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A short introduction to (classical) generalization bounds

This is a short introduction to generalization bounds, a family of inequalities that are
key in statistical learning theory, yet sometimes poorly understood in machine learning
practice.

Outline:
1 Problem statement: binary classification with i.i.d. training data
2 Estimating a given probability/risk
3 Estimating the risks of multiple classifiers simultaneously
4 VC-bound for binary classification
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The concept of generalization in practice

Example: automatic pedestrian recognition
Learning task: binary classification (image with/without pedestrians)

Training set: sequence of labeled images

Operational domain: within an autonomous vehicle

Broad understanding of generalization
The ML model/classifier is correct on training images...

... yet we want it to ’generalize’, that is, to be correct on previously unseen
images.

Need for quantitative goals and problem description
Goal: correct for ’all’ or ’most’ unseen images? Meaning of ’most’?

Training data: how was it sampled? How to make sure it is representative of the
operational domain?

There are many possible answers corresponding to different practical applications.
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Statistical problem: binary classif. with i.i.d. training data

To be able to prove theoretical guarantees, learning problems are usually simplified.
We will focus on the simplest problem.

Binary classification with i.i.d. training data
We observe a sequence Dn = (X1,Y1), . . . ,(Xn,Yn) ∈X × {0,1} of input-label
examples (the training data).
Assumption 1: the pairs (X1,Y1), . . . ,(Xn,Yn) are drawn at random and
independently from the same probability distribution PX ,Y .
Assumption 2: the learned classifier will be used on data (X ,Y ) drawn at random
also from PX ,Y .

Learning goal: construct a classifier f̂ depending on the training data Dn that
minimizes the risk (a.k.a. test error or out-of-sample error)

R
(̂
f
)=P(Y ̸= f̂ (X)|Dn)=

∫
X×{0,1}

1y ̸=f̂(x)dPX ,Y (x ,y)

or the expected risk (average of R(̂f ) over all possible training data Dn)

E
[
R

(̂
f
)]=P(Y ̸= f̂ (X))
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Statistical problem: binary classif. with i.i.d. training data

The assumptions are strong!

same distribution across training examples and operational data

examples (X1,Y1), . . . ,(Xn,Yn) are drawn independently (this is a way to increase
information as n increases)

There are statistical works where some assumptions are relaxed, e.g.,

distributional shift, presence of outliers

weak-dependency in the data

but we should be aware that assumptions are necessary to prove meaningful
generalization guarantees with only a finite training sequence Dn.
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Estimating a given probability

Toy example 1 (survey): proportion of people under 20 in Toulouse.

Goal: estimate the proportion p of people under 20 in Toulouse.

We collect the ages of a (uniform) random subset of people in Toulouse.

We estimate p with the observed proportion p̂ of people under 20.

How close is p̂ to p?

Toy example 2 (industrial survey): proportion of defective items in a warehouse.

Goal: estimate the proportion q of defective items in a warehouse.

We select items from a spreadsheet uniformly and independently at random, and
we observe whether these items are defective or not.

We estimate q with the observed proportion q̂ of defective items.

How close is q̂ to q?
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Estimating a given probability
Both problems can be modeled (or simplified) as a sequence of independent Bernoulli
trials:

we observe independent random variables Z1, . . . ,Zn ∈ {0,1} such that
P(Zi = 1)= p for all i = 1, . . . ,n;

we want to estimate p using the observed proportion p̂ = 1
n
∑n

i=1 Zi

Hoeffding’s inequality (Hoeffding, 1963)
Let Z1, . . . ,Zn ∈ {0,1} be independent Ber(p) random variables. Then, for any risk level
δ ∈ (0,1),

P

∣∣∣∣∣1
n

n∑
i=1

Zi −p

∣∣∣∣∣É
√

log(2/δ)
2n

Ê 1−δ .

Interpretation:

Unless maybe for a fraction δ of all possible observed sequences z1, . . . ,zn, the observed
proportion p̂ is close to the unknown general proportion p, with a difference bounded by√
log(2/δ)/(2n).

