. On fixe dans cette question un nombre $\varepsilon > 0$.
 - (a) Montrer que pour tout $x \in [0, 1]$, il existe $\delta_x > 0$ tel que

$$\forall y, y' \in [0, 1], \text{ t.q. } |y - x| \leq \delta_x, |y' - x| \leq \delta_x, \text{ on a } |f(y) - f(y')| \leq \varepsilon ||f||_{\infty}, \forall f \in F.$$

(b) Montrer qu'il existe $\delta > 0$, tel que

$$\forall y, y' \in [0, 1], \text{ t.q. } |y - y'| \leq \delta, \text{ on a } |f(y) - f(y')| \leq \varepsilon ||f||_{\infty}, \forall f \in F.$$

3. Montrer que la boule unité fermée de F est compacte et conclure.

Exercice 4 (Représentation du dual de $L^p(\Omega)$)

Soit Ω un ouvert **borné** de \mathbb{R}^d , 1 et <math>q = p/(p-1) son exposant conjugué, qui vérifie donc $2 \leqslant q < +\infty$. On munit Ω de la mesure de Lebesgue (on notera $|\Omega|$ le volume de Ω) et on ne considèrera que des fonctions à valeurs réelles. Le but de cet exercice est de démontrer un théorème de représentation pour le dual de l'espace $L^p(\Omega)$ qui s'énonce comme suit :

Pour toute forme linéaire continue $L \in (L^p(\Omega))'$, il existe une unique $g \in L^q(\Omega)$ telle que

$$L(v) = \int_{\Omega} gv \, dx, \ \forall v \in L^p(\Omega), \ \text{ et de plus on a } \|L\|_{(L^p)'} = \|g\|_{L^q}. \tag{\mathcal{P}}$$

- 1. En utilisant un résultat du cours, montrer la propriété (\mathcal{P}) dans le cas p=q=2.
- 2. On suppose maintenant que p < 2. Démontrer qu'on a l'inclusion $L^2(\Omega) \subset L^p(\Omega)$ et l'inégalité

$$||v||_{L^p} \le |\Omega|^{\frac{2-p}{2p}} ||v||_{L^2}, \ \forall v \in L^2(\Omega).$$

3. Soit $v:\Omega\to\mathbb{R}$ une fonction mesurable quelconque. Pour tout $n\geq 1$, on définit une fonction T_nv par

$$T_n v(x) = \max(-n, \min(n, v(x))), \ \forall x \in \Omega.$$

- (a) Montrer les propriétés suivantes :
 - i. $T_n v \in L^{\infty}(\Omega) \subset L^2(\Omega)$, pour tout $n \geq 1$.
 - ii. $T_n v(x)$ et v(x) sont de même signe, pour tout $x \in \Omega$ et tout $n \ge 1$.
 - iii. $|T_n v(x)| \leq |v(x)|$ pour tout $x \in \Omega$ et tout $n \geq 1$.
 - iv. $\lim_{n\to\infty} T_n v(x) = v(x)$ pour tout $x \in \Omega$.
- (b) Montrer que si $v \in L^p(\Omega)$, avec p < 2 alors $(T_n v)_n$ converge vers v dans $L^p(\Omega)$. En déduire que $L^2(\Omega)$ est dense dans $L^p(\Omega)$.
- 4. On rappelle qu'on a supposé que p < 2. On se donne une forme linéaire continue L sur $L^p(\Omega)$.
 - (a) Montrer que la restriction de L à l'espace $L^2(\Omega)$ est une forme linéaire continue sur $L^2(\Omega)$. En déduire qu'il existe $g \in L^2(\Omega)$ telle que

$$L(v) = \int_{\Omega} gv \, dx, \ \forall v \in L^2(\Omega).$$
 (1)

(b) On pose $v_n = T_n(|g|^{q-2}g)$. En utilisant le fait que (p-1)(q-1) = 1, montrer que

$$\int_{\Omega} |v_n|^p dx \leqslant \int_{\Omega} gv_n dx.$$

- (c) En déduire que pour tout $n \geq 1$, on a $\|v_n\|_{L^p}^{p-1} \leqslant \|L\|_{(L^p)'}$.
- (d) En utilisant le lemme de Fatou, montrer que $g \in L^q(\Omega)$ et $||g||_{L^q} \leqslant ||L||_{(L^p)'}$.
- (e) En déduire que l'égalité (1) est encore valable pour tout $v \in L^p(\Omega)$.
- (f) Montrer qu'on a en fait l'égalité des normes $||g||_{L^q} = ||L||_{(L^p)'}$.