In practice, we only observe a single sequence z1, . . . ,zn, and we “bet” that it is not among
the δ problematic ones.
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Estimating a given probability

There are many related mathematical results.

Central Limit Theorem (de Moivre-Laplace) We actually know the exact distribution
of a rescaled version of the error p̂−p when n →+∞:

p
n

(
1
n

n∑
i=1

Zi −p

)
distrib.−→ N

(
0,p(1−p)

)
Refined non-asymptotic concentrations inequalities Hoeffding’s inequality only
uses information about the range of the random variables. Random variables with
additional properties such as small variance may feature improved concentration
bounds (e.g., Bernstein’s inequality).

Concentration inequalities under relaxed assumptions
Hoeffding-Azuma or Bernstein inequalities for martingales

Bernstein’s inequality for Markov chains

etc (though statistical assumptions of some sort are always needed)
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Estimating the risk of a classifier

Getting back to the binary classification problem Given a classifier f :X → {0,1}
and a sequence (X1,Y1), . . . ,(Xn,Yn) of independent pairs all drawn at random from
PX ,Y , how close is the empirical risk

R̂(f )= 1
n

n∑
i=1
1Yi ̸=f(Xi)

to the risk
R(f )=P(Y ̸= f (X))=

∫
X×{0,1}

1y ̸=f(x)dPX ,Y (x ,y) ?

Answer We can apply, e.g., Hoeffding’s inequality with Zi =1Yi ̸=f(Xi): for any fixed1

classifier f :X → {0,1} and any risk level δ ∈ (0,1),

P

∣∣R̂(f )−R(f )
∣∣É

√
log(2/δ)

2n

Ê 1−δ .

1This means that f is picked before observing the training data.
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Estimating the risks of multiple classifiers simultaneously

Suppose we want to estimate the risks of K fixed classifiers f1, . . . , fK from the same
training data (X1,Y1), . . . ,(Xn,Yn), in order to compare them.

Multiple testing issue: From the previous slide, each bound

∣∣R̂(fk )−R(fk )
∣∣É

√
log(2/δ)

2n

is correct for a large subset Ak of all possible training sequences (x1,y1), . . . ,(xn,yn),
of probability at least 1−δ.

However, problematic events Ac
1, . . . ,Ac

K may span an event of probability up to Kδ in
total.
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Estimating the risks of multiple classifiers simultaneously

Resulting uniform risk bound: for any δ ∈ (0,1),

P

for all k = 1, . . . ,K ,
∣∣R̂(fk )−R(fk )

∣∣É
√

log(2/δ)
2n

Ê 1−Kδ .

Consequence: even if we pick a classifier f among f1, . . . , fK after seeing the training
data, we still have a control on R̂(fk )−R(fk ). The price for overfitting here is the extra
K in the logarithm.

In particular, if we choose the fk that best fits the training data, i.e.,

f̂ ∈ argminf∈{f1,...,fK } R̂(f ) ,

then the uniform risk bound above implies that f̂ has a near-optimal risk:

P

R
(̂
f
)É min

f∈{f1,...,fK }
R(f )+2

√
log(2K/δ)

2n

Ê 1−δ .

Next: What if K is large or even infinite?
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Estimating the risks of multiple classifiers simultaneously
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VC-bound for binary classification

Let F be a set of classifiers f :X → {0,1}. For a given sample size n Ê 1, the
shattering coefficient of F is the quantity

πF (n)= max
x1,...,xn∈X

card
{(

f (x1), . . . , f (xn)
)
: f ∈F

}
.

This is the maximum number of sign patterns that classifiers in F can produce. We
always have πF (n)É 2n.

Vapnik-Chervonenkis dimension
The VC-dimension of F is the quantity

VCdim(F )= sup
{
n ∈N :πF (n)= 2n}

.

This is the largest size of a sequence (x1, . . . ,xn) that F can “shatter”, i.e., on which
the classifiers in F can produce all 2n sign patterns.
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VC-bound for binary classification
Example: the perceptron (affine classifiers).

Writing sign(t)=1t>0 for the sign of t , consider the set of affine classifiers over d
real-valued input variables:

F = {
x ∈Rd 7→ sign(w ·x +b) :w ∈Rd ,b ∈R}

.

VC-dimension of the perceptron

VCdim(F )= d +1

Example in dimension d = 2:
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VC-bound for binary classification
We are now ready to state the so-called VC-bound.

VC-bound (cf. Vapnik and Chervonenkis 1971 and subsequent works)
Let F be a set of classifiers with V := VCdim(F )<+∞, and a sequence
(X1,Y1), . . . ,(Xn,Yn) drawn independently from PX ,Y . Then,

P

for all f ∈F ,
∣∣R̂(f )−R(f )

∣∣É c

√
V max

{
log

( n
Vδ

)
,1

}
n

Ê 1−δ .

Example: feedforward neural networks.

Consider a fixed feedforward ReLU neural network with d inputs, a single (linear)
output, L layers, and W weights.

Let G be the set of all functions g :Rd →R that can be represented by this network
when varying the weights, and sign(G) the associated classifiers:

sign(G)= {
x ∈Rd 7→ sign(g(x)) : g ∈G

}
.

Then, by Bartlett et al. (2019, Theorem 6), VCdim
(
sign(G)

)
≲ LW log(W ).
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Need for less conservative bounds

The generalization bounds presented before are from classical statistical learning
theory textbooks. See, e.g., Shalev-Shwartz and Ben-David (2014); Mohri et al.
(2018); Anthony and Bartlett (2009).

Though nearly optimal in the worst case, the VC-bound for deep learning is non
informative (bound larger than 1) in many practical deep learning settings.

Research about tighter generalization bounds that can explain good empirical
performances is ongoing.
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Overparameterized neural networks: a statistical paradox?

Statistical paradox
Overparameterized neural networks can perfectly fit training data, while generalizing
well to unseen data (Zhang et al., 2021).

This contradicts statistical wisdom against overfitting or overparamerization!

For overparameterized networks, VC-type bounds from statistical learning theory
only provide vacuous guarantees (e.g., a misclassification risk smaller than 1).

Active mathematical research to solve this paradox, and understand the role of
overparameterization and implicit bias (Belkin 2021; Bartlett et al. 2021; Grohs
and Kutyniok 2022).
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Towards tighter generalization bounds

Let us mention two attempts aimed at tighter generalization bounds.

“Size-independent bounds” by Golowich et al. (2018).
Assume the matrices of a depth-L ReLU feedforward neural network are
constrained, say, in Frobenius norm by MF (j) for layer j .

Then, the Rademacher complexity of F = {fw :w ∈RW } (which controls a uniform
generalization gap) is bounded with high probability roughly by

R̂n(F)≲
B
p

L
∏L

j=1 MF (j)p
n

“Path-norms”. Consider the vector Φ(w) made of (roughly) all weight products
along all possible paths in a feedforward network. Gonon et al. (2023) prove a
generalization bound proportional to the ℓ1-norm ∥Φ(w)∥1.

But: “Uniform convergence may be unable to explain generalization in deep learning”
(Nagarajan and Kolter, 2019).
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The double-descent phenomenon

For various DL experiments, the classical U-shaped risk curve was shown to be
replaced with a double-descent generalization curve (source: Belkin et al. 2019).
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The double-descent phenomenon

The double descent phenomenon and that of “benign overfitting” in the
overparameterized regime have been demonstrated in simpler settings.

Simplest example: linear regression with isotropic covariates (Hastie et al., 2022),
where we observe (x1,y1), . . . ,(xn,yn) ∈Rp ×R drawn i.i.d. with, e.g.,

yi = xT
i β

∗+εi for all i = 1, . . . ,n (β∗ ∈Rp is unknown)

xi ,j ∼N (0,1) and εi ∼N (0,σ2)

all xi ,j and εi independent

We consider:

(Excess) Risk: R(β)= E[
(xT

n+1β−xT
n+1β

∗)2]
Minimum ℓ2-norm least-squares estimator:

β̂= argmin
{∥b∥2 : b minimizes ∥y −Xb∥2

}
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The double-descent phenomenon
We consider the asymptotic regime when n,p →+∞ with p/n → γ> 0.

Theorem (Hastie et al. 2022)

Assume n,p →+∞ with p/n → γ> 0, and ∥β∥2
2 = r2 for all n,p. Then, almost surely,

R
(
β̂
)→{

σ2 γ
1−γ if γ< 1 (underparameterized regime)

r2
(
1− 1

γ

)
+σ2 1

γ−1 if γ> 1 (overparameterized regime)
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A more practical approach: post-processing risk control

As seen previously, VC bounds (or their equivalent for regression) are typically too
conservative in practice. This is because they hold for all data distributions and
control the generalization gap uniformly over all predictors in a class.

Simple alternative: post-processing methods.

Simple alternative approach #1: evaluate risk after training

take a trained model f :X →Y as is;

evaluate this single model on an independent data set: observe R̂(f )

bound the true risk by R(f )É R̂(f )+ε(n,δ) with confidence level 1−δ, where
ε(n,δ) is given by some (out of many) concentration inequality.
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A more practical approach: post-processing risk control

As seen previously, VC bounds (or their equivalent for regression) are typically too
conservative in practice. This is because they hold for all data distributions and
control the generalization gap uniformly over all predictors in a class.

Simple alternative: post-processing methods.

Simple alternative approach #2: learn predictive uncertainties after training

instead of estimating the risk of single-point predictions f (x),

fix a target risk α and learn (from some independent data) the “size” of a
prediction set C(x) that contains the unknown label with probability Ê 1−α. This
“size” can be an “error margin” around some classical prediction f (x).
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Conformal prediction in a nutshell

We briefly describe approach #2, of a black-box type (applies to DNNs).

We want to predict some random Y ∈Y given some random X ∈X .

Suppose we have access to predefined nested prediction sets (Cλ(x))λÊ0.
For instance, with Y in one or two dimensions (f ± and f can be pre-trained DNNs):

Cλ(x)= [f −(x)−λ; f +(x)+λ] or Cλ(x)=
{
y ∈R2 : ∥y − f (x)∥ Éλ}

Task: find a size λÊ 0 (or “predictive uncertainty”) such that, on average over a
random draw of (X ,Y ),

P
(
Y ∈Cλ(X)

)Ê 1−α .

We will learn λ using some calibration set (X1,Y1), . . . ,(Xn,Yn) independent of the
training set.
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Conformal prediction in a nutshell (2)

One possible approach consists in computing the smallest2 valid λ for each (Xi ,Yi):

λi :=min
{
λÊ 0 :Yi ∈Cλ(Xi)

}
, 1É i É n

Then, for α ∈ (1/(n+1),1), we rank the λi ’s in increasing order and pick the one at
rank ⌈(n+1)(1−α)⌉. We denote this value by λ̂α.

Theorem (Papadopoulos et al. 2002; Gupta et al. 2022)
If (X1,Y1), . . . ,(Xn,Yn),(Xn+1,Yn+1) are exchangeable and independent from the
training set used to build (Cλ(x))λÊ0, then

P
(
Yn+1 ∈Cλ̂α

(Xn+1)
)Ê 1−α ,

where the probability is w.r.t. all sources of randomness (training, calibration, test).

In fact, the coverage guarantee holds conditionally on the training set. However, it only
holds on average over the calibration set (Xi ,Yi)1ÉiÉn and the test point (Xn+1,Yn+1).
See, e.g., Angelopoulos and Bates (2021) and Bates et al. (2021) for details.

2We consider cases for which the minimum is always achieved (as in the previous examples).
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